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Analyst’s Goal e rre

A large portion of people using the finite element method are faced with a
general task:

Deliver critical engineering analyses in a timeframe
consistent with project requirements



Sandia
Meshing is Time Consuming H ‘ shmein

Challenging engineering analyses are common at Sandia. Goal is to have a
general solution, must address the more burdensome models: multi-body /
material, complex geometries, contact, nonlinear materials, dynamic loading

Battery Microstructure

source: https://www.nasa.gov




Engineering Analysis, Process Cost
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M. F Hardwick, R. L. Clay, P. T. Boggs, E. J. Walsh, A. R. Larzelere, and A. Altshuler, “DART system analysis,” Sandia National
Laboratories, Tech. Rep. SAND2005-4647, 2005.

2], A. Cottrell, T. J. Hughes, and Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons, 2009.




Reproducing Kernel for Rapid S
Design-to-Analysis B Isbonies

Can a reproducing kernel method be used to help create an agile
design-to-simulation process?

e Can it effectively handle complex, multi-body, domains?
o Will it efficiently provide quality solutions for large deformations?
@ Is it compatible with rapid meshing / discretization?



Handling Complex Domains

Quick overview, for more details see:

J. J. Koester and J.-S. Chen, “Conforming window functions for meshfree methods,”
Computer Methods in Applied Mechanics and Engineering, vol. 347, pp. 588—-621,
2019
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Reproducing Kernel Overview Gy @ﬁaﬁﬁﬂi’&m

Approximate solutions are constructed over a point cloud. Shape functions are
constructed as the product of a kernel function and a correction function

) = Z‘i’ldl; Y = Clx;x —x1)ba(x — xp)

Point I
¢(x — ) on Q

Clx;x —x;) Zb (x —x;))' =H (x — x;)b(x)

H (x—x) =[Lx—x, (x—x)% ..., (x —x)"]
NP
b(x)is obtained by imposing completeness requirement: Z‘P,xf =x,0<i<n

NP =1

b(x) =H'(0)M '(x) where M(x)= ZH(x—x,)HT(x—xl)d)a(x—)q)
I=1
@ Kernel function: compact support, determines smoothness

@ Correction function: provides completeness
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Meshfree Challenges ) Laboratores
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The following challenges all stem from shape functions not conforming to
boundaries

@ Concave geometries
o Visibility
o Diffraction

@ Essential boundaries
e Lagrange multiplier

e Singular kernel
@ Bi-material (weak discontinuity) e Penalty
e Enriching o Nitsche’s
e Coupling e Coupling
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Conforming Window Functions ‘ W

Traditional, Euclidean Windows / Kernels

New, Graph-Informed Windows / Kernels

@ Mesh is used to inform RK functions about boundaries
@ RK functions are not local to elements, reducing the connection
between mesh and approximation quality




Conforming to Boundaries / - ‘ s
Extreme lonal
Interfaces e @ Laboratores

Define kernel functions using, smooth spline spaces on triangles or
tetrahedra (Bernstein-Bézier polynomials).

Non-
conforming at
essential
boundary

Conforming at
essential
boundary

d)l WI
(Kernel) (Shape Function)




Elasticity Patch Tests

N
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5 000e-03
-0.003
0 000e+00

Figure: Deformed Figure: RkPM, Figure: cRK,
triangulation transformation method statlc condensation
Method L? H,

RKPM with transformation method

2.05e-03 2.44e-02

Conforming window RK with static condensation  7.65e-17  1.04e-15

@ Weak Kronecker-Delta — Kinematically Admissible Approximations

e Interpolatory along boundary: u”(x;)
boundaries (like FEM)

= d; — directly impose essential
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Panel with an Inclusion Laboratores

An elastic panel with an inclusion

@ (4x4) panel, R = 1 for inclusion @ Tension in x direction
@ |Inclusion: E = 10.E4, v =0.3 @ Exact displacement on symmetry planes
@ Panel: E=10.E3,v =03 @ Exact traction on other edges
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Results Comparison
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Efficient, Quality Solutions for Large Deformations
Domain integration and addressing nearly incompressible
materials

For more details, see:

G. Moutsanidis, J. Koester, M. Tupek, Y. Bazilevs, and J.-S. Chen, “Treatment of
near-incompressibility in meshfree and immersed-particle methods,” Computational
Particle Mechanics, 2019
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Overview of Integration e, Laboratores

The smoothed gradient® operator is commonly used:

~ 1 1
VI(Q.) = —J VfdQ, = —J' fmadl
Vi o, Vi r,
where Q; is the smoothing volume surrounding corresponding
to a material point L with boundary T, volume V, and outward
facing surface normal n.

i Example Nodal Domain (SCNI)
@ Improved efficiency

@ Consistent, passes patch test N, U1
N,

but, can have
U3

@ Low energy modes I,

@ Pressure oscillations for nearly incompressible materials
Example Smoothing Cell

898, Chen, C.-T. Wu, S. Yoon, and Y. You, “A stabilized conforming nodal integration for Galerkin mesh-free methods,” /nternational
Journal for Numerical Methods in Engineering, vol. 50, no. 2, pp. 435-466, 2001.




Example Pressure Oscillations

Cook’s membrane problem. Neo Hookean, E = 1000, v = 0.499. SCNI

48

hydrostatic_stress
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Proposed F-Based Method = ‘ s

An F method is proposed to address low energy modes and pressure
oscillations in nearly incompressible problems.

