

Advances in Quasistatic and Dynamic Phase-Field Implementation for Ductile Failure in SIERRA

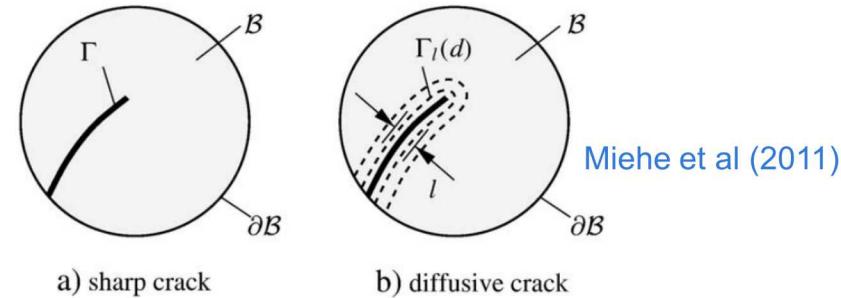
A. Stershic, B. Talamini, J. Ostien, M. Tupek

Sandia National Laboratories / California

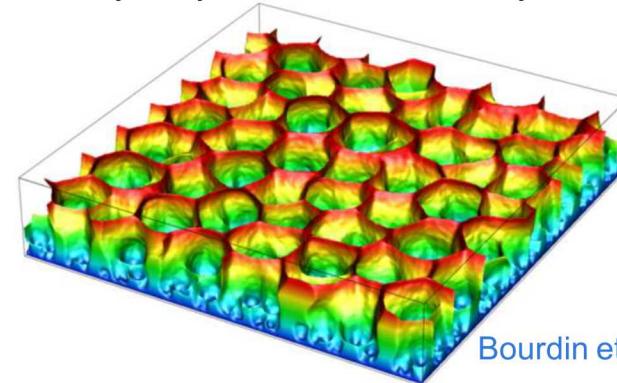
USNCCM 15; Austin, TX; July 29, 2019

Phase field approach to fracture

- Cracks represented as smeared field



- Advantages: no sharp discontinuities, naturally captures arbitrary crack paths, branching, merging



- Genesis in linear elastic brittle fracture
- Approaches for ductile failure have started appearing and are under development

B Bourdin, J-J Marigo, C Maurini, P Sicsic. *Phys Rev Lett* 112, 014301 (2014)

R Alessi, J-J Marigo, S Vidoli. *Arch Ration Mech An* 214 (2014) 575-615

C Miehe, F Aldakheel, A Raina. *Int J Plasticity* 84 (2016) 1-32

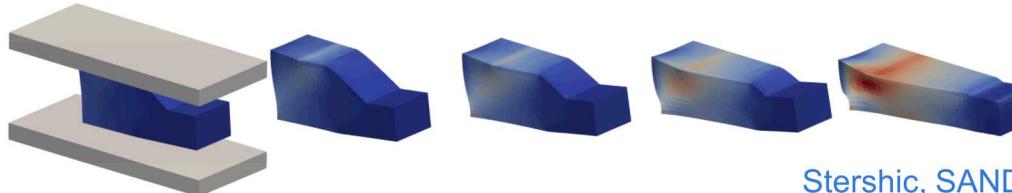
C Miehe, M Hofacker, L-M Schänzel, F Aldakheel. *Comp Meth Appl Mech Engrg* 294 (2015) 486-522

M Ambati, T Gerasimov, L De Lorenzis. *Comput Mech* 55 (2015) 1017-1040

Overview

- SIERRA code & objectives
- Phase Field Formulation
- Phase Field Implementation
- Implicit Time Integration
 - Recent Efforts
 - Iterated staggered solution
 - Element Study
 - Temporal / Spatial Convergence
 - Model Validation
- Explicit Time Integration
 - Explicit Phase Field solve
 - Implicit Phase Field solve
- Future directions

SIERRA Code & Objectives



Stershic, SAND2018-4988C

- SIERRA finite element code
 - Developed by Sandia National Laboratories
 - Implicit & explicit time integration, Quasistatic & Dynamic
 - Fully parallelized for clusters, HPC
 - Finite strain formulation by default
 - Robust explicit & implicit contact
 - Constant verification & validations efforts, experimental comparisons
 - Multiphysics: thermal, electrical, chemical, etc.
- Objectives:
 - Implement ductile phase field model in SIERRA
 - Modular: can be coupled with any plasticity model
 - Computationally efficient
 - Capable with implicit and explicit time integration
 - Convergent: high model credibility from verification & validation

Phase Field Formulation

- Phase Field fracture concept:

$$\begin{aligned}\Psi &= \int_{\Omega} \psi \, d\Omega = \int_{\Omega} \tilde{\psi}^e(\varepsilon^e) + \tilde{\psi}^p(\varepsilon^p) \, d\Omega + \int_{\Gamma} G_c \, d\Gamma \\ &\rightarrow \int_{\Omega} g(c) \tilde{\psi}^e(\varepsilon^e) + h(c) \tilde{\psi}^p(\varepsilon^p) + f(c, \nabla c, l) G_c \, d\Omega\end{aligned}$$

- Fracture energy: volumetric expression replaces surface energy functional
- Γ -convergent: expressions equivalent in limit $l \rightarrow 0^+$

- Classical, AT-2

$$\psi = c^2 * \left(\tilde{\psi}^e(\varepsilon^e) + \tilde{\psi}^p(\varepsilon^p) \right) + \frac{G_c}{4l} \left((1 - c)^2 + 4l^2 |\nabla c|^2 \right)$$

- Threshold, AT-1

$$\psi = c^2 * \left(\tilde{\psi}^e(\varepsilon^e) + \tilde{\psi}^p(\varepsilon^p) \right) + 2\psi_{crit} \left((1 - c) + l^2 |\nabla c|^2 \right)$$

