
Background

Problem Description

• HPC architectures are vastly different and continuously evolving

• Large scale computer systems remain prone to hardware failures
• No standard interface for HPC resilience libraries

rP--

Approach

ortability is achieved with Kokkos by abstraction of memory access and execution runtime

Kokkos

Parallel Execution Runtime (Pthread, OpenMP, CUDA etc.)

Intel Multicore

intei` Xeon• Processor

Intel Manycore NVIDIA GPU AMD Multicore/APU IBM Power ARM

OCAV1UMOI

THUNDERX

Portable Resilience is achieved with Kokkos by abstraction of resilience libraries

Kokkos

Resilient Execution Runtime

—.
r N Redundant

Execution
Paired Process

Execution
J

Checkpointing Runtime

Automatic with Manual/memory

external library 'space abstraction

DRAM

Memory Space Abstraction
Kokkos View abstraction simplifies access to storage media

Kokkos::View< Data Type

HBM

11W

GPU

Device

Memory
NVRAM

/'

Data
Staging
System

__,/

(

MPI
IO/HDF5

>

C++ 10

Code Simplification
Kokkos Checkpointing abstraction simplifies user code eliminating proprietary API calls

Direct Library access

VELOC Mem protect(0, &i, 1, sizeof(int));

VELOC Mem protect(1, h, M * nbLines, sizeof(double));

VELOC Mem protect(2, g, M * nbLines, sizeof(double));

int v = VELOC Restart test("heatdis", 0);

if (v > 0) f

VELOC Restart test is returning

assert (VELOC Restart("heatdis", v)

else

i = 0;

while (i < n) f

// iteratively compute the heat distribution

// (5): checkpoint every K iterations

if (i % K == 0)

assert(VELOC Checkpoint("heatdis",

VELOC SUCCESS);

// increment the number of iterations

i++;

1

VELOC SUCCESS);

Kokkos

for (i = 0; i < n; i++) {

KokkosResilience::checkpoint(*resilience context, "final",

n, [=] 0 mutable f

Kokkos::parallel for(rp,KOKKOS LAMBDA(const int i)f

m data(i)=i;

1)1, KokkosResilience::filter::

nth iteration filter< 10 >{});

References

• H. C. Edwards, C. R. Trott and D. Sunderland, "Kokkos: Enabling manycore performance portability through polymorphic memory access patterns," Journal of Parallel and Distributed Computing , vol. 74, no.

12, pp. 3202-3216, 2014.

• I.P. Egwutuoha, D. Levy, B. Selic, S. Chen, "A survey of fault tolerance mechanisms and checkpoint/restart implementations for high performance computing systems", The Journal of Supercomputing,

September 2013, Vol. 65, Issue 3, pp 1302-1326

• Argonne National Laboratory, "VeloC" Argonne National Laboratory, 2018. [Online]. Available: https://veloc.readthedocs.io/en/latest/.

Implementation

Manual Checkpoint

Provide simple interface to checkpoint data using Kokkos views and memory space concept

• Data to be checkpointed is designated by a "mirror" view in a checkpoint memory space
• Checkpoint memory space manages list of checkpoint views and performs a deep copy from one to the other

during checkpoint / restart operation.
• Application code determines directory structure, but Kokkos will create and attach to file based memory spaces

Kokkos View

• The Kokkos view provides an abstract data parallel

accessor to storage media simplifying data movement

and adaptation to different hardware

• Checkpoint views are mirrors of host views with

matching extents and layouts, but in an off-node

memory space.

EILIEEIE1
111111111111111i 71-

View View

Network

Resour

Example

typedef Kokkos::StdFileSpace cp type;

cp type sfs;

typedef Kokkos::DirectoryManager<cp type> dm type;

auto x cp = Kokkos::create chkpt mirror(sfs, atom.x);

auto v cp = Kokkos::create chkpt mirror(sfs, atom.v);

for (int n = 0; n < ITERATION MAX; n++) f

// iteration loop ...

if ((n % CHECKPOINT FREQ) == 0) {

// create directory <PATH>/n and attach to cp

dm type::set checkpoint directory(true,

cp path.c str(), n);

cp type::checkpoint views();

Automatic Checkpointing
Simplify checkpoint/restart selection with abstraction to Checkpoint implementation

• Data to be checkpointed is captured from Kokkos views contained in functor
• Captured Views are passed to checkpoint context
• Checkpoint context aggregates a "Backend" implementation which is specific to existing checkpointing interface

• e.g. VeloC
• During Checkpoint and restart, data locations referenced by captured views are passed to context backend

Automatic Checkpointing with VeloC

KokkosResilience::checkpoint()

Checkpoint

Context

Captured

Views

VeloC Backend

Example

typedef Kokkos::View< double* > view type;

typedef KokkosResilience::Context<

KokkosResilience::VeloCCheckpointBackend > rc type;

rc type resilience context = rc type(MPI COMM WORLD,

"config.dat");

view type m data ("data", D);

Kokkos::RangePolicy<> rp(O,D);

for (int n = 0; n < N; n++) 1

KokkosResilience — checkpoint(*resilience context, "final",

n, [=] 0 mutable f

Kokkos::parallel for(rp,KOKKOS LAMBDA(const int i)f

m data(i)=i;

1)1, KokkosResilience::filter::

nth iteration filter< 10 >{});

Redundant execution

Resilience is achieved by executing the same operation with multiple streams

• Redundant execution occurs in three steps
• Replicate data referenced in functor
• Concurrent execution using three parallel execution

spaces
• Recombine modified data using voting mechanism

Triple Redundant Execution Space
r—

parallel for-01

Capture and

Replicate

Kokkos Views

parallel for()

parallel for()

parallel for()

combine results

Results saved

in original

Views

• Replicated Data captured through Kokkos Views
• Concurrent execution is via Streams (CUDA) or Tasks

(OpenMP)
• Voting step uses comparison operator sensitive to datatype

• `==` for enumerated types (int, long, char, bool, etc.)

