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Motivation

• Many query problems of
dynamical systems

• Shape optimization
• Parameter estimation

• Direct solutions to dynamical systems can be
computationally intractable

• lOk CPU hours

• Forward model is a computational bottleneck
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Motivation

• Model reduction makes many query problems tractable
• POD-Galerkin ROM
• Cost savings of over 100x

• Challenges in model reduction
• Reduced-order models generate approximate solutions

• Can be inaccurate and unstable

• Leads to epistemic uncertainty

• Desirable quantify and reduce this uncertainty
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Approaches for error reduction and quantification
in ROMs

■ A posteriori error bounds

■ Rigorous bounds on the error
■ Quantifies, but doesn't reduce errors
■ Bounds are often loose

■ A posteriori error models

■ Can be used to reduce state or Qol errors
■ Quantifies and reduces errors
■ Can be challenging to create and validate

■ Subgrid-scale Modeling

■ Models impact of truncated dynamics in ROM
■ Reduces state errors
■ Intrusive
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Overview

• Propose a data-informed subgrid-scale modeling
fra mework

• Quantifies and reduces errors
• Only requires the data that was used to generate the ROM

• Framework combines ideas from subgrid-scale modeling,
error modeling, and machine learning
• Framework is based on Mori-Zwanzig subgrid-scale models
• Models unresolved effects as a deterministic function +

noise
• Parameters in the proposed models are learned from

snapshot data used to construct the ROM trial space

• Demonstrate applicability on the advection-diffusion and
shallow water equations
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Full-Order Model

• Focus on the parametric full-order model (FOM)

Itu(71't) 
R(u,11)

• State vector: u E
• Spatial discretization scheme: R : RN X RAI", RN
• System parameters: 11 E

• Principle Challenge: Full-order model is high dimensional

• Computationally expensive

• Require computationally efficient methods of
approximating the FOM
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Reduced-Order Models: Coordinate Transformation

• State variable can be expressed in an orthonormal,

hierarchical coordinate system,

u(ri, t) = Va(71, t)

• Full-order trial basis: V E N
• Generalized coordinates: a(ri, t) E RN

= V

• FOM can be written in this coordinate system as

dt
a(77, t) = VT R(Va(ri, t),77)
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POD Reduced-Order Model: Basis Generation

• POD is a popular approach to construct the basis

• Requires offline training:

• Solve full-order model for high fidelity data
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POD Reduced-Order Model: Basis Generation

• POD is a popular approach to construct the basis

• Requires offline training:
• Solve full-order model for high fidelity data

•

•

•

•

•

• Use data to generate K dimensional basis V (K < N)
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Reduced-Order Models: Basis decomposition

• Trial basis decomposition

V = VI] , a = [5, 5],
• POD trial space: ct E IIBN xK

• Resolved generalized coordinates: a E iire<
• Unresolved trial space: V' c RN x(N-K)

• Unresolved generalized coordinates: a E RN

• State decomposition:

U = .11
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Reduced-Order Models: Basis decomposition

• FOM can be decomposed into two equations,

• Coarse-scale ROM equation:

—5 = V R(Va + V a,n)
dt

• Fine-scale equation:

da
dt 
= R(V5 +

• Objective of ROMs is to solve the coarse-scale
equation
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Reduced-Order Models: Closure Problem

• Coarse-scale ROM depends on the unresolved scales

dt
= V R(Va + V a, 77)

• Need to approximate fine-scales for closed system

R(V5 + Viâ, 77) = R(/5, 77) + M(a)

• Approximation for the fine-scales is referred to as a
"subgrid-scale" model
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Modeling Challenge

• Unclosed coarse-scale equation:

da T „,
= V R(Va + X/ a, n)

dt

• Model for unresolved physics:

R(V5 v'a, n) = 105, n) + .m(Va, 7i)

• Closed coarse-scale equation:

da = ÝTR(Ý5,n) + AA(Va, n)
dt

• How to construct M?
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Subgrid-scale Modeling

• ROM Subgrid-scale modeling techniques:

• Eddy viscosity models (lliescu et al.)
• Variational multiscale models (Codina et al., lliescu et al.)
• Data-driven models (lliescu et al., Carlberg et al.)
• Mori-Zwanzig models (Chorin et al., Stinis et al., Venturi

et al.)
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Mori-Zwanzig Formalism

