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What is Molecular Dynamics Simulation?
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But is it useful?

Well everyone else is using it...
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“Global scientific output doubles

every nine years or 8-9% per year”
Nature, May 2014
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SNAP Tantalum

 Training data:

» Energy, force, stress
~5,000 data points
Deformed crystals phases
Generalized stacking faults
Surfaces
* Liquid

* Peierls barrier is the activation energy
to move a screw dislocation

* Not included in training data

» SNAP potential agrees well with DFT
calculations

A. P. Thompson, L.P. Swiler, C.R. Trott, S.M.

Foiles, and G.J. Tucker, J. Comp. Phys., 285 316
(2015) .
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SNAP Potentials have been
developed at Sandia and elsewhere
for a variety of material systems:
Sandia: Ta, InP, W/Be/H

UCSD: Co, Li, Mo, Cu, Ni, Si, Ge



Test Error

Evolution of ML Potentials
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https://arxiv.org/abs/1906.08888
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AT,
Automated Generation of SNAP Interatomic Potentials i

* Typically O(10%)
configurations, each
with 0(102) atoms

* Developer has to
ration compute
resources with DFT

* Even if the optimization
routine is robust, the
process still isn’t
transparent.

Fitting

Reference
Data

DAKOTA

* The importance on U

each objective is Objective Functions,
part of the magic. Material Properties




W-Be-H DAKOTA Parameters/Data

* Nodes: 31
* Limited due to memory issues on head node

* Training set size: ~40,000 configurations
* Large dataset has lead to memory issues with the way DAKOTA is set up

* GA Parameters:
* max_iterations =270
* max_function_evaluations = 25000
* population_size = 200
* Variables: 5 (hyperparameter fit), 34 (groupweight fit)
* Objective functions: 6 (hyperparameter fit), 9 (groupweight fit)
* Evaluate things like: energy/force errors, defect formation energies for W, W-Be, and W-H, H2 and H3 binding energies, H/H2 adsorption
energy (important parameters for fusion material modeling)
* Evaluation time per candidiate: 0.75-2.5 hours

* Shorter time during groupweight fitting since we use previous Data and DumpSnap files so we don’t have to convert JSON to
LAMMPS data files or run LAMMPS again

. (Iaonger time for hyper parameter fitting is only for half the dataset but shorter time for groupweight fitting is for entire
ataset

* Number of Candidates needed
* Hyperparameters: ~100s
* Cost: ~500 node-hours (200 candidates, 2.5 hours)
* Groupweights: ~15,000-20,000
e Cost: ~20,000 node-hours (20,000 candidiates, 1 hour)



Workflow - Initial

Objective
Functions
(~30 min)

A

FitSNAP.py
(45 m—2.5h)
A
Parallel Node
Head Node Parallel Nodef[— | Head Node

DAKOTA is launched
30 Candidiates
launched

FitSNAP is initiated
for all 30 Candidates
Training data is
either converted to
LAMMPS
compatible form or
unpickled from data
file

Parallel Node

LAMMPS
evaluation for
all training
configurations
run in parallel
for each
candidate

Parses LAMMPS

data and sets
up matrices for
linear
regression for
ALL candidates
Performs linear
least square
regression for
ALL candidates
Prints out
coefficients to
file

Parallel Node

Parallel Node

Parallel Node

Objective
function
evaluations

LAMMPS called

multiple times
(5+)

Initial workflow for generating
candidate potentials
Works well for initial W-Be training
data
* Could run at least 50
concurrent candidates
Increases in training data from
additional hydrogen configurations
* Training set now ~40,000
configurations
Head node would run out of
memory for more than ~15
concurrent candidates
* High memory usage from
linear least squares on head
node for all candidates
Modification needed to also run
linear least squares in parallel



Workflow - Modified

Objective

FitSNAP.py Functions

(*45m -2.5h) (~30 min)

1 A
|
Parallel Node Parallel Node Parallel Node
Head Node Parallel Node Head Node Parallel Node|— | .04 Node Parallel Node
DAKOTA is launched Parses LAMMPS Prints out

30 Candidiates
launched

FitSNAP is initiated
for all 30 Candidates
Training data is
either converted to
LAMMPS
compatible form or
unpickled from data
file

Parallel Node

LAMMPS

evaluation for

all training

configurations
run in parallel

for each
candidate

data and sets
up matrices for
linear
regression for
ALL candidates

Parallel Node

Linear regression
now run in parallel
due to memory
issues

New IstsqMPl.py
file that performs
regression and
passes data and
can be called in
parallel

resulting SNAP
coefficients
from linear

regression to
file

Parallel Node

Objective
function
evaluations
LAMMPS called
multiple times
(5+)

Can now run
more
candidates at
once with
new method
(15 vs. 30)



Workflow - Modified

Repeated for each generation

(Outer Loop)

A

Bash Driver DAKOTA Bash Driver

- Bash script - Generates - Manages

drives entire parameters parallel runs

analysis for exactly 1 of fitsnap
generation - Loops over
- Dummy candidates in
variables get batches the
copied into size of
results file available
- Dakota nodes until all
restart file is candidates
written have run

Repeated until all candidates in 1 generations has run

(Inner Loop)

"x Number of
available nodes

fitsnap.py

fitsnap.py »| Bash Driver
- Now bash

fitsnap.py driver
launches

- Each fitsnap
job is called
with salloc &
- Runs entire
fitsnap job on
individual
nodes which
avoids
memory
issues

analysis script
- Runs
objective
function
analysis with
LAMMPS

x Number of
available nodes

LAMMPS

LAMMPS

- Run a variety
of analysis with
LAMMPS to
evaluate quality
of potential

LAMMPS | —

DAKOTA

Bash Driver /

- Preps restart file for next
generation

- DAKOTA restart utility converts
restart file to neutral file

- Bash script replaces dummy
variables in neutral to real
objective function values

- DAKOTA restart utility converts
neutral file back to restart file




Conclusions

DAKOTA is a powerful toolbox for SNAP hyperparameter optimization

The SNAP multi-step workflow is relatively complex

Increase in training data size has exposed non-parallel bottlenecks

Solution 1: consecutive MPI launches within DAKOTA analysis driver

Solution 2: Combine single-generation DAKOTA stage with separate analysis stage
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