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Introduction

S1Ge heterostructures are host material for ongoing quantum electronics discovery & SiGe qubits have good key traits for larger QC in S1 [1-4]
Challenge/opportunity: theory indicates critical interplay between material & quantum electronic properties may impact qubit performance[3]
Our goal: first, measure materials properties, and then connect structure with quantum electronic properties

Approach: Grow SiGe heterostructure via molecular beam epitaxy & track evolution in vacuo via scanning tunneling microscopy (STM)
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Background Heterostructure growth tracked by in vacuo STM
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onclusions & outlook

Variable step density across surface following each stage of growth process

Steps do not follow miscut, but rather local growth kinetics & strain fields

STM at stage 3 and 5 above point to correlation between well & top-surface roughness
Next work: correlate atomic disorder & quantum electronic properties, in collaboration with
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