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Phase field approach to fracture UL

= Cracks represented as smeared field

Miehe et al (2011)

oB oB

a) sharp crack b) diffusive crack
= Advantages: no sharp discontinuities, naturally captures arbitrary crack
paths, branching, merging

=  Genesis in linear elastic brittle fracture

= Approaches for ductile failure have started appearing and are under

development
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Overview ) e,

= SIERRA code & objectives
= Phase Field Formulation
= Phase Field Implementation

= Implicit Time Integration

= Recent Efforts
= |terated staggered solution
= Element Study
= Temporal / Spatial Convergence

= Model Validation

= Explicit Time Integration
= Explicit Phase Field solve
= Implicit Phase Field solve

=  Future directions



SIERRA Code & Objectives ) S,
BB

Stershic, SAND2018-4988C
=  S|ERRA finite element code

= Developed by Sandia National Laboratories

= Implicit & explicit time integration, Quasistatic & Dynamic

= Fully parallelized for clusters, HPC

= Finite strain formulation by default

= Robust explicit & implicit contact

= Constant verification & validations efforts, experimental comparisons
= Multiphysics: thermal, electrical, chemical, etc.

= QObjectives:
= Implement ductile phase field model in SIERRA
= Modular: can be coupled with any plasticity model
= Computationally efficient
= Capable with implicit and explicit time integration
= Convergent: high model credibility from verification & validation



Phase Field Formulation )=,

= Phase Field fracture concept:
Y = fﬂw,b EIQ = fﬂlﬁe(e‘i) + PP (eP)dQ + fr G.dr
> [, 9(Pe(e®) + h(c)PP(eP) + f(c, Ve, DG, dQ
= Fracture energy: volumetric expression replaces surface energy functional
= [-convergent: expressions equivalent in limit { - 0%

= (Classical, AT-2
- ~ G
P =c? (z,be(ee) + wp(ep)) + 4—;((1 — )2 + 412|Vc|?)
= Threshold, AT-1
P =2« ($°(e°) + PP (")) + 29 (1 — ©) + 12|V ?)
= Damage only grows after critical energy condition reached, only in neighborhood of cracks

= Drawbacks:
= (Classical) Damage from any loading, even distant from stress concentration
= Damage irreversibility not intrinsic to mathematical formulation

= |nterpretation of length scale —is infinitesimal [ required?
= What about critical stress?

= What about mesh resolution?
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Phase Field Implementation

Classical (AT-2) & Threshold (AT-1) models implemented in common
framework:
= Euler-Lagrange equations derived by variational derivative of energy functional

Stationary
Functional

Damaged
Mechanical Splve Phase Field Solve

VA, O

Euler-
Lagrange:

(2—1/)1 + 1) c—1Ac=1 Classical
Ge

max( v ,1) c—2012Ac¢ =1 Threshoid
1/)critt

Phase-field solve accomplished using a linear reaction-diffusion solver
= General form: Rc—DAc =S5



Phase Field Implementation ) .

= Damage irreversibility

= Maximum driving energy history field, H = mflxgﬁ

= Easyto implement
= Deviation from Variational Consistency

Phase Field Solve

21 2H1
Classical v +1)c—-13Ac=1 > +1)c—1Ac=1
G Ge
- 2 2
Threshold max ,1)c—212Ac=1 > max ,1)c—212Ac =1
crit lpcrit

+1>c—212Ac= 1

il —
lpcrit "

= Augmented Lagrangian approach using Inequality-constrained PDE solve
= Difficult to implement in Sierra framework, but interested to explore



IMPLICIT TIME INTEGRATION




Sandia
W=y
ecen Oorts abortoes
= QOriginal coupling scheme:
. i T o . i c . T
= QOptions: monolithic —or- staggered solution scheme (“alternate minimization”)
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= |mplemented mechanics/PF staggered solution

= No easy access in SIERRA to implement monolithic solve

= |nitially, no iteration of mechanics/PF solve within timestep

= Lack of iteration leads to acceptance of unconverged solutions at each time step
= Leads to strong temporal sensitivity, toughness overpredicted



Recent Efforts

= Modified coupling scheme:

"= Implement iteration between Mechanics & PF solves within timestep

—| PF

th+1 /

Coupled Solve
Schematic

Force

.030. .040.1 .050.1
Displacement

-+-F - Control RxnDiff
= -analyticForce
~F - Uncoupled

= Solve mechanics, solve damage, compute M residual

= Convergence metric: mechanical residual < tolerance

=  Better metric?

= Phase field solve = linear system —> trivial PF residual
= Combined energy residual?