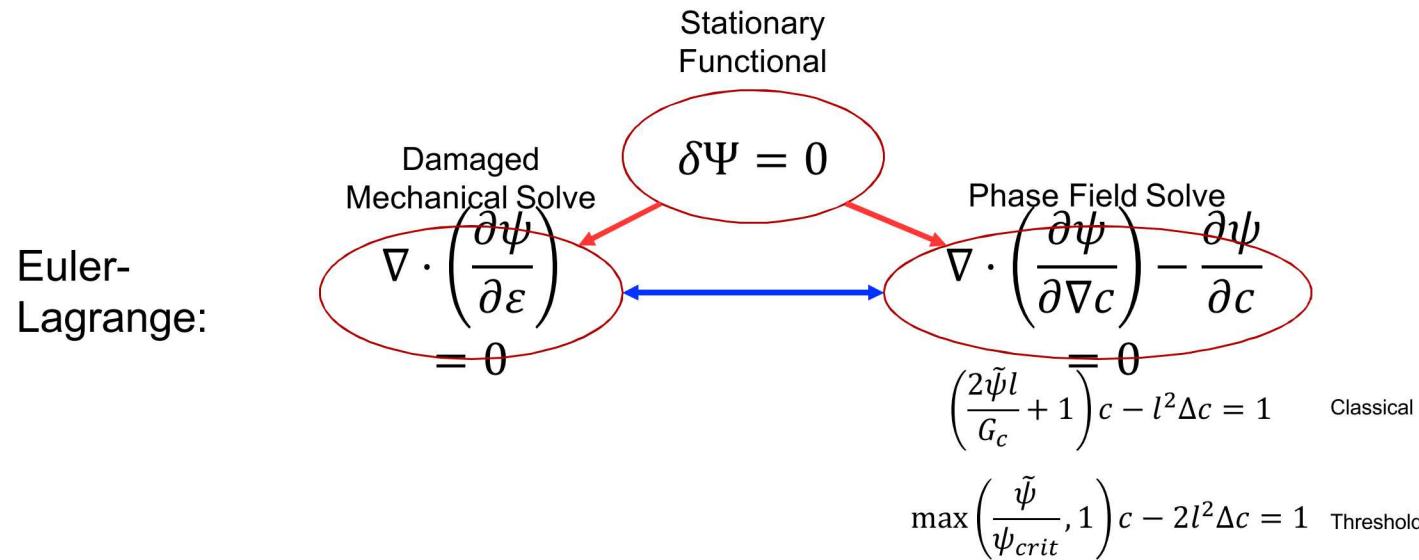
- Damage only grows after critical energy condition reached, only in neighborhood of cracks

- Drawbacks:

- (Classical) Damage from any loading, even distant from stress concentration
- Damage irreversibility not intrinsic to mathematical formulation
- Interpretation of length scale – is infinitesimal l required?
 - What about critical stress?
 - What about mesh resolution?

Phase Field Implementation

- Classical (AT-2) & Threshold (AT-1) models implemented in common framework:
 - Euler-Lagrange equations derived by variational derivative of energy functional



- Phase-field solve accomplished using a linear reaction-diffusion solver
 - General form:

$$Rc - D\Delta c = S$$

Phase Field Implementation

- Damage irreversibility
 - Maximum driving energy history field, $\mathcal{H} = \max_t \tilde{\psi}$
 - Easy to implement
 - **Deviation from Variational Consistency**

Phase Field Solve

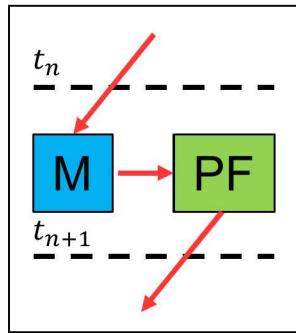
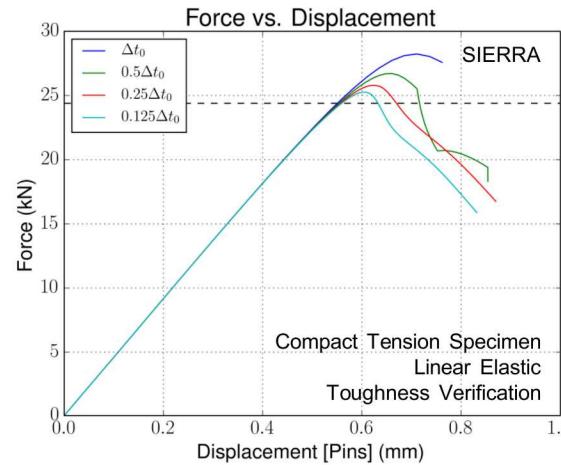
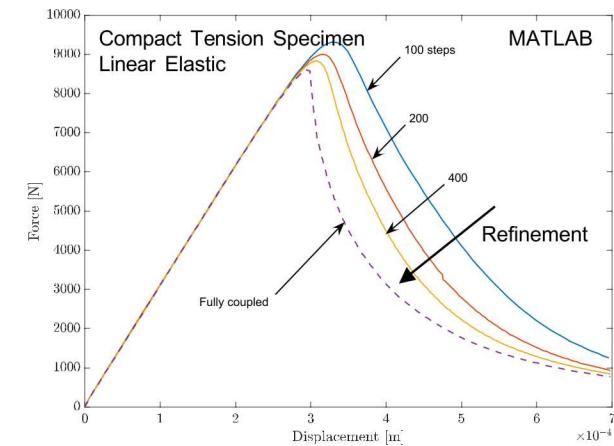
Classical	$\left(\frac{2\tilde{\psi}l}{G_c} + 1\right)c - l^2\Delta c = 1$	→	$\left(\frac{2\mathcal{H}l}{G_c} + 1\right)c - l^2\Delta c = 1$
Threshold	$\max\left(\frac{\tilde{\psi}}{\psi_{crit}}, 1\right)c - 2l^2\Delta c = 1$	→	$\max\left(\frac{\mathcal{H}}{\psi_{crit}}, 1\right)c - 2l^2\Delta c = 1$
			$\left(\left\langle \frac{\mathcal{H}}{\psi_{crit}} - 1 \right\rangle_+ + 1\right)c - 2l^2\Delta c = 1$

- Augmented Lagrangian approach using Inequality-constrained PDE solve
 - Difficult to implement in Sierra framework, but interested to explore

IMPLICIT TIME INTEGRATION

Recent Efforts

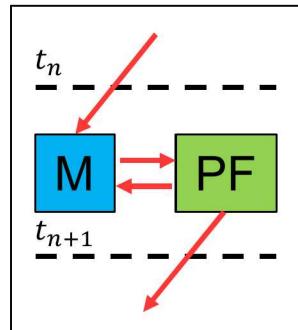
- Original coupling scheme:
 - Options: monolithic –or- staggered solution scheme (“alternate minimization”)



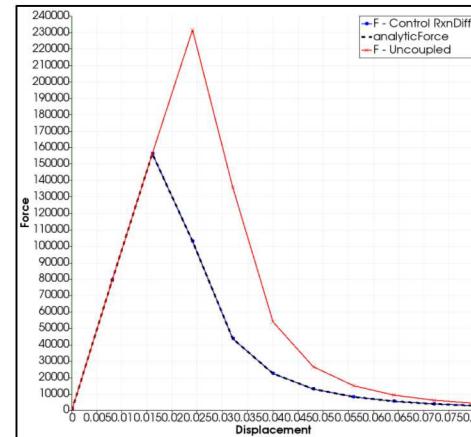
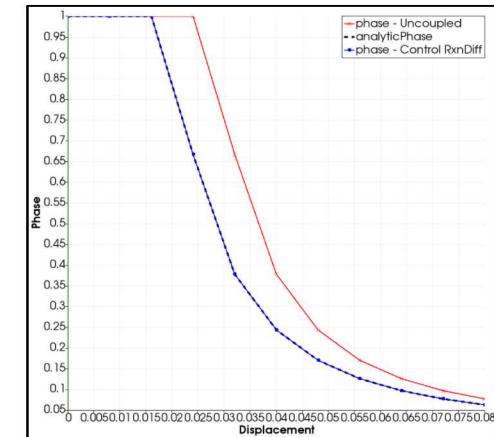
- Implemented mechanics/PF staggered solution
- No easy access in SIERRA to implement monolithic solve
- Initially, **no iteration** of mechanics/PF solve within timestep
- Lack of iteration leads to acceptance of *unconverged* solutions at each time step
- Leads to strong temporal sensitivity, toughness overpredicted

