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Motivation

m Many query problems of
dynamical systems
m Shape optimization
m Parameter estimation

m Direct solutions to dynamical systems can be
computationally intractable

m 10k CPU hours

m Forward model is a computational bottleneck
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Motivation

m Model reduction makes many query problems tractable

m POD-Galerkin ROM
m Cost savings of over 100x

Challenges in model reduction
m Reduced-order models generate approximate solutions
m Can be inaccurate and unstable

m Leads to epistemic uncertainty

Desirable quantify and reduce this uncertainty




(=M Approaches for error reduction and quantification

Laboratories

in ROMs

m A posteriori error bounds

m Rigorous bounds on the error
m Quantifies, but doesn't reduce errors
m Bounds are often loose

m A posteriori error models
m Can be used to reduce state or Qol errors
m Quantifies and reduces errors
m Can be challenging to create and validate

m Subgrid-scale Modeling
m Models impact of truncated dynamics in ROM
m Reduces state errors
m Intrusive
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Overview

m Propose a data-informed subgrid-scale modeling
framework
m Quantifies and reduces errors
m Only requires the data that was used to generate the ROM

m Framework combines ideas from subgrid-scale modeling,
error modeling, and machine learning
m Framework is based on Mori-Zwanzig subgrid-scale models
m Models unresolved effects as a deterministic function +
noise
m Parameters in the proposed models are learned from
snapshot data used to construct the ROM trial space

m Demonstrate applicability on the advection-diffusion and
shallow water equations




Problem
Description

Problem Description




Sandia
National
Laboratories

Problem
Description

Full-Order Model

m Focus on the parametric full-order model (FOM)
d
Eu(nv t) = R(u7 77)

m State vector: u € RV
m Spatial discretization scheme: R : RV x RV» — RN
m System parameters: 7 € R'n

m Principle Challenge: Full-order model is high dimensional
m Computationally expensive

m Require computationally efficient methods of
approximating the FOM
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Problem
Description

Reduced-Order Models: Coordinate Transformation

m State variable can be expressed in an orthonormal,
hierarchical coordinate system,

u(n, t) = Va(n, )
m Full-order trial basis: V € RVXN
m Generalized coordinates: a(n, t) € RV

m FOM can be written in this coordinate system as

%a(n, t) = VTR(Va(n, t),1)
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Problem
Description

POD Reduced-Order Model: Basis Generation

m POD is a popular approach to construct the basis
m Requires offline training:
m Solve full-order model for high fidelity data
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Problem
Description

POD Reduced-Order Model: Basis Generation

m POD is a popular approach to construct the basis
m Requires offline training:
m Solve full-order model for high fidelity data

m Use data to generate K dimensional basis V (K < N)
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Reduced-Order Models: Basis decomposition

m Trial basis decomposition

V=1[V;V], a=[4,4],
E’;ﬁ‘j,?;m POD trial space: V € RV*xK

Resolved generalized coordinates: a € R
Unresolved trial space: V' € RVX(N=K)

"
"
"
m Unresolved generalized coordinates: 4 € RV—K

m State decomposition:

| I.|
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Problem
Description

Reduced-Order Models: Basis decomposition

m FOM can be decomposed into two equations,
m Coarse-scale ROM equation:

d . =
8= V'R(Va + V'a,n)

m Fine-scale equation:

da .

99 _ V'TR(Va + V'a, )

dt

m Objective of ROMs is to solve the coarse-scale

equation
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Problem
Description

Reduced-Order Models: Closure Problem

m Coarse-scale ROM depends on the unresolved scales
da -~ ~
— =VTR(Va +V'a,n)
dt

m Need to approximate fine-scales for closed system

R(Va + V'a,n) = R(Va,n) + M(a)

m Approximation for the fine-scales is referred to as a
"subgrid-scale” model



Sandia
National
Laboratories

Problem
Description

Modeling Challenge

Unclosed coarse-scale equation:
da -~ ~
= V'R(Va + V'3, n)

Model for unresolved physics:

R(Va 4 V'a,n) = R(Va,n) + M(Va,n)

Closed coarse-scale equation:i
da o ine o
E =V R(Vaﬂl) +M(Va7n)

How to construct M?
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Problem
Description

Subgrid-scale Modeling

m ROM Subgrid-scale modeling techniques:

m Eddy viscosity models (lliescu et al.)

m Variational multiscale models (Codina et al., lliescu et al.)

m Data-driven models (lliescu et al., Carlberg et al.)

m Mori-Zwanzig models (Chorin et al., Stinis et al., Venturi
et al.)
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Problem
Description

Subgrid-scale Modeling

m ROM Subgrid-scale modeling techniques:
m Eddy viscosity models (lliescu et al.)
m Variational multiscale models (Codina et al., lliescu et al.)
m Data-driven models (lliescu et al., Carlberg et al.)
m Mori-Zwanzig models (Chorin et al., Stinis et al., Venturi
et al.)
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Problem
Description