= Phase field relative residual between iterations?
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Recent Efforts L

=  Coupling scheme:

"= Implement iteration between Mechanics & PF solves within timestep
= Spatial convergence:
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Spatial Convergence (UL-Qtet10)
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Plasticity Results (UL QTet10, fine) @&
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Recent Efforts ) =

=  Coupling scheme:
* |mplement iteration between Mechanics & PF solves within timestep
= Temporal convergence:

Force vs. Displacement Force vs. Displacement
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Recent Efforts )=,

=  Coupling scheme:
"= Implement iteration between Mechanics & PF solves within timestep

= Spatially convergent v/
= Some element formulations are more robust to damage/softening than others...
= Temporally convergent v/

=  When the crack is growing, convergence is poor & slow
= Loose tolerances needed for “convergence” & timestep completion

= Tighter tolerances can’t always be reached with 100 iterations, even with timestep
refinement

= Consequence of using ‘alternate minimization’?
= Solving without benefit of off-diagonal terms
= Consequence of using history variable?
= Corrupted usage of variational principle, energies no longer consistent

16



Model Validation ) e

= Experimental test data, compact tension specimen:

= Experiment partner: Chris San Marchi (Sandia)
= Al6061-T651
= Force/displacement, J-R curves
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- Seek to compare model to experimental data

- Simulation toughness G, = 12 kJ/m? from Matweb (corresponds to experimental /) -




Model Validation ) e

= |nitial phase BC:

= |ntent:
= Develop phase field around crack to avoid jumps in F/D response
= BC set to minimize effect on elastic stiffness (must be less than full length)

l=24mm l=12mm l=0.6mm l=03mm
Initial Phase
Field
1000 Force vs. Displacement
e e e EPFM
= Results: e L Zaomm
= Appears that choice of [ exists that would — Experimenta

2500

(N)
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s 2000

Fol

= Desire to confirm that choice of [ allows
reproduction of J-R curve

1000 |-

= Robustness still an issue...
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Addressing Plasticity )&=,

= Plasticity & length scales:
= The addition of plasticity introduces an additional physical length scale

I
.

M— e T e——

1 EG.
plane strain (- o2

_ E
where F=—_
1—102

\/

= Regularization length scale [ cannot be chosen with reference only to the geometry

= Ratio of [ /7, should be meaningful in terms of crack growth resistance (approximating a
physical J-R curve)

= Motivation to move toward cohesive/Lorentz-type model

= Lorentz etal. (2011), Geelen et al. (2019)
19




EXPLICIT TIME INTEGRATION

20




Capabilities — Explicit/Explicit )

= Addition of non-conservative viscosity term in Euler-Lagrange equation:

= Viscous Dissipation: V= %nc'z
. _ : . %) _y_ _9¥
Euler-Lagrange: \Y (avC e = 3¢

e —%1 -0 —
Z‘L{)C ” (1—-c)—2G.lAc % e<0
2yc = 2 crie — 4‘lpcritl2AC
= Damage irreversibility not intrinsic to mathematical formulation, artificial dissipation
= Stability:

= Parabolic systems inherently transmit information instantaneously

= Phase-Field update:  nc¢ = —

= Limit timestep to keep crack/damage propagation speed at/under elastic wave speed, v,

= Strategy: choose smallest phase viscosity 17 such that (At)y < (At)pg
n - { 26,1 4lpcritl2} S (ADpp < {U(Ax)z U(Ax)z }
At)pr ~ ((AX)%" (Ax)? T 26l Aol
S 5= ZGcl 4¢critl2
=0 Ax v, Ax v,
Reference: Tupek, MR. “Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse

problems”. SAND2016-9510. 2016. 21
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Stability & Viscosity UL

= Qverview:

= Vary phase viscosity parameter 1 over wide range to determine:
= For what values of 17 are the simulation stable?
= How does the simulation respond to increasing phase viscosity?

Force vs. Displacement
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Stability & Viscosity .

Distorted Results

Stability Plot: Threshold, Round
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= Explicit (Mechanical) / Explicit (Phase Field) integration with viscous regularization might be
more limiting than it is useful

= Explicit (Mechanical) / Implicit (Phase Field) flavor might be more expensive** but lacks

quality and stability issues 23
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Capabilities — Explicit/Implicit R

= Explicit Mechanics / Implicit Phase-Field solve
= Costly !
= Option to update phase field less often
= Every “X” timesteps
= A quick test on a dynamic problem
= ASTM E1820 compact tension specimen
= 6061-T6 Aluminum
= Quick loading: 1 in/s for 60ms

Force vs. Displacement, Varying Aty Fracture Energy vs. Displacement Mass Scaling Timing (Explicit/Implicit)
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= Very similar force/displacement & fracture energy responses
= Great simulation time savings realized




Timing Study S
= Results — Qol Convergence:

Rounded Crack Tip Sharp Crack Tip

Fracture Energy vs. Solve Interval Fracture Energy vs. Solve Interval
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= Explicit/Implicit and Explicit/Explicit (stable) results generally agree
= Explicit/Implicit results convergent as solve interval approaches 1

= Deviation observed for larger PF solve intervals (>50) 55
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Future Directions ) 2=

= Model:
= Consider inequality-constrained phase field solve

= Nonlinear PDE solve
= Allow for cohesive/Lorentz-type phase field model
= Modularization for use with arbitrary (hyperelastic & hypoelastic) plasticity models

= Verification efforts:
=  “Surfing BC” problem — verify toughness as function of crack length in EPFM (J-R curve)
= Explicit dynamics — convergence testing

= Validation effort:
= Compare apparent J-R curve produced by phase field model to experimental

= Explicit dynamics validation
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