Recent Efforts

- Modified coupling scheme:
 - Implement iteration between Mechanics & PF solves within timestep



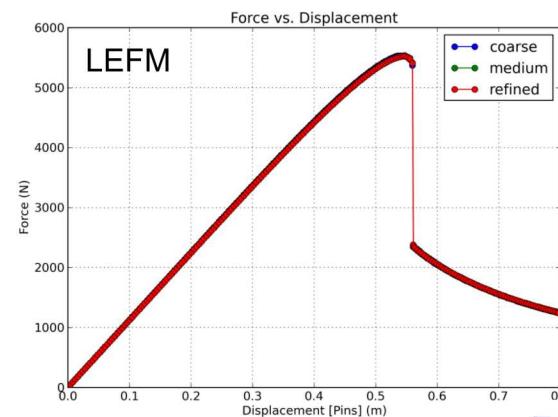
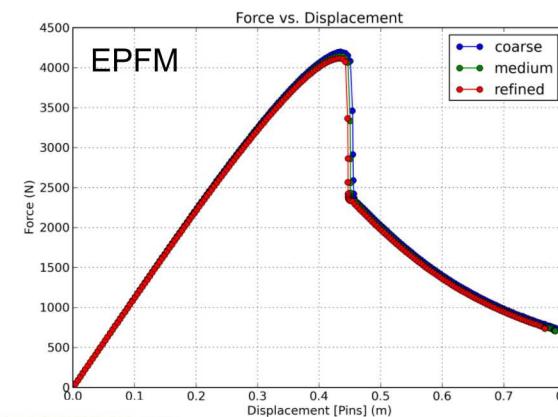
Coupled Solve
Schematic



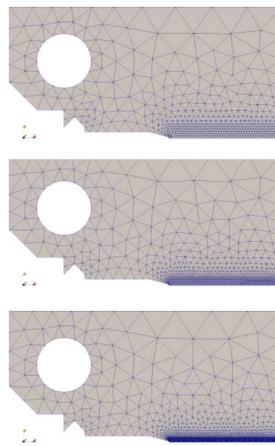
- Solve mechanics, solve damage, compute M residual
- Convergence metric: mechanical residual < tolerance
- Better metric?
 - Phase field solve = linear system \rightarrow trivial PF residual
 - Combined energy residual?
 - Phase field relative residual between iterations?

Recent Efforts

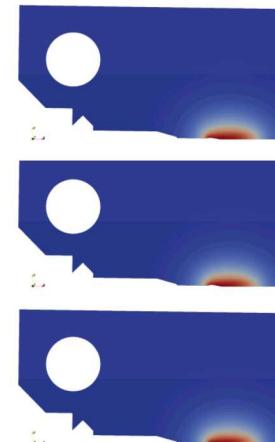
- Coupling scheme:
 - Implement iteration between Mechanics & PF solves within timestep
 - Spatial convergence:



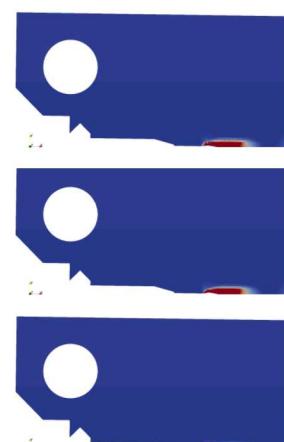
Compact Tension Specimen Meshes



Phase Field

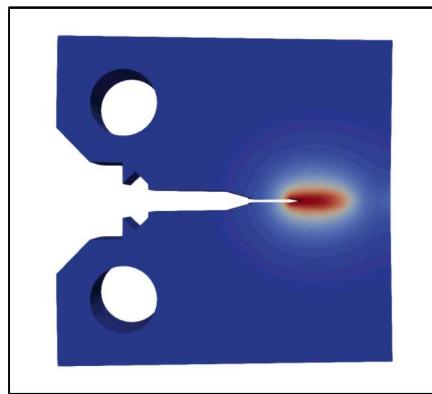
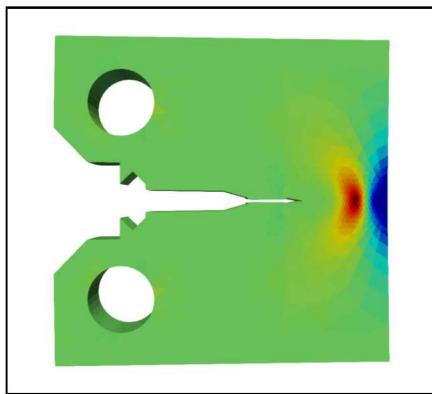
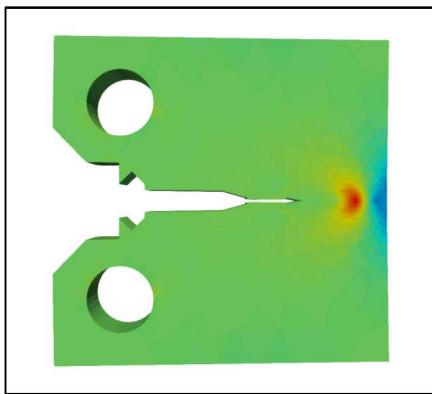
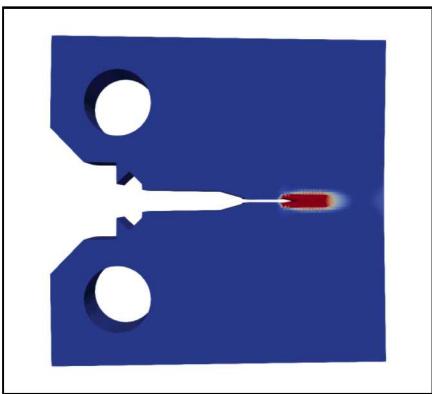


EQPS

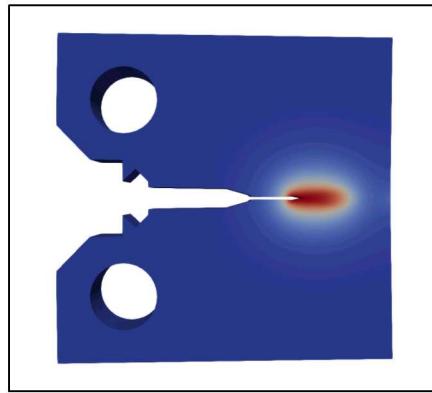
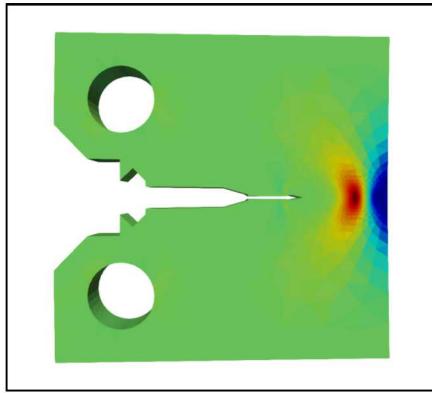
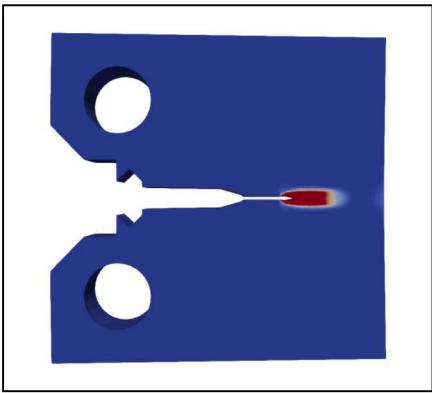


