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Phase field approach to fracture
■ Cracks represented as smeared field

a) sharp crack b) diffusive crack
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Miehe et al (2011)

■ Advantages: no sharp discontinuities, naturally captures arbitrary crack
paths, branching, merging

Bourdin et al (2014)

■ Genesis in linear elastic brittle fracture

■ Approaches for ductile failure have started appearing and are under
development
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Overview

■ SIERRA code & objectives

■ Phase Field Formulation

■ Phase Field Implementation

■ Implicit Time Integration

■ Recent Efforts

Iterated staggered solution

Element Study

Temporal / Spatial Convergence

■ Model Validation

■ Explicit Time Integration

■ Explicit Phase Field solve

■ Implicit Phase Field solve

■ Future directions
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SIERRA Code & Objectives

%.•
Stershic, SAND2018-4988C

■ SIERRA finite element code

• Developed by Sandia National Laboratories

• Implicit & explicit time integration, Quasistatic & Dynamic

• Fully parallelized for clusters, HPC

• Finite strain formulation by default

• Robust explicit & implicit contact

• Constant verification & validations efforts, experimental comparisons

• Multiphysics: thermal, electrical, chemical, etc.

■ Objectives:

• Implement ductile phase field model in SIERRA

• Modular: can be coupled with any plasticity model

• Computationally efficient

• Capable with implicit and explicit time integration

• Convergent: high model credibility from verification & validation
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Phase Field Formulation

N Phase Field fracture concept:
1p = fn ip dn = f nike (_

E
eN
) + ikP(EP)dn + fr. Gcc1F

4 fn g (oil? (Ee) 
+ h(C)1P3 (EP) + f (c ,V c ,1)Gc dn

• Fracture energy: volumetric expression replaces surface energy functional

• F-convergent: expressions equivalent in limit / 0+

N Classical, AT-2

ip = c 2 * (11)" e ( eN
E ) + ipP(EP))+ Gc ((1 — c)2 + 4121V cl2)
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N Threshold, AT-1
ip = c 2 * (ike(EeN

) +1PP (EP )) + 24'crit((1— C.) + 121VC12)

• Damage only grows after critical energy condition reached, only in neighborhood of cracks

N Drawbacks:

• (Classical) Damage from any loading, even distant from stress concentration

• Damage irreversibility not intrinsic to mathematical formulation

• Interpretation of length scale — is infinitesimal / required?

What about critical stress?

What about mesh resolution? 5



Phase Field Implementation

• Classical (AT-2) & Threshold (AT-1) models implemented in common
framework:
• Euler-Lagrange equations derived by variational derivative of energy functional

Stationary
Functional

Euler-
Lagrange:

Damaged (61P = 0
Mechani al Solve

I gr

'V • as

Pha e Field Solve

(211;1

+ 1

rnax ,LII) , 1 c — 212Ac = 1 Threshold(

(Pcrtt

—12Ac =1 Classical

• Phase-field solve accomplished using a linear reaction-diffusion solver

• General form: Rc — DAc = S
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Phase Field Implementation

• Damage irreversibility

• Maximum driving energy history field, IC = maxi')

Easy to implement

• Deviation from Variational Consistency

Classical

Threshold

(21-P-1 + 1)c — 12Ac = 1
Gc

Phase Field Solve

(23-C1 
+ 1)c — 12 AC = 1

Gc

(
max 
(

,.11)- , 1) c 
3-C 

212Ac = 1 max , , 1) c — 212Ac = 1
' P crit ' P crit

((

3-C 
1 + 1) c — 212Ac = 1

11) crit
+

• Augmented Lagrangian approach using Inequality-constrained PDE solve

Difficult to implement in Sierra framework, but interested to explore
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IMPLICIT TIME INTEGRATION
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Recent Efforts

• Original coupling scheme:
• Options: monolithic —or- staggered solution scheme ("alternate minimization")
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• Implemented mechanics/PF staggered solution

• No easy access in SIERRA to implement monolithic solve

• Initially, no iteration of mechanics/PF solve within timestep

• Lack of iteration leads to acceptance of unconverged solutions at each time step

• Leads to strong temporal sensitivity, toughness overpredicted

5
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Recent Efforts

• Modified coupling scheme:
• Implement iteration between Mechanics & PF solves within timestep
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tn +1
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• Solve mechanics, solve damage, compute M residual

• Convergence metric: mechanical residual < tolerance

• Better metric?

Phase field solve = linear system 4 trivial PF residual

Combined energy residual?

Phase field relative residual between iterations?
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Recent Efforts

• Coupling scheme:
• Implement iteration between Mechanics & PF solves within timestep

• Spatial convergence:
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Spatial Convergence (UL-Qtet10)
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Plasticity Results (UL QTet10, fine)

Phase Field

EQPS
log contours

From Sun & Jin,
Fracture Mechanics

(2012)
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Recent Efforts

• Coupling scheme:
• Implement iteration between Mechanics & PF solves within timestep

• Temporal convergence:
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Recent Efforts

■ Coupling scheme:
■ Implement iteration between Mechanics & PF solves within timestep

■ Spatially convergent ✓

■ Some element formulations are more robust to damage/softening than others...

