
A Primal-Dual Algorithm for
Large-Scale Risk Minimization

Drew P. Kouri, Thomas M. Surowiec
International Conference on Stochastic Programming

Trondheim, Norway

July 31, 2019

LDRD
Laboratory Directed Research
and Development

{PENA& Ne,.S.64

Technology Ft. Englneerlop Sol.Ions of Sandia,
LLC, a wholly owned subskiary of Honeywell

Energy's HatIonal Nuclear Security
Adrnirmlration undenontract VE-110.01.5.25,

SAND2019-8675C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Drew Kouri Sandia National Laboratories

2 Motivating Applications Simulation Constrained Optimization
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31 Simulation Constrained Optimization Stochastic Problem Formulation

Let (C2, T, P) be a probability space, let U and Z be reflexive Banach spaces and
let Y be a Banach space. We consider the optimization problem

min {R,(f(S(z), + p(z)} where u = S(z, 0 solves e(u,z, = 0 a.s.
zE4d

 •

Here : E are random parameters (i.e., boundary/initial conditions, etc.)

f : U x E ris a state (simulation variable) objective function,

p : Z R is a control (design, etc.) objective function,

e: U x Z x .E.—>1( is the simulation constraint, and

Zad C Z is a closed, convex set of decision variables.

Computational Cost to Evaluate F(z) :=f(S(z, 0, 0 and lts Derivatives:

Value e(u,z, = 0

Gradient e(u, z, = 0 eu(u, z, 0*À = —fu(u,

HessVec e(u,z, = 0 eu(u, z, = —fu(u,
eu(u,z, = —ez(u, z, eu(u,z, 0*p = Luu(u,z, A,0s — Luz(u,z, À, 0v
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41 Modeling Risk Preference Choose Your Own Adventure

What is risk and how should we quantify it?

Risk (noun): Possibility of loss or injury (Merriam Webster)

Optimistic Problem Formulations

P.- Risk-Neutral Approach:
Minimize on average

R(F(z)) = E[F(z)].

► Reliability Approach:
Minimize probability of loss

R(F(z)) = P(F(z) > x).

Conservative Problem Formulations

10- Risk-Averse Approach:
Model risk preferences

R,(F(z)) = E[F(z)] + D(F(z)).

► Buffered Approach:
Minimize buffered probability

R(F(z)) = bP0E,(F(z)).
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5 Average Value-at-Risk and Buffered Probability
A risk measure is any R : X —> (—co, oo] such that R(C) = C for all C E E.

For example, R(X) = E[X], R(X) = E[X] E[IX — ]E[X]r]l/P, or R(X) = AVaRo (X).

The Average Value-at-Risk is the average of the (1 — /3) x 100% largest scenarios:

AVaR0 (X) — 1 
1 

 /0 q,„ (X) da = 
mitER
n { t 

1 
1  

E[max{0, X — .
— JJJ

The Buffered Probability is the probability that AVaRo(X) exceeds a threshold x:

bP0Ex(X) = 1 — ,3 where i3 solves AVaRi3 (X) = x,

which can be computed by solving the convenient 1D convex optimization problem

bP0Ex(X) = min E[max{0, t(X — x) 1}].

PDF

= CVaRo

1 7)

a = 1 —f CDF

qo = VaRo = x
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61 Coherent Measures of Risk Ph. Artzner et al., Mathematical Finance, 9(3), 1999.

R, : X —> (—oo, oo] is a coherent measure of risk if it satisfies

(R1) Subadditivity:

(R2) Monotonicity:

(R3) Translation Equivariance:

(R4) Positive Homogeneity:

Convexity: {(R1) + (R4)  

R,(X + X') < R(X) + R,(X')

x > a.s. R(X) > R (X')

R.(X + t) = R(X) + t, Vt E R

R(tX) = tR(X), Vt > 0

> convexity} and {convexity + (R4)  > (R1)}

Dual Representation: R(X)

Examples of risk measures that a

► Mean-Plus-Semideviation:

► Average Value-at-Risk:

Examples of risk measures that a

0. Mean-Deviation:

► Entropic Risk:

= sup EPX], domR.* C {19 E X* lE[0] = 1, > 0 a.s.}
t9Edorioz,*

re coherent:

R(X) = E[X] + cE[max{0, X — E[X]yrP, c E (0, 1)

R(X) = inftft + (1 — 0)-1E[max{X — t, O}]}, E (0, 1)

re not coherent:

R(X) = E[X] + E[IX — ]E[X]r11/P Violates (R2)!

R(X) = log E[exp X] Violates (R4)!
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71 Is Nondifferentiability Really an Issue?
Result: If : X —> R is coherent, then R is Fréchet differentiable

79 e X* with 79 > 0 a.s., E[19] = 1, and R(X) = Epx] for all X e X

Nonsmooth, nonconvex, & stochastic simulation-constrained optimization:

— Algorithms for nonsmooth, nonconvex problems often converge (sub)linearly!