Spatial Convergence (UL-Qtet10)

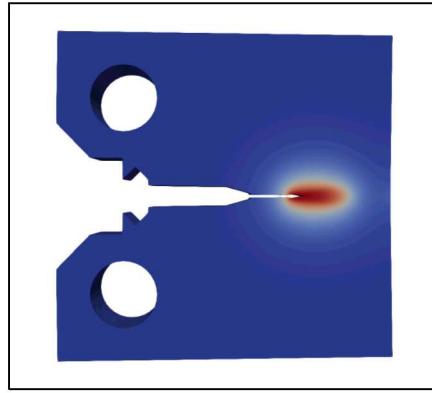
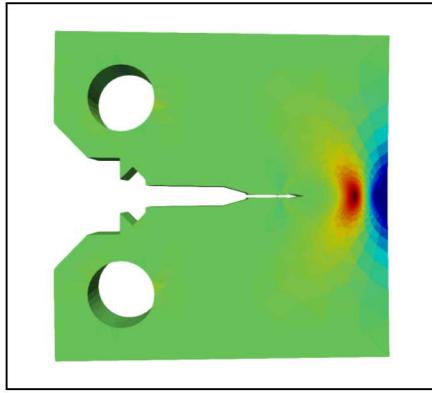
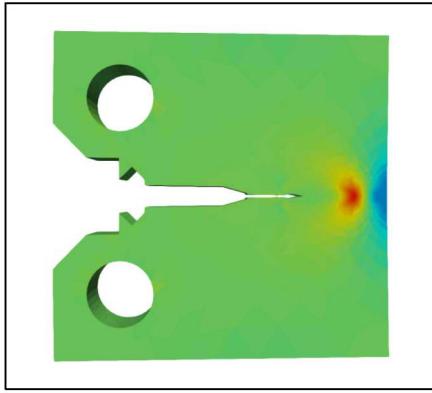
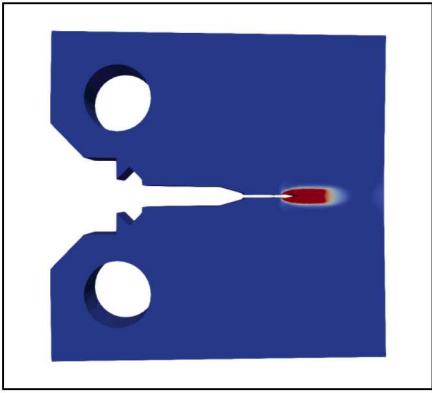
Coarse



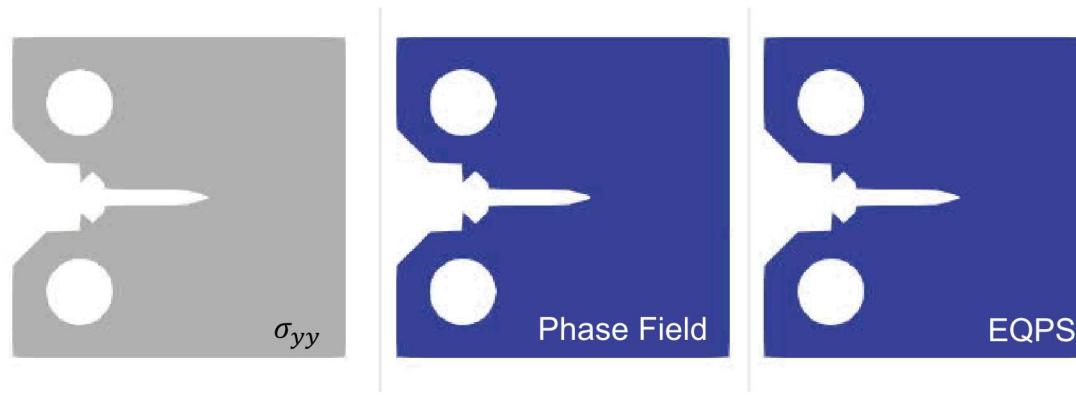
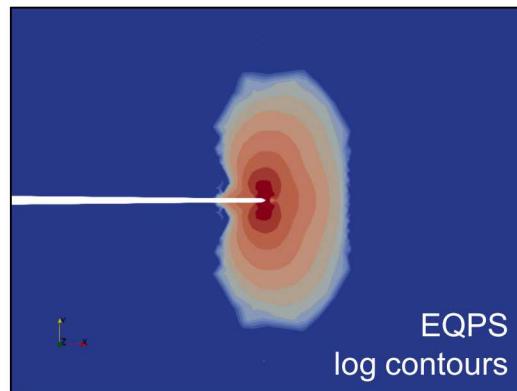
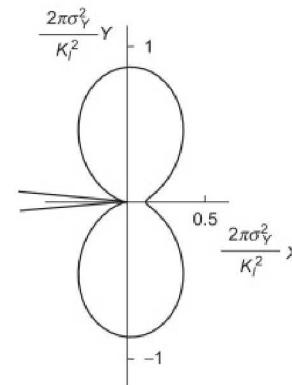
Medium



Fine



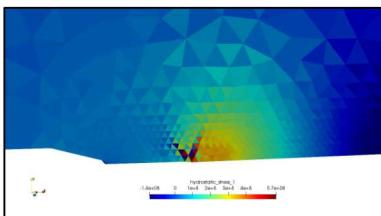
Plasticity Results (UL QTet10, fine)



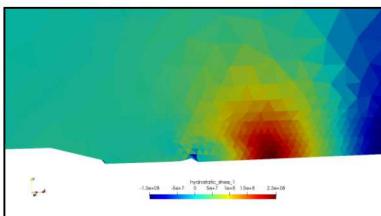
From Sun & Jin,
Fracture Mechanics
(2012)

