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‘Linking in-situ pyrometry to pores

Challenge and Importance

** Pore formation in the AM process reduces material
strength and quality and is difficult to predict
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Pyrometry monitoring _

+* Stratonics Therma-Viz two-color pyrometer
= CMOS, ~20um/pixel
= 750 & 900nm filters

*» Fixed field, angled side viewing
= FOV: 80 x 65 pixel (1.6 x 1.3mm)
= frame rate: 6-7kHz
= exposure: 90usec

** Challenges

" image resolution & registration with micro-ct data
= emissivity variation —temperature estimation
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‘Classifying outliers (right column)

L 2170 2130
e
(@] Q
5 5
© ©
g g
I £
(0] (0]
[ [
896 971
2393
(O]
ud)
5
©
g
£
(0]
[l
1020
2801 2197
(@] Q
nﬂ) B(D
5 5
© ©
g g
e S
(0] (0]
= [
Ny
1051 L 938
John Mitchell



Processing steps
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Two-color pyrometry
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Tens of thousands of files
Multiple passes

Remove images

 Weak signal

 Laser at image edge
Process smaller set

* Estimate temperatures,
* Contouring
* Ellipse fit
Process plots
Classify images




Estimate temperatures’

2208

Temperature estimate 8 =0.7

933

"Dagel, Daryl, J, et al., Four-color imaging pyrometer for mapping temperatures of
laser-based metal processes, Sandia National Laboratories report SAND2016-3453C.
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Average peak temperature (Celsius)
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Pyrometer data processing

Moving average temperature history by layer
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Raster path observation
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Frequency

‘Pyrometer data processing B
Pool orientation (best fitting ellipse)
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Linking in-situ pyrometry to pores -

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, iR '.v& @ E“ERGY
LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security m__"_._

Administration under contract DE-NA0O003525.
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Linking in-situ pyrometry to pores

Data analytics: Identifying outliers
 Map feature space to unit dimensions
e Clustering via kdtree

 Threshold on number of neighbors
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Linking in-situ pyrometry to pores
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Linking in-situ pyrometry to pores

Outliers correlated with pores by size
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Linking in-situ pyrometry to pores n
|

Pore detection rates with and without outlier qualifications

All Melt Pools (10,598) Outlier Melt Pools (458)
Correlated Pores Detection Rate Correlated Pores Detection Rate
Thresh 0.17, 580 (94%) 0.06 529 (55%) 1.20
Thresh 0.57), 576 (93%) 0.05 356 (37%) 0.78
Thresh 0.77, 560 (91%) 0.05 245 (25%) 0.53

Pore detection rates for outliers is better than luck
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‘ Linking in-situ pyrometry to pores
Pyrometry CT Overlay (pore) with pyrometry I
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Papelusioreen written and submitted (in review)

 Laser powder bed fusion in-situ pyrometry monitoring

* Processed large pyrometry datasets

 Computational strategy for identifying instantaneous |
anomalous conditions from pyrometry (outliers)

 Computer tomography of built parts (pores) ‘
 Demonstrably linked outliers to pores in built parts |
(LPBF of stainless steel)
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