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What is Molecular Dynamics Simulation?
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But is it useful?

Well everyone else is using it...
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"Global scientific output doubles

every nine years or 8-9% per year"
Nature, May 2014
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SNAP Tantalum

• Training data:

• Energy, force, stress

• -5,000 data points

• Deformed crystals phases

• Generalized stacking faults
• Surfaces

• Liquid

• Peierls barrier is the activation energy
to move a screw dislocation

• Not included in training data

• SNAP potential agrees well with DFT
calculations

A. P. Thompson , L.P. Swiler, C.R. Trott, S.M.

Foiles, and G.J. Tucker, J. Comp. Phys., 285 316

(2015) .
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SNAP Potentials have been

developed at Sandia and elsewhere

for a variety of material systems:

Sandia: Ta, InP, W/Be/H

UCSD: Co, Li, Mo, Cu, Ni, Si, Ge



Evolution of ML Potentials
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Computational Cost

Shyue Ping Ong (UCSD), with:

Csanyi (2010)

Shapeev (2015)

Behler(2007)

Thompson (2015)

Wood (2018)

Submitted J.Chem.

Theory.Comp., 2019
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https://arxiv.org/abs/1906.08888 

https://github.com/materialsvirtuallab/mlearn
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Automated Generation of SNAP Interatomic Potentials

• Even if the optimization
routine is robust, the
process still isn't
transparent.

Fitting
Hyper- arameters

DAKOTA

• The importance on
each objective is
part of the magic.

J
Objective Functions,
Material Properties

Reference
Data

• Typically O(104)
configurations, each
with (9(102) atoms

• Developer has to
ration compute
resources with DFT
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W-Be-H DAKOTA Parameters/Data
• Nodes: 31

• Limited due to memory issues on head node

• Training set size: —40,000 configurations
• Large dataset has lead to memory issues with the way DAKOTA is set up

• GA Parameters:
• max_iterations = 270
• max_function_evaluations = 25000
• population_size = 200
• Variables: 5 (hyperparameter fit), 34 (groupweight fit)

• Objective functions: 6 (hyperparameter fit), 9 (groupweight fit)
• Evaluate things like: energy/force errors, defect formation energies for W, W-Be, and W-H, H2 and H3 binding energies, H/H2 adsorption

energy (important parameters for fusion material modeling)

• Evaluation time per candidiate: 0.75-2.5 hours
• Shorter time during groupweight fitting since we use previous Data and DumpSnap files so we don't have to convert JSON to

LAMMPS data files or run LAMMPS again
• Longer time for hyper parameter fitting is only for half the dataset but shorter time for groupweight fitting is for entire

dataset

• Number of Candidates needed
• Hyperparameters: -100s

• Cost: -500 node-hours (200 candidates, 2.5 hours)
• Groupweights: —15,000-20,000

• Cost: —20,000 node-hours (20,000 candidiates, 1 hour)



Workflow - Initial
FitSNAP.py

(-45 m — 2.5 h)

• DAKOTA is launched
• 30 Candidiates

launched
• FitSNAP is initiated

for all 30 Candidates
• Training data is

either converted to
LAMMPS

compatible form or
unpickled from data

file

Parallel Node
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Parallel Node1

Parallel Node

• LAMMPS
evaluation for

all training
configurations

run in parallel
for each

candidate

Head Node

Objective

Functions

(-30 min)

L 
Parallel Node

  r
' Parallel Node

• Parses LAMMPS
data and sets

up matrices for
linear

regression for
ALL candidates

• Performs linear
least square

regression for
ALL candidates

• Prints out
coefficients to

file

1--Parallel Node
• Objective

function

evaluations

• LAMMPS called

multiple times
(5+)

• Initial workflow for generating

candidate potentials
• Works well for initial W-Be training

data
• Could run at least 50

concurrent candidates
• Increases in training data from

additional hydrogen configurations

• Training set now —40,000
configurations

• Head node would run out of
memory for more than —15

concurrent candidates

• High memory usage from
linear least squares on head

node for all candidates
• Modification needed to also run

linear least squares in parallel



Workflow - Modified
FitSNAP.py

(-45 m — 2.5 h)

• DAKOTA is launched
• 30 Candidiates

launched
• FitSNAP is initiated

for all 30 Candidates
• Training data is

either converted to
LAMMPS

compatible form or
unpickled from data

file

Parallel Node
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Parallel Node1

Parallel Node

• LAMMPS
evaluation for

all training
configurations

run in parallel
for each

candidate

• Parses LAMMPS
data and sets

up matrices for
linear

regression for
ALL candidates

Parallel Node

---.\Parallel Node 

Parallel Node

• Linear regression

now run in parallel

due to memory
issues

• New lstsqMPl.py

file that performs

regression and
passes data and

can be called in

parallel

Head Node]

Objective

Functions

(-30 min)

• Prints out
resulting SNAP

coefficients
from linear

regression to
file

Farallel Nodel

 'Earallel Nodel

Earallel Nodel

• Objective
function

evaluations

• LAMMPS called

multiple times
(5+)

Can now run

more

candidates at
once with

new method

(15 vs. 30)



Workflow - Modified

[ Bash Driver ---.

- Bash script
drives entire

analysis

Repeated for each generation

(Outer Loop)

DAKOTA Bash Driv:k 71

- Generates - Manages

parameters parallel runs

for exactly 1 of fitsnap

generation - Loops over

Dummy candidates in- 
variables get batches the

copied into size of

results file available

- Dakota nodes until all

restart file is candidates

written have run

Repeated until all candidates in 1 generations has run
(Inner Loop)

i
x Number of

 .

available nodes

fitsnap.py

fitsnap.py

fitsnap.py

-III.

- Each fitsnap
job is called

with salloc &
- Runs entire

fitsnap job on
individual

nodes which
avoids

memory
issues

TBash Driver
- Now bash
driver

launches

analysis script

- Runs
objective

function

analysis with

LAMMPS

x Number of t
available nodes

 .

LAMMPS
 i

LAMMPS

LAMMPS

 I

- Run a variety

of analysis with

LAMMPS to
evaluate quality

of potential

Bash Driver/ DAKOTA

- Preps restart file for next
generation

- DAKOTA restart utility converts
restart file to neutral file

- Bash script replaces dummy
variables in neutral to real

objective function values
- DAKOTA restart utility converts

neutral file back to restart file



Conclusions

• DAKOTA is a powerful toolbox for SNAP hyperparameter optimization

• The SNAP multi-step workflow is relatively complex

• Increase in training data size has exposed non-parallel bottlenecks

• Solution 1: consecutive MPI launches within DAKOTA analysis driver

• Solution 2: Combine single-generation DAKOTA stage with separate analysis stage
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