Hydrostatic Stress Field
 $t = 0.70\text{ s}$

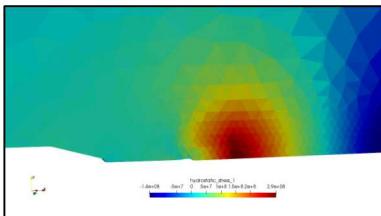
Tet4



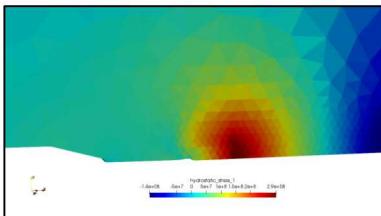
UL
QTet10



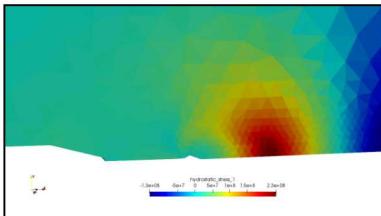
TL
QTet10



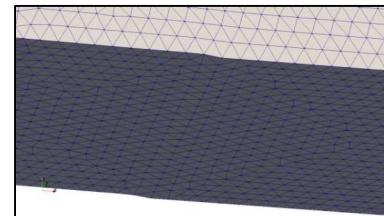
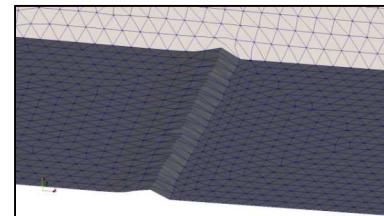
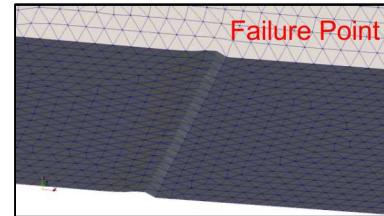
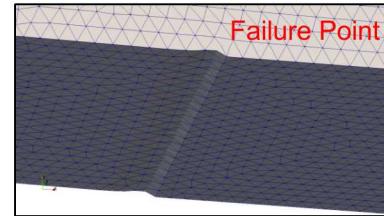
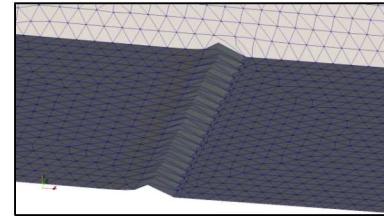
CTet10
Javg=off



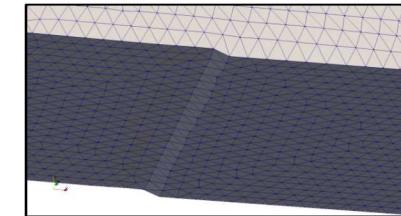
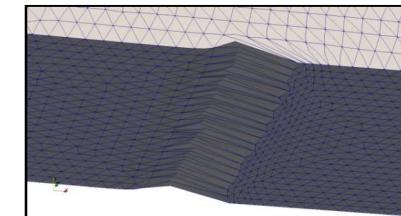
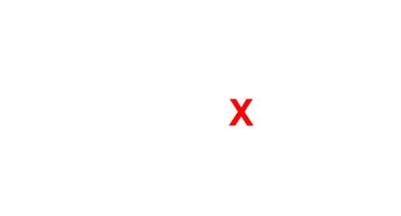
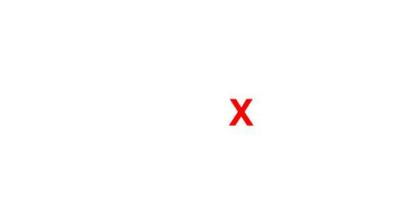
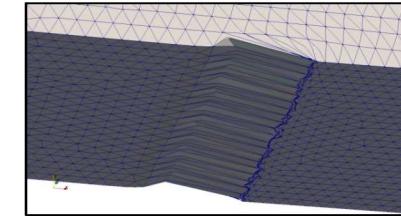
CTet10
Javg=on



Mesh, $t = 0.70\text{ s}$

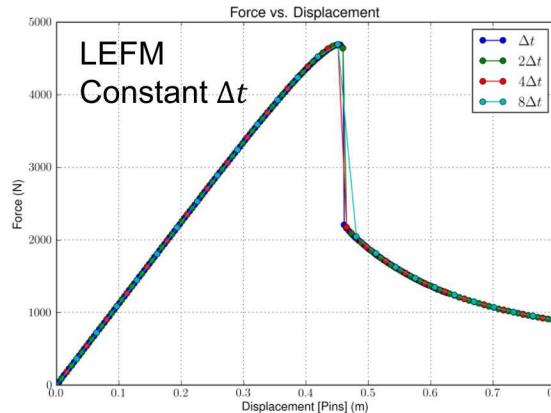
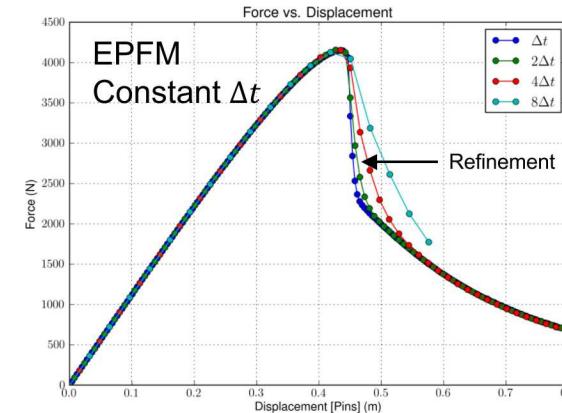
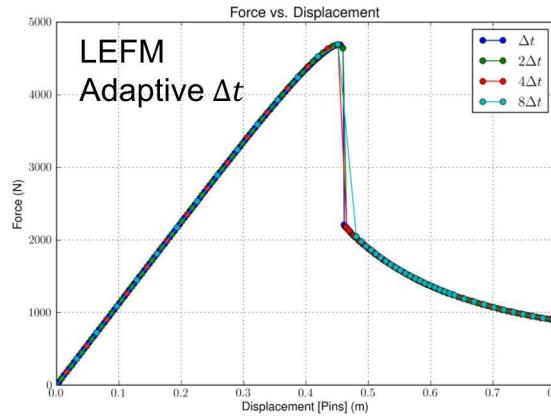
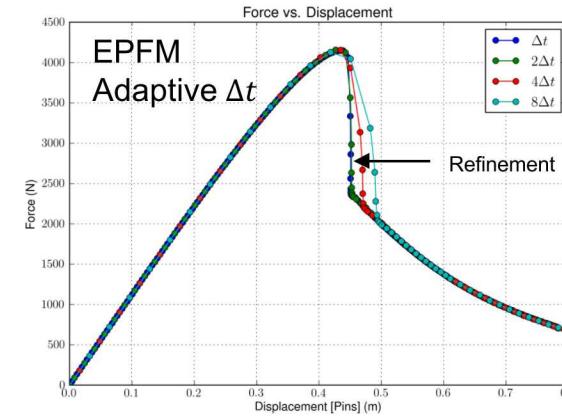


Mesh, $t = 1.0\text{ s}$



Recent Efforts

- Coupling scheme:
 - Implement iteration between Mechanics & PF solves within timestep
 - Temporal convergence:

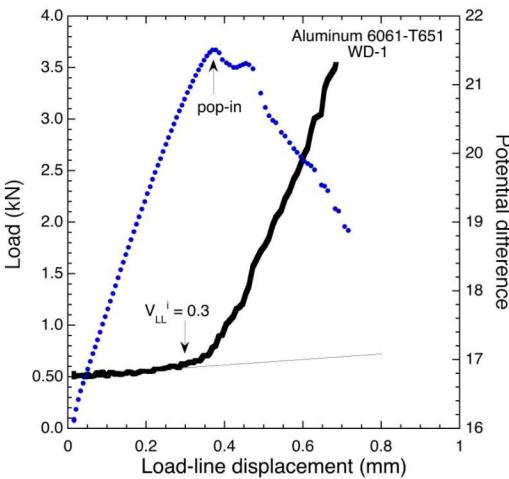
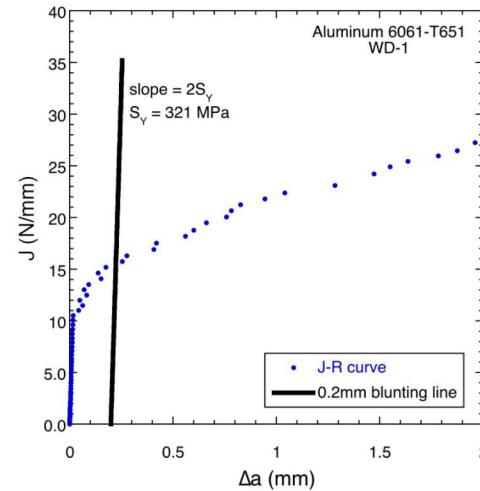
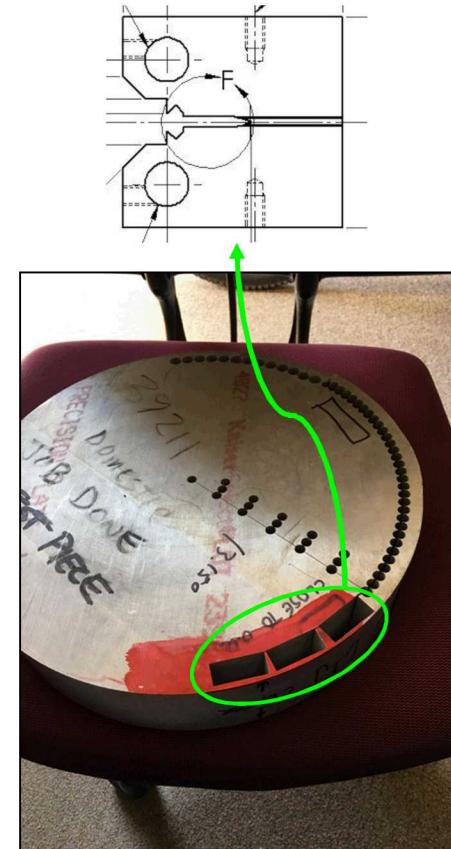


Recent Efforts

- Coupling scheme:
 - Implement iteration between Mechanics & PF solves within timestep
 - Spatially convergent ✓
 - Some element formulations are more robust to damage/softening than others...
 - Temporally convergent ✓
- When the crack is growing, convergence is poor & slow
- Loose tolerances needed for “convergence” & timestep completion
- Tighter tolerances can’t always be reached with 100 iterations, even with timestep refinement
- Consequence of using ‘alternate minimization’?
 - Solving without benefit of off-diagonal terms
- Consequence of using history variable?
 - Corrupted usage of variational principle, energies no longer consistent

Model Validation

- Experimental test data, compact tension specimen:
 - Experiment partner: Chris San Marchi (Sandia)
 - Al 6061-T651
 - Force/displacement, J-R curves



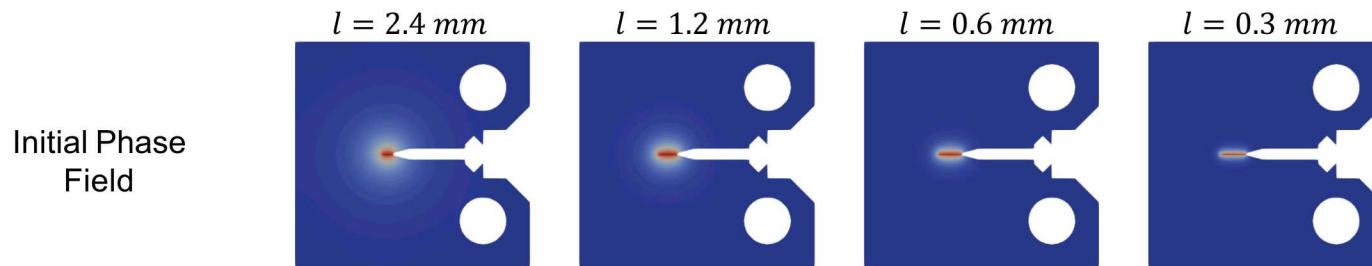
→ Seek to compare model to experimental data

→ Simulation toughness $G_c = 12 \text{ kJ/m}^2$ from Matweb (corresponds to experimental J_0)

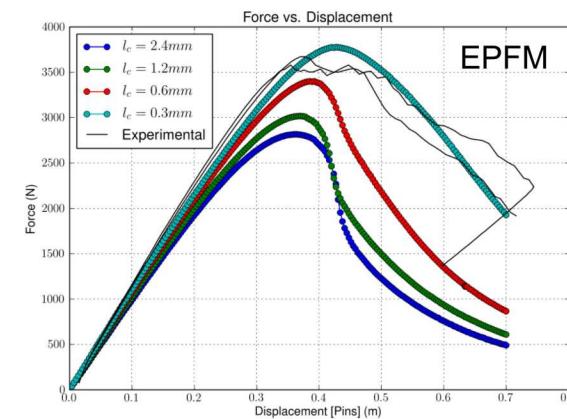
Model Validation

- Initial phase BC:

- Intent:
 - Develop phase field around crack to avoid jumps in F/D response
 - BC set to minimize effect on elastic stiffness (must be less than full length)

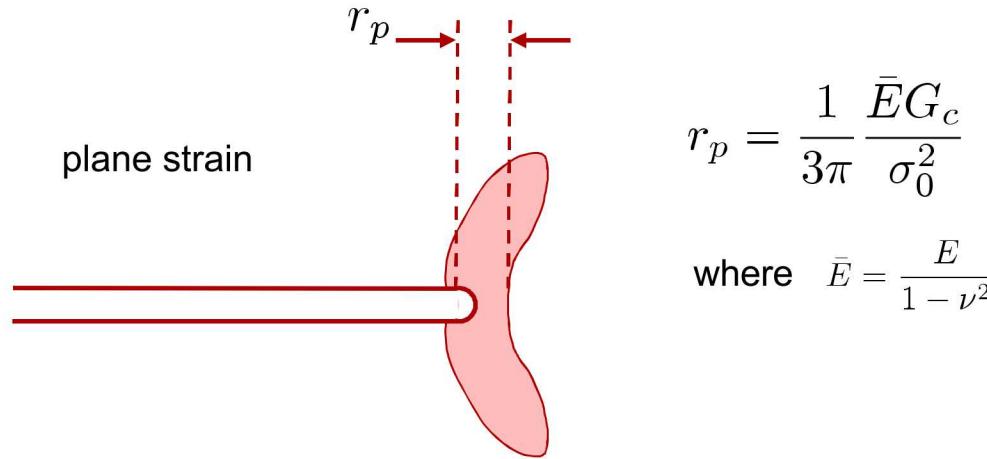


- Results:
 - Appears that choice of l exists that would reasonably approximate F/D curve $\sim 0.3\text{mm}$
 - Desire to confirm that choice of l allows reproduction of J-R curve
 - Robustness still an issue...