With F methods, a multiplicative split is used to decompose the deformation
gradient
F= Fdil Fdev

with detF = J = detF¥!, detF%’ =1, ¥ = j~1/3F, il = /31
The volumetric part of F is replaces with a projected value
F — Fdil Fdev

where
Fdil — T[(Fdil) - J1/3 I,




New Projection for F =y () ‘ "a“"'a'

For the proposed method, the smoothed gradient operator is used and two different
domains are considered for each material point, a smaller domain Qiev provides the
deviatoric portion and a larger domain Q¢ provides the dilatational portion.

Nested smoothing domains Meshed domains
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New Projection for F = ‘ rre

For F at material point L, we have
F, = Fiil erv

with the deviatoric part coming from the smoothed deformation gradient of the
smaller cell, _
Fiev — F(Qiev),
and the dilatational part coming from the smoothed deformation gradient of the
larger cell,
Fdll JI/3(thl)I

del le[ Z 1% Jm lel Z Vm
ceC ceC

where C is the collection of cells/elements in the volumetric domain. This allows J to
be computed one time for every cell then aggregated as needed for J




Cook’s Membrane v = 0.49999 e @%

Volumetric domains: union of 2 nodal domains
Deviatoric domains: 4 per volumetric domain

hydrostatic_stress
hydrostatic_stress

Original SCNI Proposed F Method
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Cook’s Membrane v = 0.499 = ‘ e s

Tip load for a given displacement, normalized by a refined composite tet solution
1.03

CRKF
------ CRK-SCNI
=== UG Hex
SD Hex
Composite Tet, F

Normalized Load

4 5 6
Refinement Level (log2(# nodes along edge - 1))

@ UG Hex: Single integration point, hourglass control (Flanagan, Belytschko)
@ SD Hex: Fully integrated deviatoric, averaged volumetric response (F)

@ Composite Tet: 12 sub tets, 10 nodes, averaged volumetric response (F)



Cook’s Membrane v = 0.499

Error in applied load for a given displacement for three mesh refinements.
True load estimated using a highly refined solution with the composite tet.
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Example: Elastomeric Foam o Laboratores

Cube with 65% porosity, BCC voids. Gent Model: G = 0.950 MPa, K = 920 MPa




Example: Elastomeric Foam = ‘

Average Stress (MPa)

Natlonal
Laboratories

0.5 1

0.4 1

0.3 1

0.2 1

0.1 1

0.0 1

s CRK, F
= Composite Tet, F

10 20 30 40 50
Applied Strain (%)




Pairing with Automated Meshing
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Low Quality Meshes == Laboratores

Generating subdivisions of complex geometries is often faced with many challenges
@ Small features need to be removed
@ Scanned systems may be represented with STLs, requiring extra processing

Challenging to get a mesh of quality elements. However, many methods exist that
readily produce meshes with low quality elements. E.g. Conformal Decomposition
Finite Element Method (CDFEM)*

Lithium lon Battery CDFEM Mesh, Close-Up

43 A. Roberts, H. Mendoza, V. E. Brunini, and D. R. Noble, “A verified conformal decomposition finite element method for implicit,
many-material geometries,” Journal of Computational Physics, vol. 375, pp. 352-367, 2018.
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Addressing Low Quality Meshes =9 (O shmein

A method is being developed to work with low quality meshes. In short, use
mesh only as a guide.
o Decimate by selecting a subset of vertices to be nodes carrying DOFs
@ Aggregate elements into better shaped integration cells.

P AR,
VA

. o2
YA



Example: CDFEM Spheres = (i)

2.0e+09
l le+9

I -le+9
-2.0e+09

cauchy_stress_1

RKPM results
Mesh of Two Spheres



Example: CDFEM Spheres v rre

Use mesh only as a guide. Select a subset of vertices to be nodes carrying
DOFs. Aggregate elements into better shaped integration cells.

. 2.0e+09
le+9

cauchy_stress_1

I -le+9
-2.0e+09

Aggregated Elements CRK Prediction

~1000x time step advantage over a linear tet on the CDFEM mesh.
More robust. Higher solution quality.
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Lithium lon Battery e rre

CDFEM mesh with 821,437 elements and 173,917 nodes, aggregated to give
50,000 cells, each containing one node and two subcells. Loaded in compression.

Initial Mesh




Lithium lon Battery = () o

~200x time step advantage over a linear tet. Ran to completion
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Agile Design-to-Simulation = Laboratories

Goal: Improving the analyst’s response time
via a reproducing kernel-based agile design-to-simulation framework

Effectively handle complex, multi-body, domains?

— Conforming window method was developed

Wil it efficiently provide quality solutions for large deformations?
— An F method was proposed

Compatible with rapid meshing / discretization?
— Use mesh only as a guide (aggregate elements, select subset of node)

@ G. Moutsanidis, J. Koester, M. Tupek, Y. Bazilevs, and J.-S. Chen, “Treatment
of near-incompressibility in meshfree and immersed-particle methods,”
Computational Particle Mechanics, 2019

@ J. J. Koester and J.-S. Chen, “Conforming window functions for meshfree
methods,” Computer Methods in Applied Mechanics and Engineering, vol. 347,
pp. 588-621, 2019




Backup: Projection for F = ‘ s

Qutward gnew dil domainz Inward ‘share dil domainz
30730



