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2 | Motiva’[ing Applica’[ions Simulation Constrained Optimization

Superconductor Vortex Pinning

Reservoir Optimization
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Simulation Constrained Optimization  stochastic Problem Formutation

Let (Q2, F,P) be a probability space, let U and Z be reflexive Banach spaces and
let Y be a Banach space. We consider the optimization problem

ng%n {R(f(S(2),€)) + p(z)} where u=25(z,¢) solves e(u,z,{) =0 a.s.

Here ¢ : Q — = are random parameters (i.e., boundary/initial conditions, etc.)
f:Ux 2 — Ris a state (simulation variable) objective function,
p : Z — R is a control (design, etc.) objective function,
e: U x Z x E— Y isthe simulation constraint, and
Z.q C Z is a closed, convex set of decision variables.

Computational Cost to Evaluate F(z) :=f(S(z,¢), &) and Its Derivatives:
Value e(u,z,§) =0
Gradient e(u,z,£) =0 ey (u,2z,8)* A = —f,(u, {
HessVec e(u,z,{) =0 e (U2, ) N = f
eu(u,z,8)s = —ez(u,z,)v  ey(u,z,8)*p = u(” Z )‘ ,€)8 — Luz(u,2, A, §)v
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41 Modeling Risk Preference  choose Your own Agventure

What is risk and how should we quantify it?
Risk (noun): Possibility of loss or injury (Merriam Webster)

Optimistic Problem Formulations Conservative Problem Formulations
> Risk-Neutral Approach: > Risk-Averse Approach:
Minimize on average Model risk preferences
R(E(z)) = E[F(2)]. R(F(z)) = E[F(z)] + D(F(2)).
> Reliability Approach: > Buffered Approach:
Minimize probability of loss Minimize buffered probability
R(F(z)) = P(F(z) > x). R(F(z)) = bPOE,(F(z2)).
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41 Modeling Risk Preference

What is risk and how should we quantify it?

Risk (noun): Possibility of loss or injury (Merriam Webster)

Optimistic Problem Formulations

> Risk-Neutral Approach:
Minimize on average

R(F(2)) = E[F(z)].

> Reliability Approach:
Minimize probability of loss

R(F(z)) = P(F(z) > x).
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Conservative Problem Formulations

> Risk-Averse Approach:
Model risk preferences

R(F(2)) = E[F(z)] + D(E(2))-

> Buffered Approach:
Minimize buffered probability

R(F(z)) = bPOE,(F(2)).

Primal-Dual Risk Minimization



5| Average Value-at-Risk and Buffered Probability
A risk measure is any R : X — (—oo, oo] such that R(C) = Cfor all C € R.

For example, R(X) =E[X], R(X) = E[X] +E[|X — E[X][']'/?, or R(X) = AVaRs(X).

The Average Value-at-Risk is the average of the (1 — 3) x 100% largest scenarios:

1
AVaR;(X) = ﬁ /B 7a(X) da = min {t + ﬁE[maX{O,X - t}]} .

The Buffered Probability is the probability that AVaRg(X) exceeds a threshold x:
bPOE(X) =1— where g solves AVaRp(X) = x,
which can be computed by solving the convenient 1D convex optimization problem
bPOE,(X) = Itn>151 E[max{0, t(X — x) + 1}].

PDF ‘ 1—py = ‘ CDF |

qs = CVaRy a=1-p,

qs = VaRy qa o =12
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6 COherent Measures Of RlSk Ph. Artzner et al., Mathematical Finance, 9(3), 1999.

R : X — (—o0, 0] is a coherent measure of risk if it satisfies

(R1) Subadditivity: R(X+X) <R(X)+ R(X')

(R2) Monotonicity: X>X as. = RX)>RX)

(R3) Translation Equivariance: R(X+1t) =R(X)+t, VteR

(R4) Positive Homogeneity: R(tX) =tR(X), Vt>0

Convexity: {(R1) + (R4) = convexity} and  {convexity + (R4) = (R1)}

Dual Representation: R(X) = ﬁeiupR* EWX], domR*C{fe X" |E[§)=1, 0 >0as.}

Examples of risk measures that are coherent:
> Mean-Plus-Semideviation: R(X) = E[X] + cE[max{0, X — E[X]}]'/?, ¢ € (0,1)

> Average Value-at-Risk: R(X) = infi{t + (1 — ) 'E[max{X —t,0}]}, B € (0,1)
Examples of risk measures that are not coherent:

» Mean-Deviation: R(X) = E[X] + E[|X — E[X][']"/* Violates (R2)!

> Entropic Risk: R(X) =logE[exp X] Violates (R4)!
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71 Is Nondifferentiability Really an Issue?
Result: If R : X — R is coherent, then R is Fréchet differentiable
<— IYeXx*withd >0as.,EW =1 and R(X) =E[¥X] forall X ¢ X
Nonsmooth, nhonconvex, & stochastic simulation-constrained optimization:
— Algorithms for nonsmooth, nonconvex problems often converge (sub)linearly!
— Evaluating the cost function requires simulations for every sample!
— Evaluating (sub)gradients requires additional linear solves for every sample!

