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Background




Why do we care about residual stresses!?

*Hybrid composites are used in many structural applications
" Lamination of fiber composites, metals, plastics, and paints

= Exploit materials strengths, but exhibit pronounced process-induced stresses

"Residual stresses develop due to: der _
erore curindg

= Differences in the curing conditions { 1# layer
= Coetf. of thermal expansion mismatch 2™ layer
= Polymer shrinkage ‘@

After curing

"Residual stresses manifest as: | —

® Physical deformation and warpage

" Interlaminar delamination

"Experimental quantification of residual stresses 1s expensive
"= Validated modeling methods are preferred and can be applied to any structure



How do we quantify residual stresses!?

"Experimental quantification of residual stresses 1s expensive
" Validated modeling methods are preferred and can be applied to any

Structure

*Two common approaches to simulating residual stresses in
composite structures:
*Method 1: Complex — Complete curing process

= At least 45 parameters, several for calibration
" Method 2: Simple — Simplified curing process
= Only 13 parameters, all can be experimentally determined

= Sandia’s selected approach for etficiency and suitability to structures of interest



A Method to Predict Residual Stresses in Hybrid Composites

Experimental Determination of Tgp

=Stress-free temperature experiment

* Indicates when thermal strains should develop Temperature (K)

= Accounts for polymer shrinkage

= Approximated composite curing cycle in two
consecutive simulations

= Simulation Process:

= Composite 1s uncured, compliant, isotropic 140°C

. : . ] i | '
Isothermal heating from ambient to stress-free temperature Rl il Biveralres] G Cylis

= Composite material is “activated” with room temperature, orthotropic
material properties t

Actiual Cure Cycle

Analysis Cure Cycle

"= Isothermal cooling from stress-free temperature to ambient

= Differential thermal strains develop and residual stresses are formed
Rubbery Region

Temperature

Glassy Region

Time



Validation of the Residual Stress Modeling Approach L
. . Asyvmmetric Composite Strip Composite Angle Bracket |
- Four Vahdatlon Challeﬁge pr Oblems Prediction within 2% of mearured Prediction within .‘:"’:j of mearured E

= Relevant materials

= Measurable residual stress driven
deformation

= Industry relevant geometries

*Modeling approach is well validated
and robust
Corpmaite Pale Medsured and Simulabed Displacumeil Data Measured Changa In Cylindar Gap Width with

Bi-Material Plate Bi-Material Split-Rings I
= All predictions were mesh convergent | P . ——— |

and within 10% of measurement N
= Strip/bracket made from different B # L ¥

A
M : f I "Q:‘a
material than plate/rings S —
' 4

= Formal sensitivity studies and UQ were

applied to plate and ring

= What material parameters are most important?

w

Cotiio s P Cogn o Tenpeyamre (G

= How does parameter uncertainty affect

.o *Nelson, 5., Hanson, A, Briges, T, Werner, B, “Verification and Validation of Residual Stresses in
predictions?

Composite Structures;” Composite Structures, v194, p662-673.



Motivation and Objectives

"Motivation:
* Modeling and simulation is increasingly being used to support the qualification of
complex composite parts

= Component level models are too expensive for traditional sampling methods

=Objectives:
= Develop a residual stress case study that will be:

" Low-cost to model — Sensitivity studies will require thousands of simulations

= Reasonable to physically implement — nominal model validation is important

= Complete a survey of common sensitivity analysis methods

= What parameters are critical to the stress predictions?
= Complete a survey of common UQ methods

= What 1s the most efficient validation method for the hybrid composite structures?



Methodology




Validation Experiment

*Bi-material, composite/aluminum strip
= Etficient and low-cost to model

* Process-induced stresses manifest as out-of-
plane warpage/cutling along the strip’s length

"Materials:
= Carbon composite and Aluminum

= Composite co-bonded to aluminum

= E = - = - & i e 3
g L e T ?’p"“‘:‘"‘imt TR AT NN LW
" i .,‘:;‘-:» R sy S
T ya '! " - g -
-

" Measurement procedure:
= Granite table, guarantees flatness

= Digital height gage, £0.01 mm

= Two types strips manufactured and
measured

= Shorter strip for sensitivity study —
11.01mm

= Limited experimental rigor expended, sensitivity
study is not validation

= Longer strip for UQ — 26.41 £ 0.21 mm

5" M
b



Model Geometry and Boundary Conditions

* Aluminum/carbon composite modeled as separate, homogenized
material layers

=Carbon composite layer merged to aluminum layer
= Merging approximates perfect bonding, delamination 1s not modeled

"Boundary conditions:
= Quarter model symmetry conditions assumed for computational efficiency

* Residual stress simulated with simplified method

. Symmetry
~1 Planes
|

Yellow Layer = Carbon Composite
Green Layer = Alummum



Solution Verification, Mesh Optimization, Nominal Model Validation

3 Element Aspect Ratios and 3 Levels of Refinement

"Mesh study considered element size and aspect ratio

= What 1s the largest element providing confident
predictions?