• Exact ROM equation:

i/TR(i/5 + v'a, n)
dt

• Mori-Zwanzig formalism allows for

da = V TR(Va, n) + K(a(t — s), s,ri)ds
odt

• Advantages:
• Exact equation for the resolved POD modes
• Only depends on the resolved variables

• Challenges:
• Computing the memory integral is not practical

• Appealing starting point for developing accurate ROMs
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Mori-Zwanzig Models

• MZ framework serves as the basis of many models:

Renormalized t-model
El Bachelor series expansion models
la Finite memory models

T-model

la Faber series models

• Challenges:

• Challenging to determine the best model a priori
• Many models contain parameters which must be selected
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Subgrid-scale Modeling

• We propose a data-driven subgrid-scale modeling
framework for ROMs

• Use (MZ-based) subgrid-scale models to approximate
unresolved effects

• Leverage data used for construction of ROM trial space to
calibrate model parameters

• Perform model selection based on desired performance
metrics

16 38



Problem
Description

Data-
Calibrated
Subgrid-Scale
Modeling
Framework

Numerical
Experiments

Data-Calibrated Subgrid-Scale Modeling
Framework
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• Propose approximations to the memory of the form,

t
K(ii(t — s), s, n)ds (f (w(n), ii, 71), o-2(71))

• Ar: Normal distribution
• f: Deterministic subgrid-scale model
• w: Model paramaters
• a2: Noise variance

• Offline framework steps:

101 Form the primitive ROM
El Select candidate subgrid-scale models, f
la Learn model parameters, w
la Learn the noise variance, cr2
El Select optimal ROM
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• Constructing data-calibrated POD ROM consists of:
El Offline training: Solve full-order model for high fidelity

data

•

•

•

•

El Offline ROM construction:
• Identify low dimensional subspace,
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• Constructing data-calibrated POD ROM consists of:
El Offline training: Solve full-order model for high fidelity

data

•

•

•

•

El Offline ROM construction:
• Identify K dimensional linear subspace, 1), with K << N
• Close coarse-scale ROM with candidate subgrid-scale

models
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Data-Calibrated POD Reduced-Order Model

• Constructing data-calibrated POD ROM consists of:
El Offline training: Solve full-order model for high fidelity

data

•

•

•

•

El Offline ROM construction:
• Identify K dimensional linear subspace, 1), with K << N
• Close coarse-scale ROM with candidate subgrid-scale

models
• Use ROM training data to perform subgrid-scale

model calibration and selection
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• First step involves selection of candidate SGS models

• Consider here four methods
▪ Galerkin truncation:

f (w = o

111 Renormalized t model:

f(w, u, 77) = tK(ii(t), 0, ri)

• T model:
f(w, , u, 77) = K(ii(t), Om)

la Exponential kernel model:

fo
f(w, n) = (t s'K(ii(t), O, ii)ds
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Supervised Learning for the Model Parameters

• Models contain unknown model parameters

• eg. Markovian T model: w =

• Learn model parameters with a supervised learning method

w(n) (6), n)

• it,: regression function from supervised learning (e.g.
neural network)

• 61: regression model weights

• Takeaway: Use supervised learning methods to learn
the parameterization of the model constants
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• Leverage data used in ROM training process to learn
weights

• Evaluate ROM at same training points

• •

•

•
•
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• Leverage data used in ROM training process

• Evaluate ROM at same training points

•

•
•

• Train each SGS model by minimizing the misfit between
the ROM and FOM

• Calibrate the noise variance based on validation frequencies
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Model Selection

• Previous step gives a set of calibrated ROMs

• Perform model selection by:

El Evaluate each calibrated ROM on the training set
El Compute performance metrics

• e.g. mean squared error (MSE) or MSE / CPU time

Select ROM with best metric

• Leads to an optimal "calibrated" ROM

• Maintained the same trial space
• Did not require any additional data
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Data-Driven ROM Framework: Summary

Sample the parameter domain and solve FOM

El Compute optimal basis of rank K (POD)

la Form primitive ROM through Galerkin projection

CI Select subgrid-scale model(s)

El Optimize for model parameters for parameter instance

13 Learn model parameters as a function of input features

El Optimize for noise variance based on validation frequencies

13 Learn noise variance as a function of input features

Perform model selection
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Numerical Example: Advection Diffusion ROM

