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Analyst's Goal
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A large portion of people using the finite element method are faced with a

general task:

Deliver critical engineering analyses in a timeframe

consistent with project requirements
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Meshing is Time Consuming
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Challenging engineering analyses are common at Sandia. Goal is to have a
general solution, must address the more burdensome models: multi-body /

material, complex geometries, contact, nonlinear materials, dynamic loading

Battery Microstructure
source: https://www.nasa.gov
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1 M. F. Hardwick, R. L. Clay, P. T. Boggs, E. J. Walsh, A. R. Larzelere, and A. Altshuler, "DART system analysis," Sandia National
Laboratories, Tech. Rep. SAND2005-4647, 2005.

2.1. A. Cottrell, T. J. Hughes, and Y. Bazilevs, lsogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons, 2009.



Reproducing Kernel for Rapid

Design-to-Analysis
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Can a reproducing kernel method be used to help create an agile

design-to-simulation process?

• Can it effectively handle complex, multi-body, domains?

co Will it efficiently provide quality solutions for large deformations?

• Is it compatible with rapid meshing / discretization?

5/30



Handling Complex Domains

Quick overview, for more details see:
J. J. Koester and J.-S. Chen, "Conforming window functions for meshfree methods,"
Computer Methods in Applied Mechanics and Engineering, vol. 347, pp. 588-621,
2019



Reproducing Kernel Overview
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Approximate solutions are constructed over a point cloud. Shape functions are

constructed as the product of a kernel function and a correction function
NP

tlh (x) = L1111(11; = C(x; xl)(1)a

1=1

C(x; — xi) = L bi(x)(x — xj)i HT(x—xi)b(x)
i=0

HT (x xi) = [ 1, x — xt, (X. x1)2 , • • •, •Xl)n]

NP

b(x)is obtained by imposing completeness requirement: L = 0 i n

NP 
1=1

b(x) = HT (0)M-1 (x) where M(x) = H(x—MHT(x—xl) I) cl(x xl)

o Kernel function: compact support, determines smoothness

o Correction function: provides completeness



Meshfree Challenges
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The following challenges all stem from shape functions not conforming to

boundaries

o Concave geometries

O Visibility
9 Diffraction

o Bi-material (weak discontinuity)

O Enriching
9 Coupling

o Essential boundaries

o Lagrange multiplier
O Singular kernel
O Penalty
o Nitsche's
o Coupling
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Conforming Window Functions
Traditional, Euclidean Windows / Kernels

New, Graph-Informed Windows / Kernels
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• Mesh is used to inform RK functions about boundaries
• RK functions are not local to elements, reducing the connection

between mesh and approximation quality
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Conforming to Boundaries /

Interfaces
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Define kernel functions using, smooth spline spaces on triangles or
tetrahedra (Bernstein-Bézier polynomials).

Non-

conforming at
essential

boundary

Conforming at
essential
boundary

(1)/
(Kernel)

IF/
(Shape Function)
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Elasticity Patch Tests

Figure: Deformed
triangulation

Figure: RKPM,
transformation method
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Figure: CRK,
static condensation
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I
5.000e-03

—0.003

11-0.000e+00

Method L2 H1

RKPM with transformation method 2.05e-03 2.44e-02

Conforming window RK with static condensation 7.65e-17 1.04e-15

co Weak Kronecker-Delta Kinematically Admissible Approximations

o interpolatory along boundary: uh(xi) = c/1 —> directly impose essential

boundaries (like FEM)
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Panel with an Inclusion

An elastic panel with an inclusion

• (4x4) panel, R = 1 for inclusion •

• Inclusion: E = 10.E4, v = 0.3 •

• Panel: E = 10.E3, -v = 0.3 •
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Tension in x direction

Exact displacement on symmetry planes

Exact traction on other edges
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Figure: e, near the material interface.
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Results Comparison
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Efficient, Quality Solutions for Large Deformations
Domain integration and addressing nearly incompressible
materials

For more details, see:
G. Moutsanidis, J. Koester, M. Tupek, Y. Bazilevs, and J.-S. Chen, "Treatment of
near-incompressibility in meshfree and immersed-particle methods:' Computational
Particle Mechanics, 2019



Overview of Integration

The smoothed gradient3 operator is commonly used:

1 1 
t7(0L) = f = f fndf-

VL fiL VL FL

where fIL is the smoothing volume surrounding corresponding
to a material point L with boundary FL, volume VL and outward
facing surface normal n.

o Improved efficiency

• Consistent, passes patch test

but, can have

• Low energy modes

o Pressure oscillations for nearly incompressible materials

Fiz ilaartidoiralal

T.' Laboratories

Example Nodal Domain (SCNI)

ne*1
n„

v3
V2

ne2

Example Smoothing Cell

3J.-S. Chen, C.-T. Wu, S. Yoon, and Y. You, "A stabilized conforming nodal integration for Galerkin mesh-free methods," International
Journal for Numerical Methods in Engineering, vol. 50. no. 2. pp. 435-466,2001.