A small, nonconvex, & nonsmooth example: AVaR minimization of Burger’s equation:
— Bundle Method: Required O(10%) nonlinear and ©(108) linearized solves.

— Smoothing + Newton: Required O(10°) nonlinear and O(107) linearized solves.

Solving real world problems is intractable without ...
> Better nonsmooth optimization algorithm or differentiable R;
> Adaptive/variable fidelity approximation in physical and stochastic space;
» In optimization, accuracy is not required far from a solution.
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s | Epi-Regularized Risk Measures .

The epi-regularization of R is given by 2 /
RE(X) := Jnf {R(X-Y)+ed(Y/e)}, >0
4 ‘

where R, ® : X — (—o0, 00| satisfy:
1. R, @ are proper, closed and convex
2. domR* Cdom®* = dom(R?)* =domR* 2
3. (domR* — dom ®*) contains a neighborhood of 0 \

Properties of R?:
1. [R(X) - R(X)| = O(e)
2. R coherent — R? is a convex risk measure, but is not coherent
3. If ®* is strictly convex on dom R*, then RZ is Hadamard differentiable
4. If, in addition, ® is a potential, then RZ is continuously differentiable
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o | Epi-Regularized Risk Measures

Letv: R — Rand ¢ : R — R be convex and define
R(X) = E[v(X)] and ?(X) = E[p(X)].
The decomposability of X ensures that

RE(X) = inf {E[o(X - V)] +Elo(Y/2)]}

= | 1ok {B(X —3) +Eplg/e) | = E[v?(X)]

where the inner infimum, 02, is the infimal convolution of v with ¢!

Example: If v(x) = max{0,x} and ¢(x) = x* + x, then

—& if x < —¢
v?(x) = sl +xif —e<x<0 .
x ifx>0
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10| Primal-Dual Risk Minimization  problem setiing
We consider the optimization problem:

min {g(w) + ¥(G(w))} (P)
wEWaq

— W,q is a closed, convex subset of the reflexive Banach space W,

— g: W — Ris weakly lower semicontinuous,

- G: W = X :=L[*Q, F,P) is weak-to-strong continuous,

— ¥ : X — Ris convex, monotonic and positively homogeneous,

— dy € Rsuch that {w € W,q |g(w) + ¥(G(w)) <~} is nonempty and bounded.

Consequences: Problem (P) has a solution and ¥ is continuous, subdifferentiable and

U(X)=supE[fX] VXeX where 2A:=90¥(0)C{feX|§>0as.}

oA
= min {g(w) + ¥(G(w))} = minsup {¢(w,0) :=g(w) + EHG(w)]}.
wEWyq WEW,q 02U

Notation: Let K := supyq ||0||x denote the Lipschitz modulus of ¥ at X = 0.
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111 Primal-Dual Risk Minimization A Generalized Method of Muttipliers
Motivated by the method of multipliers, we define the generalized augmented Lagrangian

— i ik
L(w,\,7) := max {g(w) + E[0G(w)) 2rIE[()\ 0) ]} . r>0.
Relation to Epi-Regularization: As a consequence of convex duality,

L(w,\,r) = g(w) + min {\I!(G(w) —Y)+E\Y] + %E[YZ]} = g(w) + ¥F,(G(w))

where &(Y) = ENY] +3E[Y?] = 0<¥(X)- VP, (X) < KP/rforall X € X.
Consequences: L(-, A, r) is continuously differentiable with derivative given by
VawLl(w, A\, 1) = Py (rG(w) + N).
L(w,-,r) is also continuously differentiable with derivative given by
ViL(w, A\, 7) = (Py(rG(w) + A) — A) /7.
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12| Primal-Dual Risk Minimization Relation to Classical Method of Multipliers

We can rewrite the generalized augmented Lagrangian in the more revealing form

L(w, A7) = g(w) + ENG(w)] + ZE[G(w)?] - %E[{(Id — Po)(rG(w) + ) }2).

Equality Constraints (G(w) = 0): Let ¥ be the indicator function of {0}, then 2l = X and

L(w, \,7) = g(w) + EAG(w)] + %E[G(w)z].

Inequality Constraints (G(w) < 0): Let ¥ be the indicator functionof {X € X | X <0a.s.},
thenA={0 e Xx|0>0as.} and

L(w, \, 1) = g(w) + %E[maX{O, rG(w) + \}?] — %EM.
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13| Primal-Dual Risk Minimization Algorithm and Implementation Details

Initialize: Given \p € 2 and ry > 0.

While(“Not Converged”)
1. Find wyy1 € W,q that approximately minimizes L(-, A, 7x).