Addressing Plasticity

- Plasticity & length scales:
 - The addition of plasticity introduces an additional *physical* length scale



- Regularization length scale l cannot be chosen with reference only to the geometry
- Ratio of l/r_p should be meaningful in terms of crack growth resistance (approximating a physical J-R curve)
- Motivation to move toward cohesive/Lorentz-type model
 - Lorentz *et al.* (2011), Geelen *et al.* (2019)

EXPLICIT TIME INTEGRATION

Capabilities – Explicit/Explicit

- Addition of non-conservative viscosity term in Euler-Lagrange equation:
 - Viscous Dissipation: $V = \frac{1}{2} \eta \dot{c}^2$
 - Euler-Lagrange: $\nabla \cdot \left(\frac{\partial \psi}{\partial \nabla c} \right) - \frac{\partial \psi}{\partial c} = - \frac{\partial V}{\partial \dot{c}}$
 - Phase-Field update: $\eta \dot{c} = - \begin{cases} 2\tilde{\psi}c - \frac{G_c}{2l}(1-c) - 2G_c l \Delta c & \text{if } \dot{c} \leq 0 \\ 2\tilde{\psi}c - 2\psi_{crit} - 4\psi_{crit} l^2 \Delta c & \text{if } \dot{c} > 0 \end{cases}$
 - Damage irreversibility not intrinsic to mathematical formulation, artificial dissipation
- Stability:
 - Parabolic systems inherently transmit information instantaneously
 - Limit timestep to keep crack/damage propagation speed at/under elastic wave speed, v_c
 - Strategy: choose smallest phase viscosity η such that $(\Delta t)_M \leq (\Delta t)_{PF}$

$$\frac{\eta}{(\Delta t)_{PF}} \geq \left\{ \frac{2G_c l}{(\Delta x)^2}, \frac{4\psi_{crit} l^2}{(\Delta x)^2} \right\} \rightarrow (\Delta t)_{PF} \leq \left\{ \frac{\eta(\Delta x)^2}{2G_c l}, \frac{\eta(\Delta x)^2}{4\psi_{crit} l^2} \right\}, (\Delta t)_M \leq \frac{\Delta x}{v_c}$$

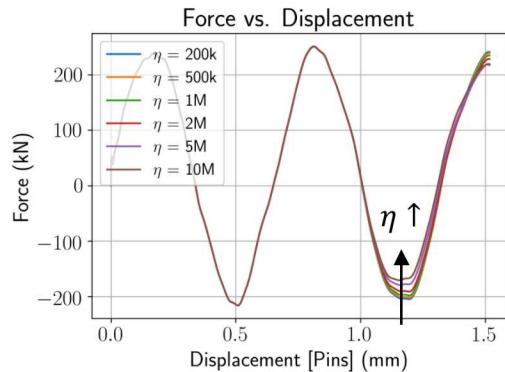
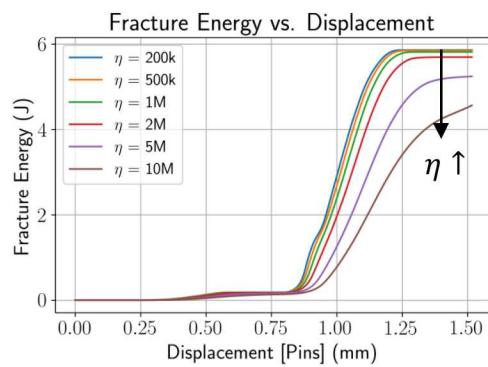
$$\eta \geq \tilde{\eta} = \left\{ \frac{2G_c l}{\Delta x v_c}, \frac{4\psi_{crit} l^2}{\Delta x v_c} \right\}$$

Reference: Tupek, MR. "Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems". SAND2016-9510. 2016.

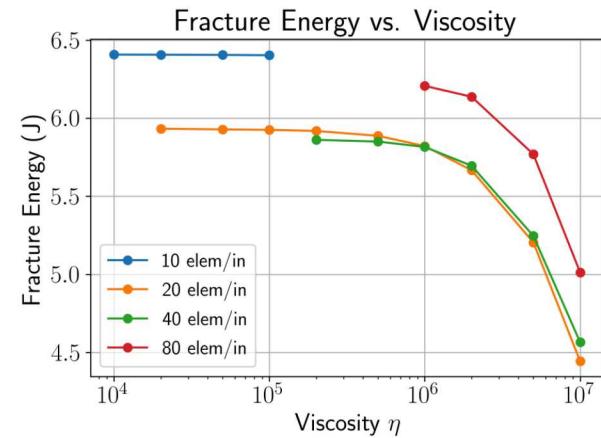
Stability & Viscosity

■ Overview:

- Vary phase viscosity parameter η over wide range to determine:
 - For what values of η are the simulation stable?
 - How does the simulation respond to increasing phase viscosity?

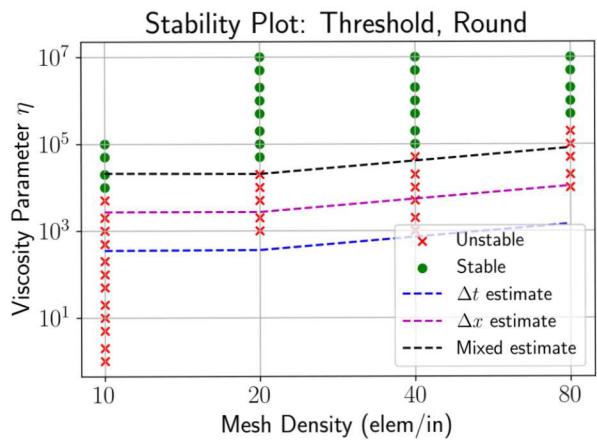


- Global metrics diverge with 'high enough' levels of phase viscosity parameter η
- Evidence of rate dependence (lag) when high phase viscosity

