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2 Can we predict the behavior of as-built parts with error bars?

Hypothesis: We can develop an automated and credible image-to-mesh technology that can
demonstrate the physics impact of per-unit variability on material, component, or system
performance

Objective: We seek to develop a methodology for
automatically, efficiently, and reproducibly creating
conformal finite element meshes from 3D tomography
with quantified uncertainty.

Research thrusts — primary science questions:
1. Automatic CT segmentation via Machine Learning (ML)

2. Automatic conformal tetrahedral mesh creation (ATM)

3. Uncertainty quantification and propagation (UQ)
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Physics solve

• Finite element method predictions
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4 1

Using ML to save time and effort while improving accuracy

CT SEGMENTATION



5 1 CT Segmentation is hard for humans

CT scans must be labeled by component for simulations

https://en.wikipedia.org/wikUlmage_segmentation

Labeling by hand does not scale

Deep Learning algorithms

o Each voxel must be labeled by material

. Find any defects/anomalies

c Pass this to a usable form for numerical simulations



6 Segmentation is a classic computer vision problem

o Image segmentation is well studied

O Small files

O Large training sets

o Volumetric segmentation is different

O Big data

o Class imbalance (lots of background)

o Small training sets with "bad" human labels

o Humans can't label billions of voxels

o Medical researchers are leading this work toward Deep Learning
solutions

https://www.cityscapes-dataset.com/

Cityscape (-1e5 pixels)

Rattlesnake Tail (-1e9 voxels)



7 I Automated Segmentation presents challenges

o CT scans are large

o Medical literature: 128x128x64

o Ours: —1000x larger

o Soon: —10000x larger

o Class Imbalance

o Empty space often dominates the scan

o Artifacts and noise

o Difficult to separate materials of similar density

o Shadow effects
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8 Mitigating Challenges

o CT scans are large
o Used 240x240x240 chunks of the volume

o Optimized our model for GPU memory usage

o Class Imbalance
o Adjusted loss function that guides training

o Artifacts and noise
o Selected Convolutional Neural Network (CNN)

architecture with strength in shape recognition

Rock with segmented opal veins



9 
Deep learning is big data and large networks

"Deep learning is the first class of algorithms that is scalable... peormance just keeps getting better
as you feed them more data"

U-net, a big advance in biomedical
segmentation
o Olaf Ronneberger, Philipp Fischer, Thomas Brox , "U-Net:

Convolutional Networks for Biomedical Image Segmentation",
in Medical Image Computing and Computer-Assisted
Intervention (MICCAI), Springer, LNCS, Vol.9351: 234--241,
2015

o V-net follows as a natural extension
F. Milletari, N. Navab, and S. A. Ahmadi, "V-net: Fully
convolutional neural networks for volumetric medical image
segmentation," in 2016 Fourth International Conference on 3D
Vision (3DV), Oct 2016, pp.565-571

Andrew Ng, Founder of Google Brain
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We started with a V-Net and made improvements as necessary



10 Deep learning model must learn to identify battery
electrodes after training on human labeled examples

Slice of 3D Image



11 . Volumetric battery segmentation achieves high accuracy
compared to human labels

Slice of 3D Image Human label

Averaged 99.7% accuracy over held out test set

ML prediction



12 I 
Extending segmentation model to different battery types seems challenging

DOMAIN NAME ACCURACY

E35 0.984

Tesla 0.973

Litarion 0.966

25R6 0.955

Electrode_1_1 0.948

Electrode_111_1 0.945

GCA400 0.928

Electrode_IV_1 0.917

Electrode_11_2 0.902

GCA2000 0.900

Electrode_1_2 0.892

Electrode_111_2 0.773

Electrode_IV_3 0.748

Electrode_IV_2 0.745

Electrode_11_3 0.699

Electrode_111_3 0.668

Mean 0.8714375

TRAINING SET

Litarion Electrode IV_1
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Inference results outside the training domain are
qualitatively better than accuracy measurements indicate

Electrode 11_3 CT scan slice Human label
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ML prediction

ML segmentation is 69.9% accurate to the human label...but looks qualitatively better



Measuring binary segmentation quality in the absence
of precise labels

VIABILITY SCORE c" mean(V1) — mean(V0)

where V1 = fVic ,., I//, = 1}, 170 = tvicllic = Ob
-uk is the intensity of voxel k with label /k

Human label ML prediction



Robust ML model is capable of producing segmentations that are
16 qualitatively better than human labels, even outside of the training domain

DOMAIN NAME ACCURACY HUMAN LABEL VIABILITY SCORE ML LABEL VIABILITY SCORE

E35 0.984 1.966 1.945

Tesla 0.973 2.383 2.381

Litarion 0.966 2.105 2.169

25R6 0.955 2.363 2.388

Electrode_I_1 0.948 1.612 1.613

Electrode III 1 0.945 1.676 1.689

GCA400 0.928 1.852 1.876

Electrode IV 1 0.917 1.473 1.554

Electrode 11 2 0.902 1.508 1.620

GCA2000 0.900 1.894 1.933

Electrode_1_2 0.892 1.490 1.573

Electrode III 2 0.773 1.001 1.639

Electrode IV 3 0.748 0.868 1.536

Electrode IV 2 0.745 0.782 1.546

Electrode 11 3 0.699 0.500 1.685

Electrode III 3 0.668 0.475 1.635

Mean 0.8714375 1.497 1.799

•



http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html

Using dropout to estimate segmentation confidence

UNCERTAINTY QUANTIFICATION



18 I 
How can we understand geometric uncertainties in deep
learning segmentations?

CT scan of battery with output of softmax layer overlaid



19 
I Neural network softmax layers are insufficient to
characterize uncertainty outside of the training domain
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o We can use dropout at inference time to approximate uncertainty

Yarin Gal and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning." International Conference on Machine Learning. 2016.



Uncertainty quantification allows us to add error bars to
our deep learning models

Using a deep learning technique called
dropout, we sample segmentation results
from the trained model.

For each pixel, we quantify the level of
uncertainty in our model, and we can
make decisions about the model's
credibility on a particular task.

The trained model has less confidence in
segmentations of inputs that fall outside
of the training distribution.

Work in progress: Use uncertainty maps
to bound variance in geometries of as-
built parts for use in simulations
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CT scan slice ML segmentation
Uncertainty map -
brighter pixel values

indicate higher uncertainty



QUESTIONS?
Sandia Interdisciplinary Machine Learning Research Team

simlr@sandia.gov
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