Mori-Zwanzig Formalism

Exact ROM equation:

di _ o7

== R(Va + V'a,n)

Mori-Zwanzig formalism allows for

. t
% = V'R(Va,n) —i—/o K(a(t —s),s,n)ds

Advantages:

m Exact equation for the resolved POD modes

m Only depends on the resolved variables
Challenges:

m Computing the memory integral is not practical
Appealing starting point for developing accurate ROMs
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Problem
Description

Mori-Zwanzig Models

m MZ framework serves as the basis of many models:
Renormalized t-model
Bachelor series expansion models
Finite memory models
7-model
Faber series models

m Challenges:

m Challenging to determine the best model a priori
m Many models contain parameters which must be selected
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Problem
Description

Subgrid-scale Modeling

m We propose a data-driven subgrid-scale modeling
framework for ROMs

m Use (MZ-based) subgrid-scale models to approximate
unresolved effects

m Leverage data used for construction of ROM trial space to
calibrate model parameters

m Perform model selection based on desired performance
metrics



Data-
Calibrated
Subgrid-Scale
Modeling
Framework

Data-Calibrated Subgrid-Scale Modeling
Framework
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m Propose approximations to the memory of the form,

TK(@(t — 5), 5, m)ds ~ N F(w(n), 6, m), 0%(n)
/ ( )

Data-
Calibrated
Subgrid-Scale
Modeli . . ¥
B m N: Normal distribution

Framework

m f: Deterministic subgrid-scale model
m w: Model paramaters
m o2 Noise variance

m Offline framework steps:
Form the primitive ROM
Select candidate subgrid-scale models, f
Learn model parameters, w
Learn the noise variance, o2
Select optimal ROM




. Data-Calibrated POD Reduced-Order Model

m Constructing data-calibrated POD ROM consists of:

Offline training: Solve full-order model for high fidelity
data

Data-
Calibrated

Subgrid-Scale )
Modeling
Framework

Offline ROM construction:
m Identify low dimensional subspace, Y
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Data-Calibrated POD Reduced-Order Model

m Constructing data-calibrated POD ROM consists of:

Offline training: Solve full-order model for high fidelity
data

Offline ROM construction:
m Identify K dimensional linear subspace, V, with K << N
m Close coarse-scale ROM with candidate subgrid-scale
models
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Data-Calibrated POD Reduced-Order Model

m Constructing data-calibrated POD ROM consists of:

Offline training: Solve full-order model for high fidelity
data

Offline ROM construction:
m Identify K dimensional linear subspace, V, with K << N
m Close coarse-scale ROM with candidate subgrid-scale
models
m Use ROM training data to perform subgrid-scale
model calibration and selection
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Data-
Calibrated
Subgrid-Scale
Modeling
Framework

Selection of the Subgrid-Scale Models

m First step involves selection of candidate SGS models
m Consider here four methods
Galerkin truncation:

f(w,ii,n) =0
Renormalized t model:
f(w, @i, m) = c(n)tK(ii(t),0,n)

7 model:
f(w, @, m) = 7(n)K(@(t),0,n)

Exponential kernel model:

t
F(w, i, ) = / c()e T IK (1), 0, m)ds
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Data-
Calibrated
Subgrid-Scale
Modeling
Framework

Supervised Learning for the Model Parameters

m Models contain unknown model parameters
m eg. Markovian 7 model: w = 7(7)

m Learn model parameters with a supervised learning method

w(n) ~ w(0,n)

m W: regression function from supervised learning (e.g.
neural network)
m 0: regression model weights

m Takeaway: Use supervised learning methods to learn
the parameterization of the model constants
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Data-
Calibrated
Subgrid-Scale
Modeling
Framework

Supervised Learning for the Model Parameters

m Leverage data used in ROM training process to learn
weights

m Evaluate ROM at same training points
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Supervised Learning for the Model Parameters

m Leverage data used in ROM training process

m Evaluate ROM at same training points
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m Leverage data used in ROM training process

m Evaluate ROM at same training points

Data-
Calibrated
Subgrid-Scale (A) [A]
Modeling
Framework

° D

m Train each SGS model by minimizing the misfit between
the ROM and FOM

m Calibrate the noise variance based on validation frequencies
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m Leverage data used in ROM training process

m Evaluate ROM at same training points

Data-
Calibrated
Subgrid-Scale (A) [A]
Modeling
Framework

° D

m Train each SGS model by minimizing the misfit between
the ROM and FOM

m Calibrate the noise variance based on validation frequencies
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Model Selection

m Previous step gives a set of calibrated ROMs
m Perform model selection by:

Evaluate each calibrated ROM on the training set
Compute performance metrics

B e.g. mean squared error (MSE) or MSE / CPU time
Select ROM with best metric

m Leads to an optimal “calibrated” ROM

m Maintained the same trial space
m Did not require any additional data
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Data-
Calibrated
Subgrid-Scale
Modeling
Framework