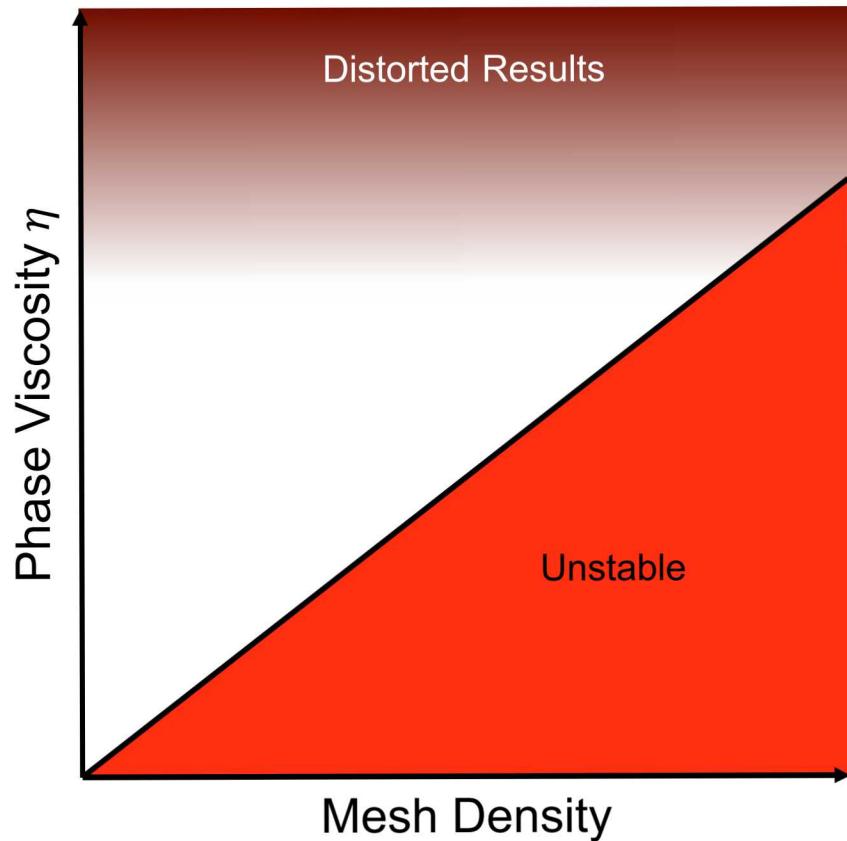


Example: Threshold, sharp tip, 40 elem/in.

Stability & Viscosity



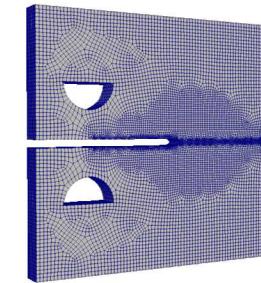
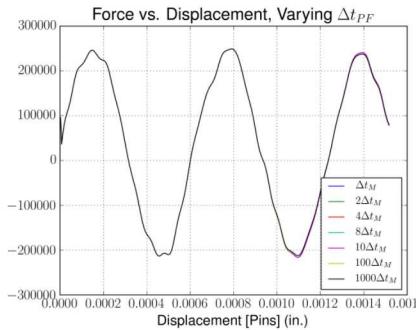
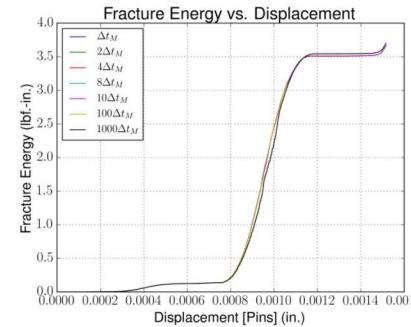
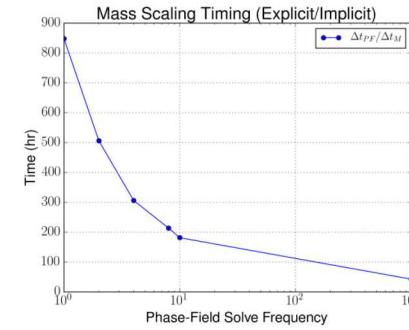
$$\eta \geq \left(\frac{4}{lv_c^2 \Delta t} = \frac{4}{lv_c \Delta x} = \frac{4 \Delta t}{l(\Delta x)^2} \right)$$



- Explicit (Mechanical) / Explicit (Phase Field) integration with viscous regularization might be more limiting than it is useful
- Explicit (Mechanical) / Implicit (Phase Field) flavor might be more expensive** but lacks quality and stability issues

Capabilities – Explicit/Implicit

- Explicit Mechanics / Implicit Phase-Field solve
 - Costly !
 - Option to update phase field less often
 - Every “X” timesteps
- A quick test on a dynamic problem
 - ASTM E1820 compact tension specimen
 - 6061-T6 Aluminum
 - Quick loading: 1 in/s for 60ms

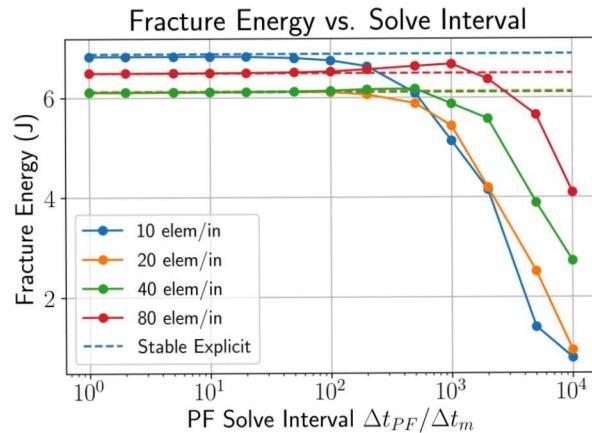


- Very similar force/displacement & fracture energy responses
- Great simulation time savings realized

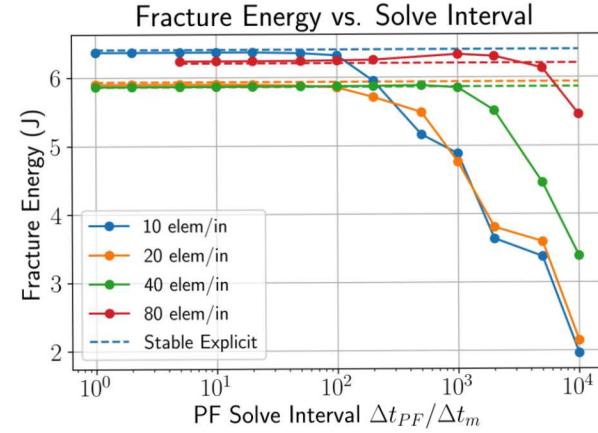
Timing Study

- Results – QoI Convergence:

Rounded Crack Tip



Sharp Crack Tip



- Explicit/Implicit and Explicit/Explicit (stable) results generally agree
- Explicit/Implicit results convergent as solve interval approaches 1
- Deviation observed for larger PF solve intervals (>50)

Future Directions

- Model:
 - Consider inequality-constrained phase field solve
 - Nonlinear PDE solve
 - Allow for cohesive/Lorentz-type phase field model
 - Modularization for use with arbitrary (hyperelastic & hypoelastic) plasticity models
- Verification efforts:
 - “Surfing BC” problem – verify toughness as function of crack length in EPFM (J-R curve)
 - Explicit dynamics – convergence testing
- Validation effort:
 - Compare apparent J-R curve produced by phase field model to experimental
 - Explicit dynamics validation

Thank you!

Thanks to conference & minisymposia organizers!

Andrew Stershic, PhD PE
Sandia National Laboratories
Multi-Physics Modeling & Simulation
Livermore, CA
ajsters@sandia.gov

Sandia National Laboratories,
Livermore, CA