
Background

Problem Description

• HPC architectures are vastly different and continuously evolving

• Large scale computer systems remain prone to hardware failures
• No standard interface for HPC resilience libraries
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Approach

ortability is achieved with Kokkos by abstraction of memory access and execution runtime

Kokkos

Parallel Execution Runtime (Pthread, OpenMP, CUDA etc.)
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Portable Resilience is achieved with Kokkos by abstraction of resilience libraries
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Memory Space Abstraction
Kokkos View abstraction simplifies access to storage media
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Code Simplification
Kokkos Checkpointing abstraction simplifies user code eliminating proprietary API calls

Direct Library access

VELOC Mem protect(0, &i, 1, sizeof(int));

VELOC Mem protect(1, h, M * nbLines, sizeof(double));

VELOC Mem protect(2, g, M * nbLines, sizeof(double));

int v = VELOC Restart test("heatdis", 0);

if (v > 0) f

VELOC Restart test is returning

assert (VELOC Restart("heatdis", v)

else

i = 0;

while (i < n) f

// iteratively compute the heat distribution

// (5): checkpoint every K iterations

if (i % K == 0)

assert(VELOC Checkpoint("heatdis",

VELOC SUCCESS);

// increment the number of iterations

i++;

1

VELOC SUCCESS);

Kokkos

for (i = 0; i < n; i++) {

KokkosResilience::checkpoint( *resilience context, "final",

n, [=] 0 mutable f

Kokkos::parallel for(rp,KOKKOS LAMBDA(const int i)f

m data(i)=i;

1)1, KokkosResilience::filter::

nth iteration filter< 10 >{} );
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Implementation

Manual Checkpoint

Provide simple interface to checkpoint data using Kokkos views and memory space concept

• Data to be checkpointed is designated by a "mirror" view in a checkpoint memory space
• Checkpoint memory space manages list of checkpoint views and performs a deep copy from one to the other

during checkpoint / restart operation.
• Application code determines directory structure, but Kokkos will create and attach to file based memory spaces

Kokkos View

• The Kokkos view provides an abstract data parallel

accessor to storage media simplifying data movement

and adaptation to different hardware

• Checkpoint views are mirrors of host views with

matching extents and layouts, but in an off-node

memory space.
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Example

typedef Kokkos::StdFileSpace cp type;

cp type sfs;

typedef Kokkos::DirectoryManager<cp type> dm type;

auto x cp = Kokkos::create chkpt mirror( sfs, atom.x );

auto v cp = Kokkos::create chkpt mirror( sfs, atom.v );

for ( int n = 0; n < ITERATION MAX; n++ ) f

// iteration loop ...

if ( ( n % CHECKPOINT FREQ ) == 0 ) {

// create directory <PATH>/n and attach to cp

dm type::set checkpoint directory( true,

cp path.c str(), n);

cp type::checkpoint views();

Automatic Checkpointing
Simplify checkpoint/restart selection with abstraction to Checkpoint implementation

• Data to be checkpointed is captured from Kokkos views contained in functor
• Captured Views are passed to checkpoint context
• Checkpoint context aggregates a "Backend" implementation which is specific to existing checkpointing interface

• e.g. VeloC
• During Checkpoint and restart, data locations referenced by captured views are passed to context backend

Automatic Checkpointing with VeloC

KokkosResilience::checkpoint()

Checkpoint

Context

Captured

Views

VeloC Backend

Example

typedef Kokkos::View< double* > view type;

typedef KokkosResilience::Context<

KokkosResilience::VeloCCheckpointBackend > rc type;

rc type resilience context = rc type(MPI COMM WORLD,

"config.dat");

view type m data ( "data", D );

Kokkos::RangePolicy<> rp(O,D);

for (int n = 0; n < N; n++ ) 1

KokkosResilience — checkpoint( *resilience context, "final",

n, [=] 0 mutable f

Kokkos::parallel for(rp,KOKKOS LAMBDA(const int i)f

m data(i)=i;

1)1, KokkosResilience::filter::

nth iteration filter< 10 >{} );

Redundant execution

Resilience is achieved by executing the same operation with multiple streams

• Redundant execution occurs in three steps
• Replicate data referenced in functor
• Concurrent execution using three parallel execution

spaces
• Recombine modified data using voting mechanism

Triple Redundant Execution Space
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parallel for-01

Capture and

Replicate

Kokkos Views

parallel for()

parallel for()

parallel for()

combine results

Results saved

in original

Views

• Replicated Data captured through Kokkos Views
• Concurrent execution is via Streams (CUDA) or Tasks

(OpenMP)
• Voting step uses comparison operator sensitive to datatype

• `==` for enumerated types (int, long, char, bool, etc.)

• l a-b <E for float and double

Example
typedef Kokkos::View< double*, Kokkos::CudaSpace > view type;

view type m data ( "data", N );

typename view type::HostMirror v =

Kokkos::create mirror view(m data);

Kokkos::RangePolicy<Kokkos::ResCuda> rp(O,N);

Kokkos::parallel for(rp,KOKKOS LAMBDA(const int i){

m data(i)=i;

});

Kokkos::fence();

Kokkos::deep copy(v, m data);

Results

Manual Checkpoint
• Benchmark manual checkpoint using miniMD (Kokkos mini
app for molecular dynamics)

• Checkpoint taken every 10 iterations
• Note that because of the nature of the miniMD application,
the checkpoint size also scales with the number of nodes.

Setup Name Description

Baseline Kokkos MiniMD application with MPI + OpenMP

HDF5 Parallel Baseline + manual checkpoint to single DataSize x (MPI Size) file

Std File Baseline + manual checkpoint to (MPI Size) files using std::stream

HDF5 Serial Baseline + manual checkpoint to (MPI Size) files using HDF5

Description of test setup illustrated in comparison plots
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Automatic Checkpoint with VeloC backend
Benchmark automatic checkpoint using miniMD (Kokkos mini app for
molecular dynamics)

• Checkpoint taken every 10 iterations
• Checkpoint size scales with the number of nodes — see table
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Data usage by MPI rank for VeloC backend

Description

overhead

function

checkpoint

write

step

Non-VeloC overhead from Kokkos Resilience objects

Computation within the checkpoint functor

Checkpoint operation include VeloC overhead and file writes

File writes only

Entire time step including MPI and non-captured computations

Description of stages illustrated in comparison plots
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Application and Checkpoint Scaling (28 cores per rank)
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(---• Benchmark execution redundancy using miniMD (Kokkos mini app for molecular dynamics)
• Redundant execution only added to the integration loop (accounted for in the figures)
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Conclusions
• Checkpointing through Kokkos View adds a seem-less point of data integration

• Kokkos provides automatic or manual interface giving users selective control over implementation
• Easily integrate with existing checkpoint libraries without changing user code

• Kokkos execution resilience provides software redundancy without adding code complexity
• Able to take advantage of available hardware concurrency through streams
• Automatic data replication and recombination using parallel execution when possible minimizes execution cost
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