• Examine the parameterized
advection-diffusion equation

1
Ut = Uk 

Re 
uxx

u(0, t) = u(2, t) = 0

u(x, 0) = x(2 — x) exp(2x)

■ Parameters:

• Re E [50,500] : Reynolds number

• Truth model is a finite difference scheme

duk Uk+1 — Uk Uk+1 — 2Uk Uk-1 
  = Po +Pi
dt Ax ,6,x2

• N = 100

Re = 237

Re = 50
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Generation of Data-Informed Reduced Model

Solve truth model for Re = [50,200,350,500]

El POD of solution snapshots to generate trial basis

• Select basis size from 99% energy criteria

la Form baseline ROM through Galerkin projection

El Calibrate SGS models on Re = [50,200,350,500] cases
• Gaussian process regression is used to calibrate parameters

la Calibrate noise model based on 95% validation frequency
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Training Results

• Evaluate trained models based on FVU metric:

FVU = 1— r2

Re=500

Re=350

Re=200

Re=50

Orz4
6 ti

-ct

—4.6

—4.8

—5.0

—5.2 >

—5.4 :—.41

—5.6

—5.8

—6.0

• exp-model performs the best across all parameter
instances
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Test Set Results

• All ROMs are evaluated on 30 samples for Re e [20,500]
• Accuracy assessed from mean-squared error

MSE % Reduction
G-ROM 2.11e-3 0%
t-model 3.65e-4 43.4%
r-model 1.47e-4 77.1%
exp-model 4.94e-5 93.9%

MSE and percent reduction
in error

-

C/D

no-4-

• G-R01,1

• ,modei

• expmodel

• t-model

• ••

•

•
• •

• • ••
••

o•

•• •

••

•••
••• •

OD

•
•

... • •• •••

.••
•

•

400 600

Re
SOO

MSE as a function of Reynolds number

• exp-model performs the best across all parameter
instances
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Uncertainty Propagation

• Propagate uncertainty through the noise

model

• Predicted versus true confidence intervals:

G-ROM y-model exp-model

68% 82.2% 83.4% 82.1%
95% 94.4% 94.9% 94.9%
99% 96.7% 97.0% 97.3%

• Distributions predicted by noise models are
not statistically accurate

• Temporal correlations are ignored
• Gaussian distribution is inaccurate
• etc.

• Validation frequencies used in training

are accurate

Erro

G-ROM

y-model

Error

32 38 exp-model



C) $andiaNational
Laboratodes

Problem
Description

Data-
Calibrated
Subgrid-Scale
Modeling
Framework

Numerical
Experiments

Numerical Example: ROM of Shallow Water
Equations

• Solve the shallow water equations parameterized by
• Gravity: g = [2,9].
• Water height: ho = [0.05,0.2].

• Truth model is a 4th order discontinuous Galerkin scheme
• Contains 12k degrees of freedom
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Construction of Reduced Order Model

• Full-order model is solved for a grid g = [3,6,9],

h = [0.05, 0.125, 0.2]

• POD of solution snapshots to generate trial basis

• Select basis size from 99.9% energy criterion (226 modes)

• Form primitive ROM through Galerkin projection

• Calibrate SGS models on FOM runs used for trial basis
generation

• Multivariate linear regression is used to calibrate
parameters

• Note: No hyper-reduction is used to accelerate the non-linear
residual evaluation
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Results

• ROMs are solved for 100 random samples
of the parameters

• Error is assessed through MSE

MSE % Reduction

G-ROM 0.0112 0%
y-model 0.0106 5.4%

exp-model 0.0052 53.3%

MSE and percent reduction in error

• Non-local subgrid-scale model leads to
significant error reduction

G-ROM

T—model

35 38
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Summary

• Quantifying and reducing errors in reduced-order models is
of critical importance

• Outlined a data-driven framework for subgrid-scale model
calibration and selection

• Use MZ-based method to model unresolved effects in
ROMs

• Utilized ROM training data to perform model calibration

• Supervised learning methods are used to learn model
parameters

• Utilized ROM training data to perform model selection

• Demonstrated method on advection diffusion and shallow
water equations

• Framework led to significant error reductions in all cases
• exponential MZ model performed the best in all cases
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