— Evaluating the cost function requires simulations for every sample!

— Evaluating (sub)gradients requires additional linear solves for every sample!

A small, nonconvex, & nonsmooth example: AVaR minimization of Burger's equation:

— Bundle Method: Required 0(108) nonlinear and 0(108) linearized solves.

— Smoothing + Newton: Required 0(106) nonlinear and 0(107) linearized solves.

Solving real world problems is intractable without ...

10- Better nonsmooth optimization algorithm or differentiable R;

P.- Adaptive/variable fidelity approximation in physical and stochastic space;
P. In optimization, accuracy is not required far from a solution.
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8 Epi-Regularized Risk Measures
The epi-regularization of R is given by

RT (X) := ,p-i.f., fR(X - Y) + e(I)(Y / e)} , 6 > 0

where R, (D : X —> (-00, oo] satisfy:

1. R, (1. are proper, closed and convex

2. dom R* C dom (13* > dom(V)* = dom R*

3. (dom R* — dom V') contains a neighborhood of 0

4

2

—2 —1

Properties of RI:

1. 1R(X) — RT (X) 1 = 0(e)

2. R. coherent  > V is a convex risk measure, but is not coherent

3. If .1)* is strictly convex on dom R*, then RT is Hadamard differentiable

4. lf, in addition, (D is a potential, then RT is continuously differentiable

Z

0

I,
I

Drew Kouri Sandia National Laboratories Prirnal-Dual Risk Minimization



9 Epi-Regularized Risk Measures Application to Expected Regret Functions

Let v : R and 0 : R be convex and define

7Z(X) = E[v(X)] and 4)(X) = E[0(X)].

The decomposability of X ensures that

RI (X) = flE,[v (X — Y)] + ElE,[0(Y e)]}

= E [Zfl {v(X — y) + E cb(y E)}] = lE[v(1; (X)]

where the inner infimum, v1, is the infimal convolution of v with 0!

Example: If v(x) = max{0, x} and 0(x) = zx2 + x, then

—2
E if x < —E

Z i; (x) = 2E x2 + x if —E < X < 0 .

X if x > 0

v(x)
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10 Primal-Dual Risk Minimization Problem Setting

We consider the optimization problem:

min {g(w) + lIf (G(w))}
WE Wad

— Wad is a closed, convex subset of the reflexive Banach space W,

— g : W —> R is weakly lower semicontinuous,

— G : W —> X := L2(R.F,P) is weak-to-strong continuous,

— T : X —> R is convex, monotonic and positively homogeneous,

(P)

— 37 e l": such that {w E Wad 1 g(w) + W (G(w)) < 71 is nonempty and bounded.

Consequences: Problem (P) has a solution and T is continuous, subdifferentiable and

W(X) = sup lE[OX] VXE X where 2t := OT(0) c {O EXIO>0 a.s.}
OE%

min {g(w) + W (G(w))1 = min sup {gw, B) := g(w) + lE[OG(w)]} .
WE Wad WEWed 0E%

Notation: Let K := SUP e E21110II x denote the Lipschitz modulus of W at X = O.

1
I
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11 I Primal-Dual Risk Minimization A Generalized Method of Multipliers

Motivated by the method of multipliers, we define the generalized augmented Lagrangian

L(w, À, r) := 17,1ea {g(w) E[OG(w)] — —
1

2r E[(A 9)2] } 
r > O.

Relation to Epi-Regularization: As a consequence of convex duality,

L(w, À, r) = g(w) + mix {tlf (G(w) — Y) + E[AY] + E[Y2] = g(w) + 411,,(G(w))

where .1)(Y) = E[AY] + -E[Y2] > 0 < T(X) — tlf113/1,(X) < K2 1 r for all X c X.

Consequences: L(- , À, r) is continuously differentiable with derivative given by

V , À, r) = P2t(rG(w) + À).

L(w, r) is also continuously differentiable with derivative given by

VAL(w, À, r) = (Pa(rG(w) + À) — A)/r.
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12 Primal-Dual Risk Minimization Relation to Classical Method of Multipliers

We can rewrite the generalized augmented Lagrangian in the more revealing form

L(w, À, r) = g(w) + (w)] + -r2E[G(w)2] - ,1 E[{(Id - P%)(rG(w) + A)12].

Equality Constraints (G(w) = 0): Let W be the indicator function of {0}, then 21. = X and

L(w, À, r) =g(w) + (w)] + E[G(w)2].

Inequality Constraints (G(w) < 0): Let IP be the indicator function of {X EXIX<0 a.s.},
then = {0 EXIO>0 a.s.} and

L(w, À, r) = g(w) + —21rE[max{0,rG(w) + A}2] - E[A2].
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131 Primal-Dual Risk Minimization Algorithm and Implementation Details

Initialize: Given Ao c a and 1'0 > O.