Example Pressure Oscillations
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Cook's membrane problem. Neo Hookean, E = 1000, v = 0.499. SCNI

44
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Proposed F-Based Method
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An F method is proposed to address low energy modes and pressure
oscillations in nearly incompressible problems.

With F methods, a multiplicative split is used to decompose the deformation
gradient

F Fdil Fdev

with det F = J = det Fdil, det Fdev = 1, Fdev = J-1 /3F,

The volumetric part of F is replaces with a projected value

where

F — F dil Fdev,

dil = 7.r(Fdil) j1 / 3 1,

Fdd = j1/ 31
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New Projection for F
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For the proposed method, the smoothed gradient operator is used and two different
domains are considered for each material point, a smaller domain O. provides the
deviatoric portion and a larger domain f/cia provides the dilatational portion.

Nested smoothing domains Meshed domains
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New Projection for F

For F at material point L, we have
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FL = F dilFdL L",

with the deviatoric part coming from the smoothed deformation gradient of the
smaller cell,

Ftv = f'(fIdLev),

and the dilatational part coming from the smoothed deformation gradient of the
larger cell,

= J1 / 3 (far )

j(nfl) = 
vdil 
L Vd" = L Uc,
cEC cc c

where C is the collection of cells/elements in the volumetric domain. This allows J to

be computed one time for every cell then aggregated as needed for J

18/30



Cook's Membrane v = 0.49999

Original SCNI
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Volumetric domains: union of 2 nodal domains

Deviatoric domains: 4 per volumetric domain
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Cook's Membrane v = 0.499
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Tip load for a given displacement, normalized by a refined composite tet solution
1 03
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  CRK SCNI

— • — UG Hex
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Co posle Tet, F

2 3 4 5
Refinement Level (log2(# nodes along edge - 1))

6

• UG Hex: Single integration point, hourglass control (Flanagan, Belytschko)

o SD Hex: Fully integrated deviatoric, averaged volumetric response (F)

• Composite Tet: 12 sub tets, 1 0 nodes, averaged volumetric response (F)
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Cook's Membrane v = 0.499
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Error in applied load for a given displacement for three mesh refinements.
True load estimated using a highly refined solution with the composite tet.
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Example: Elastomeric Foam
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Cube with 65% porosity, BCC voids. Gent Model: G = 0.950 MPa, K = 920 MPa



Example: Elastomeric Foam
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Pairing with Automated Meshing
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Low Quality Meshes
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Generating subdivisions of complex geometries is often faced with many challenges

fa Small features need to be removed

• Scanned systems may be represented with STLs, requiring extra processing

Challenging to get a mesh of quality elements. However, many methods exist that
readily produce meshes with low quality elements. E.g. Conformal Decomposition
Finite Element Method (CDFEM)4

Lithium lon Battery CDFEM Mesh, Close-Up

4S. A. Roberts, H. Mendoza, V. E. Brunini, and D. R. Noble, "A verified conformal decomposition finite element method for implicit,
many-material geometries," Journal of Computational Physics, vol. 375. pp 352-367 2018.
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Addressing Low Quality Meshes
Centerfor
[rime
Ev.nts
Re earch 0 Sandia

National
Laboratories

A method is being developed to work with low quality meshes. In short, use
mesh only as a guide.

O Decimate by selecting a subset of vertices to be nodes carrying DOFs
o Aggregate elements into better shaped integration cells.

Example of clusters
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Example: CDFEM Spheres

RKPM results
Mesh of Two Spheres
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Example: CDFEM Spheres
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Use mesh only as a guide. Select a subset of vertices to be nodes carrying
DOFs. Aggregate elements into better shaped integration cells.

1
 2.0e,09

-2.0e,09

Aggregated Elements CRK Prediction
-,-,,11300x time step advantage over a linear tet on the CDFEM mesh.

More robust. Higher solution quality.
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Lithium Ion Battery
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CDFEM mesh with 821,437 elements and 173,917 nodes, aggregated to give
50,000 cells, each containing one node and two subcells. Loaded in compression.

Initial Mesh
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Lithium Ion Battery

',:,--z,200x time step advantage over a linear tet. Ran to completion
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Agile Design-to-Simulation
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Goal: lmproving the analyst's response time

via a reproducing kernel-based agile design-to-simulation framework

Effectively handle complex, multi-body, domains?
Conforming window method was developed

Will it efficiently provide quality solutions for large deformations?
—> An F method was proposed

Compatible with rapid meshing / discretization?
Use mesh only as a guide (aggregate elements, select subset of node)

• G. Moutsanidis, J. Koester, M. Tupek, Y. Bazilevs, and J.-S. Chen, "Treatment
of near-incompressibility in meshfree and immersed-particle methods,"
Computational Particle Mechanics, 2019

• J. J. Koester and J.-S. Chen, "Conforming window functions for meshfree
methods," Computer Methods M Applied Mechanics and Engineering, vol. 347,
pp. 588-621, 2019



Backup: Projection for

Outward (new dil domain)
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Inward (share dil domain)
30/30