• l a-b <E for float and double

Example
typedef Kokkos::View< double*, Kokkos::CudaSpace > view type;

view type m data ("data", N);

typename view type::HostMirror v =

Kokkos::create mirror view(m data);

Kokkos::RangePolicy<Kokkos::ResCuda> rp(O,N);

Kokkos::parallel for(rp,KOKKOS LAMBDA(const int i){

m data(i)=i;

});

Kokkos::fence();

Kokkos::deep copy(v, m data);

Results

Manual Checkpoint
• Benchmark manual checkpoint using miniMD (Kokkos mini
app for molecular dynamics)

• Checkpoint taken every 10 iterations
• Note that because of the nature of the miniMD application,
the checkpoint size also scales with the number of nodes.

Setup Name Description

Baseline Kokkos MiniMD application with MPI + OpenMP

HDF5 Parallel Baseline + manual checkpoint to single DataSize x (MPI Size) file

Std File Baseline + manual checkpoint to (MPI Size) files using std::stream

HDF5 Serial Baseline + manual checkpoint to (MPI Size) files using HDF5

Description of test setup illustrated in comparison plots

Kokkos Checkpointing Performance impact

0.5 11f-0 Ili! 1111
2 4

MPI Nodes

• Baseline • HDF5 Parallel ■ Std File • HDF5 Serial

6

Automatic Checkpoint with VeloC backend
Benchmark automatic checkpoint using miniMD (Kokkos mini app for
molecular dynamics)

• Checkpoint taken every 10 iterations
• Checkpoint size scales with the number of nodes — see table

MPI

Ranks IMO
eloC Met

Size

Checkp

Scratch Size

1

2

4

8

16

3.1GB

1.6GB

799MB

407MB

211MB

0

1.6GB

267MB

59MB

31MB

61GB

123GB

84G B

73GB

76GB

Data usage by MPI rank for VeloC backend

Description

overhead

function

checkpoint

write

step

Non-VeloC overhead from Kokkos Resilience objects

Computation within the checkpoint functor

Checkpoint operation include VeloC overhead and file writes

File writes only

Entire time step including MPI and non-captured computations

Description of stages illustrated in comparison plots

To
ta
l
T
i
m
e
 (
s)

O
v
e
r
h
e
a
d
 P
er
ce
nt

Application and Checkpoint Scaling (28 cores per rank)

700 -

600 -

500 -

900 -

300 -

200 -

100 -

— overhead

function

checkpoint

write

step

0 -

6 8 10 12 1-

Number of Ranks

Checkpoint Overhead (checkpoint every 10 steps)

35% -

30% -

25% -

20% -

15% -

10% -

5% -

— overhead

— function

— checkpoint

— write

6 8 10

Number of Ranks
12 14 16

(---• Benchmark execution redundancy using miniMD (Kokkos mini app for molecular dynamics)
• Redundant execution only added to the integration loop (accounted for in the figures)

140

120

40

20

Triple Redundancy Execution with Resilient Cuda Space

Performance impact of resilientexecution with MD mini app (Kepler 35)

34.41%

222.37%

 47.9

Reference time = 0.076

90

80

70

60

'A)
i= 50

a)

cc
30

20

29.73%

1

27.46%

27 64 125

Problem Size

• Baseline • Resilient Exec

Performance impact of resilient execution with MD mini app (Volta 70)

689.47%

183.95

100.00

 I I
Reference fime = 0.019

8 27

Problem Size

• Baseline • Resilient Exec

60 38%

1W

1.

1.

40

20

Performance impact of resilient execution with MD mini app (Pascal 60)
41.85% I

319.35%

Reference time = 0.031

46.15%

1 II
64 125

800.00%

700.00%

72.89%

8

53.85%

I I

27

Problem Size

• Baseline • Resilient Exec

49 04%

64 125

Performance impact comparison by problem size

600.00%

;?g.'

500.00%

E

0) 400.00%

300.00%

o

C1.5
CL 200.006 -

100.00%

0.00,

1 8

• I

27

Problem Size

• I
64

MKe0er

• Pascal

• Volta

125

Conclusions
• Checkpointing through Kokkos View adds a seem-less point of data integration

• Kokkos provides automatic or manual interface giving users selective control over implementation
• Easily integrate with existing checkpoint libraries without changing user code

• Kokkos execution resilience provides software redundancy without adding code complexity
• Able to take advantage of available hardware concurrency through streams
• Automatic data replication and recombination using parallel execution when possible minimizes execution cost

U.S. DEPARTMENT OF

ENERGY
A 16W el&V,I4
/VW ‘710-Y-41
National Nuclear Security Administration

Sandia National Laboratories is a multimission laboratory managed and operated by National

Technology &Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of Energy's National Nuclear Security Administration

under contract DE-NA0003525.

SAND No.
irt

Sandia
National
Laboratories

SAND2019-8761C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