■ Temporally convergent ✓

■ When the crack is growing, convergence is poor & slow

■ Loose tolerances needed for "convergence" & timestep completion

■ Tighter tolerances can't always be reached with 100 iterations, even with timestep
refinement

■ Consequence of using 'alternate minimization'?

Solving without benefit of off-diagonal terms

■ Consequence of using history variable?

Corrupted usage of variational principle, energies no longer consistent
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Model Validation

• Experimental test data, compact tension specimen:

• Experiment partner: Chris San Marchi (Sandia)

• Al 6061-T651

• Force/displacement, J-R curves
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4 Seek to compare model to experimental data
Simulation toughness G, = 12 kJ/m2 from Matweb (corresponds to experimental Jo)
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Model Validation

• Initial phase BC:

• Intent:

Develop phase field around crack to avoid jumps in F/D response

BC set to minimize effect on elastic stiffness (must be less than full length)

= 1.2 mm

Initial Phase
Field

• Results:

Appears that choice of / exists that would

reasonably approximate F/D curve 0.3mm

Desire to confirm that choice of / allows

reproduction of curve

Robustness still an issue...
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Addressing Plasticity

• Plasticity & length scales:

• The addition of plasticity introduces an additional physical length scale

1411
-0. 1I- 1

plane strain

1 EG,
r, =  

37r o- 02

- 
where E =  

E
1 v 2
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• Regularization length scale I cannot be chosen with reference only to the geometry

• Ratio of l/rp should be meaningful in terms of crack growth resistance (approximating a

physical J-R curve)

• Motivation to move toward cohesive/Lorentz-type model

Lorentz et al. (2011), Geelen et al. (2019)
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EXPLICIT TIME INTEGRATION
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Capabilities Explicit/Explicit
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• Addition of non-conservative viscosity term in Euler-Lagrange equation:

• Viscous Dissipation: v =-21 ne•2

• Euler-Lagrange: V — = — 
ay

avc ac ac

Z-tkc — (1 — c) — 2GclAc
• Phase-Field update: = 2 / & c<

— Zip crit — 41Pcrit/2Ac

• Damage irreversibility not intrinsic to mathematical formulation, artificial dissipation

• Stability:

• Parabolic systems inherently transmit information instantaneously

• Limit timestep to keep crack/damage propagation speed at/under elastic wave speed, vc

• Strategy: choose smallest phase viscosity ri such that (At)m (At)pF

17 

(At)pF

2Gcl

(Ax)2 (Ax)2

17 =

(At)pF 
77042  1

2Gcl 41P crit12 
,( 

Ax
At)m —

12

12Gcl 4ipcrit-21
vc vc

Reference: Tupek, MR. "Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse
problems". SAND2016-9510. 2016. 21



Stability & Viscosity

• Overview:

• Vary phase viscosity parameter ri over wide range to determine:

For what values of 77 are the simulation stable?

How does the simulation respond to increasing phase viscosity?
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• Global metrics diverge with
`high enough' levels of
phase viscosity parameter n

• Evidence of rate
dependence (lag) when high
phase viscosity
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Fracture Energy vs. Viscosity
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Stability & Viscosity
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1• 05
E

0

101

Stability Plot: Threshold, Round

____________
__________

---------

_________

• Stable

---- At estimate

- Ax estimate

---- Mixed estimate

10 90 40
Mesh Density (elem/in)

80

4 4 4 At
71
( 

/vc2At 1v,Ax /(Ax)2)
P
h
a
s
e
 V
is

co
si

ty
 ri

 

Distorted Results

Unstable

Mesh Density

Sandia
National
Laboratories

 ►

• Explicit (Mechanical) / Explicit (Phase Field) integration with viscous regularization might be

more limiting than it is useful

• Explicit (Mechanical) / Implicit (Phase Field) flavor might be more expensive** but lacks

quality and stability issues 23



Capabilities Explicit/Implicit

• Explicit Mechanics / Implicit Phase-Field solve
• Costly !

• Option to update phase field less often

Every "X" timesteps

• A quick test on a dynamic problem
• ASTM E1820 compact tension specimen

• 6061-T6 Aluminum

• Quick loading: 1 in/s for 60ms
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• Very similar force/displacement & fracture energy responses

• Great simulation time savings realized
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Timing Study

• Results — Qol Convergence:

6
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LE 2
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• Explicit/Implicit and Explicit/Explicit (stable) results generally agree

• Explicit/Implicit results convergent as solve interval approaches 1

• Deviation observed for larger PF solve intervals (>50)
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Future Directions

■ Model:
■ Consider inequality-constrained phase field solve

■ Nonlinear PDE solve

Allow for cohesive/Lorentz-type phase field model

■ Modularization for use with arbitrary (hyperelastic & hypoelastic) plasticity models
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■ Verification efforts:
■ "Surfing BC" problem — verify toughness as function of crack length in EPFM (J-R curve)
■ Explicit dynamics — convergence testing

■ Validation effort:
■ Compare apparent J-R curve produced by phase field model to experimental

■ Explicit dynamics validation
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Thanks to conference & minisymposia organizers!
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