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Introduction
❑ SiGe heterostructures are host material for ongoing quantum electronics discovery & SiGe qubits have good key traits for larger QC in Si [1-4]
❑ Challenge/opportunity: theory indicates critical interplay between material & quantum electronic properties may impact qubit performance[3]
❑ Our goal: first, measure materials properties, and then connect structure with quantum electronic properties
❑ Approach: Grow SiGe heterostructure via molecular beam epitaxy & track evolution in vacuo via scanning tunneling microscopy (STM)

Background Heterostructure growth tracked by in vacuo STM
❑
❑
❑
❑

❑

Six degenerate conduction band minima (valleys) in Si
For spin qubits, must remove (split) valley degeneracy [1]
Strain + interface confinement splits valleys
But theory indicates valley splitting in 2D e- gas, quantum
dots, suppressed by atomic-scale disorder at interfaces [1-4]
For SiGe qubits, this may underpin interdevice variability,
decoherence thru degeneracy [3, 4]

Materials & methods

❑

❑
❑

❑

Prior studies [5-9] showed general principles driving
interface disorder, we focus on specific methods & materials
for contemporary qubits [4]
Buried interface challenging to measure in 3D
Common method of cross-sectional TEM provides 2D slice
thru structure & extrapolations must be made to 3D
Our approach: image growth surfaces that become buried
interfaces as layered structure is deposited

Su bstrate

❑
❑

Commercial virtual substrate (LSRL, Inc )
Virtual substrate characteristics (as-received)

1. Graded layer 2. Relaxed layer 3. Planarize
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11116. Si

SiGe

Si

Surface topography (AFM)
50.0 nm

50 1.4 rel. 1 rcrn

500 9 rel 1 /cm

20.0 pml

Roughness: 0.5 nm

SiGe

mmi

❑ Sio3Geo3
CI Linear graded Ge at -10% /pm
CI Relaxed layer 600 nm thick
❑ C, 1017 cm-3
U Residual strain variation, A strain -0.1 %
U Roughness < 1 nm RMS

Strain variation
(Raman Si-Si mode)

A strain -0.1%

Toolset MBE+STM
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1:1 Coupled MBE+STM (Omicron), vacuum 2x10-1° Torr
CI Si source e-beam heated rod-fed (Thermionics Inc)
❑ Ge source Knudsen cell (MBE Komponenten)
❑ RHEED (Staib) to monitor surface during growth
❑ Band edge thermometer for T measurement
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1. Clean substrate reduce C, O, H via wet chem + annealing in vacuum
diminishing C contamination

HF dip- H desorption Oxide desorption
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2. After relaxed SiGe buffer layer deposition
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3. After strained-Si quantum well
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4. After relaxed SiGe top layer
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❑ Compared a few cleans
❑ Chemical oxide, H annealing, & UV

ozone yielded reasonably clean but
rougher surface
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❑

❑

Composition Si0.7Ge0.3
Isolate subsequent quantum well
from disorder at initial surface
Roughness can be introduced in
this layer
80 nm thick, 2.1 nm/min growth
rate, T=550°C
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Smoothing in this step
Dense atomic steps with
nonuniform distribution
Likely owing to tensile strain,
higher surface energy, and pure
composition
10 nm thick, 1.5 nm/min growth
rate, T=550°C
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❑ Isolate s-Si quantum well from
disorder at finished top surface and
subsequent gate stack

❑ Roughness can be introduced in
this layer

❑ Composition Si0.7Ge0.3
❑ 50 nm thick/ 2.1 nm/min growth

rate, T=550°C

5. After strained-Si cap - finished heterostructure surface
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❑ Smoothing in this step
❑ Likely owing to tensile strain,

higher surface energy, and pure
composition

❑ 3 nm thick, T=550°C/ 1.5 nm/min
growth rate

❑
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Variable step density across surface following each stage of growth process
Steps do not follow miscut, but rather local growth kinetics & strain fields
STM at stage 3 and 5 above point to correlation between well & top-surface roughness

❑ Next work: correlate atomic disorder & quantum electronic properties, in collaboration with
M. Eriksson UW-Madison
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