Data-Driven ROM Framework: Summary

Sample the parameter domain and solve FOM

Compute optimal basis of rank K (POD)

Form primitive ROM through Galerkin projection

Select subgrid-scale model(s)

Optimize for model parameters for parameter instance

[@ Learn model parameters as a function of input features
Optimize for noise variance based on validation frequencies
B Learn noise variance as a function of input features

Bl Perform model selection



Numerical Numerical Experiments

Experiments
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Numerical Example: Advection Diffusion ROM

m Examine the parameterized
advection-diffusion equation

J
U = —+ L
t—ux Reuxx
u(0,t) = u(2,t) = 0 }

Numerical ( O) ( - X) eXp(QX)
Experiments Re = 237
m Parameters:

m Re € [50,500] : Reynolds number )
m Truth model is a finite difference scheme :‘_ \\
dup g1 — Uk Upg1 — 2k + U1 —

e TR Ax2 ’
= N =100
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Generation of Data-Informed Reduced Model

Solve truth model for Re = [50, 200, 350, 500]
POD of solution snapshots to generate trial basis
m Select basis size from 99% energy criteria

Ll Form baseline ROM through Galerkin projection
Calibrate SGS models on Re = [50, 200, 350, 500] cases

m Gaussian process regression is used to calibrate parameters

Calibrate noise model based on 95% validation frequency
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Training Results

m Evaluate trained models based on FVU metric:

FWU=1-1r

—4.6

Re=500 —48
7"'}.0/\
Re=350 —J.QE
Numerical F
Experiments -5, 1\9/
Re=200 , g’
-5.6 2

Re=50

G-ROM

t-model ]

7-model
exp-model

m exp-model performs the best across all parameter
instances
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m All ROMs are evaluated on 30 samples for Re € [20,500]
m Accuracy assessed from mean-squared error

104 ® GROM
® 7-model
®  expmodel o ® °
Mimrl(‘l ®o oo L d -
MSE % Reduction
Numerical G-ROM 2.11e-3 0% CL;JJ . Lod e & = °
Experiments t-model 3.65e-4 43.4% = . o *®
7-model 1.47e-4 77.1% = i ¢
exp-model | 4.94e-5 93.9% . o’
° . L
. o
MSE and percent reduction s s e o ®
. L)
In error o

200 400 600 800 1000

MSE as a function of Reynolds number

m exp-model performs the best across all parameter
instances
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Uncertainty Propagation : =

m Propagate uncertainty through the noise

model i
. 3 . #
m Predicted versus true confidence intervals: i v e
G-ROM

G-ROM | 7-model | exp-model
68% | 82.2% 83.4% 82.1% " ==
95% | 94.4% | 94.9% 94.9% 8.

99% | 96.7% 97.0% 97.3%

Numerical
Experiments

m Distributions predicted by noise models are
not statistically accurate
m Temporal correlations are ignored ; =
m Gaussian distribution is inaccurate
m etc.

m Validation frequencies used in training . ‘

are accurate

exp-model



Q=M Numerical Example: ROM of Shallow Water
Equations

m Solve the shallow water equations parameterized by
m Gravity: g =[2,9].
m Water height: hy = [0.05,0.2].

Numerical
Experiments

m Truth model is a 4th order discontinuous Galerkin scheme
m Contains 12k degrees of freedom
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m Full-order model is solved for a grid g = [3,6,9],
h =[0.05,0.125,0.2]
m POD of solution snapshots to generate trial basis
m Select basis size from 99.9% energy criterion (226 modes)

Numerica m Form primitive ROM through Galerkin projection
Esheunent m Calibrate SGS models on FOM runs used for trial basis
generation
m Multivariate linear regression is used to calibrate
parameters

m Note: No hyper-reduction is used to accelerate the non-linear
residual evaluation
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Numerical
Experiments

Results

m ROMs are solved for 100 random samples

of the parameters

m Error is assessed through MSE

MSE | % Reduction
G-ROM 0.0112 0%
7-model | 0.0106 5.4%
exp-model | 0.0052 53.3%

MSE and percent reduction in error

m Non-local subgrid-scale model leads to

significant error reduction

hy

T Cwmse

9

G-ROM

7-model

exp-model

$ e

Comse T
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Numerical
Experiments

Summary

= Quantifying and reducing errors in reduced-order models is
of critical importance

m Qutlined a data-driven framework for subgrid-scale model
calibration and selection

m Use MZ-based method to model unresolved effects in
ROMs
m Utilized ROM training data to perform model calibration

m Supervised learning methods are used to learn model
parameters

m Utilized ROM training data to perform model selection

m Demonstrated method on advection diffusion and shallow
water equations

m Framework led to significant error reductions in all cases
m exponential MZ model performed the best in all cases
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