2. Set M1 = P (nG(wiy1) + M-

3. Update 7.
EndWhile

Practical Implementation: If W is a Hilbert space, then “Converged” could mean
w1 — Pwy (W1 — VoL@, M, 7)) lw <7 and [ — Megaflx < 7
Moreover, we can update ry, = p,7i for some p, > 0if | Ae — Mg [[x > Tax With 7y, > 0.

Drew Kouri Sandia National Laboratories Primal-Dual Risk Minimization



141 Primal-Dual Risk Minimization AVaR, bPOE, mean-plus-semideviation, . . .
Example: Suppose ¥(X) = E[max{0,X}|,thenA={ e X|0<0 <1as.}.

w(xa B )

While(“Not Converged”)

1. Find wy, 1 € Waq that approximately solves

i {8(w) + BB (G(w), A1)} , x
2. Set A1 = max{0, min{1, G(wiy1) + M} }- "
3. Update r¢y1. " f
1y ifrx+t<0
EndWhile v e
P, tr) = q x4+ tx fo<rm+t<1

Hx+t -3+ D} ifl<rx+t
Note: Equivalent to the method of multipliers applied to the smooth reformulation

min  {g(w)+E[n]} subjectto G(w)—n+s=0, n>0, s>0 as.
WEW,q,8,mNEX
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151 Primal-Dual Risk Minimization Convergence Analysis

1. Primal Variables: Let ¢, — ¢* > 0 and ry — r* < oo. If the iterates {w;} C Waq
are e,-minimizers, then any weak accumulation point of {w;} is a

(" + f—f)-minimizer of the original problem.

2. Dual Variables: If, in addition, {¢} satisfies

A [ee]
Yk
€& = =——, E < oo, and >0,
k 21 e Vi Yk =

then the dual variables {)\;} converge weakly to a maximizer of the dual problem.

3. Primal Variables: Let ¢, — 0 and 1, — oo, and suppose g and G are continuously
differentiable. If the iterates {wy} C W,q are ¢-stationary points then any weak
accumulation point of {w,} is a stationary point of the original problem.
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16 | Numerical Examp|eS Problem Descriptions

Elliptic 1d: D = (-1,1), a = 10, Z = Z,q = L*(D)
. ! 2 o 2
g}gR(E /D(S(z) 1) dx> +§/DZ dx

—0(e(§)0wu(§)) =f(§) +z inDa.s.
w(©)(-1) =0, u(&](1)=0 as.
Elliptic 2d: D — (0,12 a =105, Z = R®, Zag = {z€ Z|0 < z < 1}

1
ZnelégR (5 /DS(Z)2 dx) + af|z]l1

where u = 5(z) solves

where u = 5(z) solves

=V(e()Vu(§)) +V(§) - Vu(&) = f(£) — inDas.
u€) =0 onT,; = {0} x (0,1) a.s.
e(©)Vu(§) -n=0 on dD\ Ty as.

Drew Kouri Sandia National Laboratories Primal-Dual Risk Minimization



171 Numerical Examples

Burgers: D =

Problem Descriptions

(0,1), a = 1073, Z = Z,q = L3(D)

. 1 2 & 2
Z%%2R<E/D(S(z)—l) dx> + 2/Dz dx

where u = 5(z) solves

—l/(f) Oxati(€) + u(f)&(”(f) f( )+ inDas.
[1(£)](0) = do (&), [M(OI(1) =da (E) as.
Risk Measures:
Mean-Plus-Semideviation R(X) = E[X] 4 cE[max{0, X — E[X]}]
Mean-Plus-Semideviation-From-Target R (X) = E[X] + cE[max{0, X — ¢}]
Average Value-at-Risk R(X) = AE[X] + (1 — A\)AVaRg(X)
Buffered Probability R(X) = infi>o E[max{0, #(X — x) + 1}]
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181 Numerical Results

Comparison with Nonsmooth Bundle Method (Schramm and Zowe)

PD Algorithm Bundle

example risk iter nfval ngrad subiter | iter neval
MPSD 7 14 14 7 37 530

. . MPSDFT . 11 11 4 28 427
elliptic 1d| ypp 7 23 23 16 37 240
BPOE 0 66 59 33 —— ——=

MPSD 5 15 15 5 ——= ——=

\ , MPSDFT 6 21 20 8 = S
elliptic 2d | qyap 9 99 57 31| —— -
BPOE 10 123 72 47 e ——s

MPSD 14 35 30 21 362 395

T MPSDFT 11 23 23 12 329 361
CVAR 11 63 63 52 369 466

BPOE 11 179 129 76 —— s

Between 7 and 38 fold reduction in computational work!
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19

Conclusions:

>

vVVyVYyVYYvYyYy

Numerical solution of risk-averse simulation-constrained optimization is expensive

Most coherent risk measures are not continuously differentiable

We can use the infimal convolution to smooth risk measures

Appropriate assumptions ensure smoothed risk is continuously differentiable

Generalized method of multipliers solves a sequence of smooth, epi-regularized subproblems
Proved convergence of approximate minimizers and first-order stationary points

Numerical examples suggest ~10—40x improvement compared to bundle method
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