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Can we predict the behavior of as-built parts with error bars?

Hypothesis: We can develop an automated and credible image-to-mesh technology that can
demonstrate the physics impact of per-unit variability on material, component, or system
performance

Objective: We seek to develop a methodology for
automatically, efficiently, and reproducibly creating
conformal finite element meshes from 3D tomography Uncertainty quantification and propagation

with quantified uncertainty. T -

Research thrusts — primary science questions:  Image segmentation
1. Automatic CT segmentation via Machine Learning (ML) S ahidenuticaton

2. Automatic conformal tetrahedral mesh creation (ATM)
3. Uncertainty quantification and propagation (UQ)

Automatic tetrahedral meshing

¢ Conformal interfaces
e Feature-governed mesh resolution

et Physics solve
* Finite element method predictions
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Using ML to save time and effort while improving accuracy

CT SEGMENTATION




- | CT Segmentation is hard for humans

CT scans must be labeled by component for simulations

https://en.wikipedia.org/wiki/lmage_segmentation

Labeling by hand does not scale

Deep Learning algorithms
° Each voxel must be labeled by material
° Find any defects/anomalies

o Pass this to a usable form for numerical simulations




. | Segmentation is a classic computer vision problem

o Image segmentation 1s well studied
o Small files

° Large training sets

o Volumetric segmentation is different

° Big data

https://www.cityscapes-dataset.com/

> Class imbalance (lots of background) Cityscape (~1e5 pixels)
° Small training sets with “bad” human labels

o Humans can’t label billions of voxels

O Medical researchers are leading this work toward Deep Learning
solutions

Rattlesnake Tail (~1e9 voxels)



, | Automated Segmentation presents challenges

o CT scans are large
o Medical literature: 128x128x64

> Ours: ~1000x larger
> Soon: ~10000x larger

o Class Imbalance

> Empty space often dominates the scan

o Artifacts and noise
o Ditficult to separate materials of similar density

o Shadow effects

Reconstructed volumetric images of rings via computed tomography



. | Mitigating Challenges

o CT scans are large
o Used 240x240x240 chunks of the volume

> Optimized our model for GPU memory usage

o Class Imbalance

> Adjusted loss function that guides training

o Artifacts and noise

> Selected Convolutional Neural Network (CNN)
architecture with strength in shape recognition

Rock with segmented opal veins



. | Deep learning is big data and large networks

“Deep learning is the first class of algorithms that is scalable... performance just keeps getting better
as you feed them more data”

Andrew Ng, Founder of Google Brain
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V-Net architecture for segmenting volumetric data (2016)

We started with a V-Net and made improvements as necessary



) | Deep learning model must learn to identify battery
electrodes after training on human labeled examples

Sllce of 3D Image Human label
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., | Yolumetric battery segmentation achieves high accuracy
compared to human labels

Human label ML prediction
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Extending segmentation model to different battery types seems challenging

12
TRAINING SET
DOMAIN NAME | ACCURACY
E35 0.984
Tesla 0.973
Litarion 0.966
25R6 0.955

Electrode_|_1 0.948
Electrode_Ill_1 | 0.945

GCA400 0.928 " Litarion B Electrode IV 1
Electrode IV_1 | 0.917

Electrode_II_Z 0.902 TEST SET

GCA2000 0.900

Electrode_|_2 | 0.892
Electrode_lll_2 | 0.773
Electrode_IV_3 | 0.748
Electrode_IV_2 | 0.745
Electrode_ll_3 | 0.699
Electrode_lll_3 | 0.668
Mean 0.8714375
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3 _ Inference results in training domain are as expected

Litarion CT scan slice Human label ML prediction

ML segmentation is 96.6% accurate to the human label




y | Inference results outside the training domain are
qualitatively better than accuracy measurements indicate

ML segmentation is 69.9% accurate to the human label...but looks qualitatively better



s | Measuring binary segmentation quality in the absence
of precise labels

VIABILITY SCORE & mean(V;) — mean(V,)

where Vy = {vg |l = 13, Vo = (v |l = 0},
vy is the intensity of voxel k with label [,




Robust ML model is capable of producing segmentations that are

' ¥ qualitatively better than human labels, even outside of the training domain
DOMAIN NAME ACCURACY HUMAN LABEL VIABILITY SCORE ML LABEL VIABILITY SCORE
E35 0.984 1.966 1.945
Tesla 0.973 2.383 2.381
Litarion 0.966 2.105 2.169
25R6 0.955 2.363 2.388
Electrode_|_1 0.948 1.612 1.613
Electrode_ll1_1 0.945 1.676 1.689
GCA400 0.928 1.852 1.876
Electrode_IV_1 0.917 1.473 1.554
Electrode_ll_2 0.902 1.508 1.620
GCA2000 0.900 1.894 1.933
Electrode_|_2 0.892 1.490 1.573
Electrode_ll1_2 0.773 1.001 1.639
Electrode_IV_3 0.748 0.868 1.536
Electrode_IV_2 0.745 0.782 1.546
Electrode_ll_3 0.699 0.500 1.685
Electrode_ll11_3 0.668 0.475 1.635
Mean 0.8714375 1.497 1.799
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http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html

Using dropout to estimate segmentation confidence

UNCERTAINTY QUANTIFICATION

i
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. | How can we understand geometric uncertainties in deep

learning segmentations?
/\

CT scan of battery with output of softmax layer overlaid

-3

08

Ly

dilel



o | Neural network softmax layers are insufficient to
characterize uncertainty outside of the training domain

o Softmax output is not always enough to determine model uncertainty
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o We can use dropout at inference time to approximate uncertainty

Yarin Gal and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning," International Conference on Machine Learning, 2016.



Uncertainty quantification allows us to add error bars to
our deep learning models

Using a deep learning technique called
dropout, we sample segmentation results
from the trained model.

For each pixel, we quantify the level of
uncertainty in our model, and we can
make decisions about the model’s
credibility on a particular task.

The trained model has less confidence in
segmentations of inputs that fall outside
of the training distribution.

Work in progress: Use uncertainty maps
to bound variance in geometries of as-
built parts for use in simulations

In training domain

Uncertainty map -
brighter pixel values
indicate higher uncertainty

Outside training domain



QUESTIONS?

Sandia Interdisciplinary Machine Learning Research Team

simlr@sandia.gov
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