While("Not Converged")

1. Find Wk+1 E Wad that approximately minimizes L(•, Ak, rk).

2. Set Ak+1 = 1321(rkG(Wk+1) + Alc)•

3. Update rk-El•

EndWhile

Practical Implementation: If W is a Hilbert space, then "Converged" could mean

lIwk+1 — PMd (wk+1 — VzuL(Wk+1, krk))llw < Tw and Pk — Ak+11lx 5_ TA•

Moreover, we can update rk+1 = prrk for some pr > O if Ilk — Ak+lllx > TA,k with TA* > O.
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14 Primal-Dual Risk Minimization AVaR, bPOE, mean-plus-semideviation,

Example: Suppose ci(X) = E[max{0, X}], then 21={B EX10<t9<1 a.s.}.

While("Not Converged")

1. Find --k+1 w W — ad that approximately solves

min {g(w) +1E[IP(G(w),Alork)]}.zvEvvad

2. Set Ak+1 = max{0, min{1, rkG(wk+1) + Ak}}.

3. Update rk+1.
EndWhile

x

ifrx+t<0

if0<rx+t<1

{(rx + t) — 1(t2 1)} if 1 < rx + t

Note: Equivalent to the method of multipliers applied to the smooth reformulation

min {g(w) + EH} subject to G(w) — s = 0, > 0, s > 0 a.s.
wein/ad,s,nex

•t2
w(x, t, r) =li x2 +tx
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15 I Primal-Dual Risk Minimization Convergence Analysis

1. Primal Variables: Let Ek e > 0 and rk r* < oc. If the iterates fzvkl c Wad

are ck-minimizers, then any weak accumulation point of {wk} is a

(E* 5)-minimizer of the original problem.

2. Dual Variables: lf, in addition, {ck} satisfies

2 co
ik

Elc = < CC, and 'Tic > 0,
2rk

k=0

then the dual variables {k} converge weakly to a maximizer of the dual problem.

3. Primal Variables: Let Ek 0 and rk oc, and suppose g and G are continuously

differentiable. If the iterates {zuk} c Wad are Ek-stationary points then any weak

accumulation point of {wk} is a stationary point of the original problem.
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16 Numerical Examples Problem Descriptions

Elliptic ld: D = (-1,1), a = 10, Z = Zad = L2(D)

min R. f (S(z) — 1)2 dx) + z 2 dx
zEzad D D

where u = S(z) solves

-0x(e(Oaxu(0) = f + z in D a.s.

[u(e)](-1) = 0, [u(e)](1) = 0 a.s.

Elliptic 2d: D = (0,1)2, a = 10-5, Z ile, Zad = {z E ZIO <z < 1}

1
m
z
in R (7, S(z)2 dx) + allzIlizead D

where u = S(z) solves

—V(e(e)Vu(e)) + V(e) • Vu(e) = f(e) — Bz

u(e) = 0

f(e)Vu(e) • n = 0

in D a.s.

on rd = {0} x (0,1) a.s.

on aD rd a.s.
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17 Numerical Examples Problem Descriptions

Burgers: D = (0,1), a = 10-3, Z = Zad = L2(D)

1
min 'R, (4 (S(z) — 1)2 dx) + 2, f z 2 dx
zEzad z D L D

where u = S(z) solves

—v(e)0x,u(e) + u(e)Oxu(e) = f (e) + z

[u(0](0) = 4(0, [u(0](1) = cli(0

in D a.s.

a.s.

Risk Measures:

Mean-Plus-Semideviation R(X) = E[X] + cE[max{0, X — E[X]l]

Mean-Plus-Semideviation-From-Target R(X) = E[X] + cE[max{0, X — t}]

Average Value-at-Risk R(X) = AE[X] + (1 — A)AVal.2.0 (X)

Buffered Probability R(X) = inft>o E[max{0, t(X — x) + 1}]
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18 Numerical Results Comparison with Nonsmooth Bundle Method (Schramm and Zowe)

example risk iter

PD Algorithm

nfval ngrad subiter

 Bundle

iter neval

MPSD 7 14 14 7 37 530

elliptic ld
MPSDFT 7 11 11 4 28 427

CVAR 7 23 23 16 37 240

BPOE 7 66 59 33 --- ---

MPSD 5 15 15 5

elliptic 2d
MPSDFT 6 21 20 ---

CVAR 9 99 57 31 --- ---

BPOE 10 123 72 47 ---

MPSD 14 35 30 21 362 395

MPSDFT 11 23 23 12 329 361
burgers

CVAR 11 63 63 52 369 466

BPOE 11 179 129 76

Between 7 and 38 fold reduction in computational work!
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19 l

Conclusions:

0- Numerical solution of risk-averse simulation-constrained optimization is expensive

► Most coherent risk measures are not continuously differentiable
► We can use the infimal convolution to smooth risk measures
0- Appropriate assumptions ensure smoothed risk is continuously differentiable

10 Generalized method of multipliers solves a sequence of smooth, epi-regularized subproblems

0- Proved convergence of approximate minimizers and first-order stationary points

10 Numerical examples suggest —10-40x improvement compared to bundle method
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