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2 Dr. Minnier's: "Sharpening..."

. Statistics is shifting and we need to "sharp" our skill.

. We all have something new to learn.

. R is more "fun" and not "slow"

. As reference, back in the mid 90?s
. Unix workstations
. We had "Splus?
. Programming in Fortran and C.
. No tidy verse, etc.

. Lots to learn and practical advise.

. "Practice" and "move out of your comfort zone".
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Dr. Mannhardfs:

. Let us be research partners in the collaborative work.

. How to best communicate statistical findings to
non-statisticians?

. When communicating with decision leaders and
non-statistics experts lets emphasize:
. Our bottom line.
. Acknowledge communication styles.
. Team work. ("I" in Statistics but not in Team).
. How are we teaching our students?

. Message: Our methods/computations/technical skill are
important but managers don?t want to learn or know all the
details.
. What are the implications of an analysis?
. How does this support answers to decision maker questions

or problems?
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I Dr. Calder's "Feasibility and Validity..."

. Analysis of complex data for adolescence development:
survey + GPS data.

. Large effort to assess noise of GPS data (space-time budget).

. Multilevel Negative Binomial: Number of missing minutes of
GPS coverage.

. Multilevel Logistic Regresion: Discordance of GPS and
"space-time budget",

. Effects studied thru a range of models with interpretable
resu lts.

. Models build with an increasing number of covariables.
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Dr. Wenderlberger's. "Thinking.:

. Illustrates "diverse skill ser around problems at LANL.

. Highlights research process and collaboration.

. Stating problem; Data; —>; useful methods/techniques

. Functional data for "Uncertainty Quantification".
. Given a series of inputs/outputs, from high scale computer

simulations,
. How do we best represent the input/functional output

relationship without running the computer code?
. Build a "surrogate" or "emulator".
. Duality to multivariate statistics.

o
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b Calibration in material sciences'

. Dynamic material properties experiments: access to the
most extreme temperatures and pressures attainable.

. Sandia National Labs Z-machine: pulsed power driver that
can deliver massive electrical currents over very short
timescales (of the order of 60MA over lp,$) ).

. Goal: Understanding of material models at extreme
conditions by coupling computational simulations with
experimental data.

o

7/23/19 1work with Kellin Rumsey, Lauren Hund and Derek Tucker (SNL)



7

7/23/19

Experimental setup
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. "By coupling experimental and simulated velocity traces,
parameters of the tantalum (Ta) equation of state (Ms) can be
estimated".

. Massive electric currents treated as boundary conditions.
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8 Calibration
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. Uncertain inputs generate velocity curves using a computer model.

. Probability distributions look for "agreemenr of outputs and

measurements.
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9 Challenges

3.5

3

2.5

2

1.5a.)8

0.5

0
2700 2800 2900 3000 3100

Time (ns)

3200

. How to accurately estimate uncertainties?

. Calibration parameters have physical interpretation.

. Lots of nuisance parameters.
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Framework

. Following Kennedy & O'Hagan 2001, model the ith
observation in the 1th experiment as,

Y(xij) = a, + (5(xii) + eii

. a are the (unknown) values of the calibration parameters.

. -yi unknown values of experimental uncertainties for
experiment j.

. y(xu) is the observed velocity at time xu.

. 77(xij, a, -yi) is the computer model output at xu.

. S(xu) ̂  GP(µ6, Eo)

. Eij are errors at xu.
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„, I Dynamic material property calibration

. BMC framework to obtain inference for two material
properties of Tantalum.

. Bo and B'0 are the Bulk modulus of tantalum and its pressure
derivative.

= a2) = (Bo, BO)

. Four nuisance that may vary across p = 9 experiments
. Tantalum density - yl
. Magnetic field scaling - 72j, j = 1,2, • • 9
. Aluminum thickness- -y3j, j = 1, 2, • • • 9
. Tantalum thickness - 74j, j = 1,2, • 9

. Potential for overfitting and lack of identifiability.
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, Issues

. Model can fit well to data, solutions far from true parameter
values.

Model discrepancy can reduce the identifiability of the
calibration parameters.

. Can we diagnose such overfitting? Can we mitigated it?

Residuals are
autocorrelated.

o
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13 Nuisance parameters and overfitting

No overfitting Overdispersion

-2 0 1 2

Underdispersion

. Left panel: agrees with standard prior.

. Middle and left: situation that can lead to overfitting.
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, Collective Bias for 2 nuisance-sets

No overfitting

Prior log-denshy (Standard): -11.84
Prior log-denshy (Rogularizationp-0.52

Collective Bias

Prior log-density (Standard): -11.84
Prior log-denshy (Regularization): -2.6

-2 2

. Left: No grouping occurs.

. Right: Collective bias implies systematic overfitting across
experiments.

. Standard prior assigns same values.
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16 A metric for overfitting

. We define,

1
A4,), = -Y) Vy=

i=1 p i=1

ay) 2

Prior beliefs about problem structure suggests:

M7 0 "=_', 1

. Under standard normal,

= N(m l 0,1/P) x [(1) — 1)x2(v(ID — 1) P —1)]

. Reasonable to check that the estimates ik)1,), and 17), are
coherent with prior.
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11, The MP prior

. The moment penalization (MP) prior penalizes solutions with
low prior coherency.

. Let h,(x) be a function which takes larger values when x is
close to a.

71,Ar (7) a ho(N1,y)h")

. Tries to encourage solutions with

My %--Z%O Vy ~1
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17 Dynamic material property calibration
Diagnostic plots
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18 I Dynamic material property calibration
Physical parameter posteriors

Standard Inforrnative MP Prior (low penalty) MP Prior (high penalty)

. Similar posterior inference in all cases.

. Indicates that model discrepancy is unlikely to be causing
bias in the parameters of interest.

O
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