"3 element lengths and 3 aspect ratios
" 9 models processed according to described methods
"= 3 separate mesh studies based on the 3 aspect ratios

"Richardson’s extrapolation estimated “exact’”’ out-of-
plane displacement
= Approximates a higher order estimate of a continuum

Summary ﬂf Mesh Convergence Study Results

A Mesh Predicted Exact
Aspect Run Time {mu.l} i
£ Refinement Deﬂtﬂmn Solution
Ratio [ Solation Cores
Level LATin)

value given discrete solutions — discretization errors i QraEane HJﬂ'-‘ |
=14 Mednun 04:51.7 LL16 11.666
Fine 237/ 77 m:
“Summary of results: Cance %033/1 [E25 S 0
. . . . 122 Medium :d.4,/4 11540 2.2 11.652
= Extrapolated exact solutions do not differ significantly Yo O MR R s
CHrsE ro 2k 22 AT
* 1:4:4 can be used with a reasonable expectation of model accuracy 1:4:4 Medimm 00:40.1/4 10.94 6.5 11.702
Fine 00:59.7/36 1146 21

= Medium, 1:2:2 mesh size offers best combination of
computational efficiency and model accuracy

Representative Deformation Prediction

= J.owest discretization error with fewer than 36 solution cores

= Exact solution and shape of deformation agree well enough with
experiment to satisfy physics




Overview of Completed Surveys

"What is the most computational efficient validation procedure?
= Sensitivity study and UQ

Sensitivity Study Parameter Space

p . Minimum | Maximum
S ARREEE Value Value

=Six sensitivity study methods were examined:

= Parameter study (centered parameter study(CPS)) i (GPg) 21 102
. ) ] E,, (GPa) 6.5 69.0
" Design of Experiments (Box-Behnken Design (BBD)) E,, (GPa) T 94
= Sampling Methods (Monte Carlo (MC), Latin HyperCube (LHS)) Viz 0.043 0.053
= Surrogate Methods (Gaussian process (GP), Polynomial Chaos Y13 g;’g gﬁg
Expansion (PCE)) v23 =20 :
Gy, (GP2) 31 38
"Four UQ methods were examined: Composite G5 (GF) 2.9 3.6
. . : G,; (GPa) 29 3.6
= Sampling Methods (Monte Carlo, Latin HyperCube) Properties T, C0) T T
® Surrogate Methods (Gaussian process, Polynomial Chaos Tj. (°C) 140.6 146.1

Expansion) CTE,, (1/°C, rubbery)  0.294e-6  1.913e-6
CTE,, (1/°C, rubbery)  0.357e-6  2.794e-6
CTE;; (1/°C, rubbery)  268.1e-6  290.9¢-6
CTE, (1/°C, glassy)  3.060e-6  3.708¢-6
CTE,; (1/°C, glassy)  2.585¢-6  4.165¢-6

" Approach to completing the survey:
= Step 1: Define parameter space

* Nominal values * 3 standard deviations or = percentage of the nominal

= Step 2: Complete sensitivity studies with the six methods 33E(1£$; )ghﬁﬂ?) 67;?;-6 ?{;?Z_G

= Step 3: Complete N-way ANOVA to find critical parameter list I v 0.264 0.396
roperaes

= Step 4: Complete UQ with the four methods £ CTE (1/°C) 18.7e-6 28.1e-6

= Step 5: Calculate means, standard deviations from distribution of
predictions







Comparison of Sensitivity Analysis Methods

=Surrogate methods require the fewest samples
for a converged list of critical parameters

=Sampling methods are the least efficient
approaches — 4-8x more expensive than
surrogate methods

= Simple to implement without access to DAKOTA

*BBD 1s more efficient than the sampling
methods, but twice as expensive as the
surrogate methods

= Can be implemented without access to DAKOTA

=CPS provides a reasonable critical parameters
list at a low number of samples, but seems to
omit some of the less influential critical
parameters

= Should be considered when a measure of sensitivity
is required, but only a handful of samples are
computationally affordable

Sumrnar‘_v of Sensitivit}f Study Survey

Method

Sample # Ey

Model Parameaters

Ez:len Wiz | Waa | Ve | Gaa| Gia | Gr a1s|Bass [@aae| Baan Baan | @ | Tp Tar | B | wa [a

CP5

121

ML

1f6

452

704
1408
2816
obdd

LHS

176
352

1408
2816

LKl

761

PCF

168
336
GL72

Gp

164
336
Gi2

i



Comparison of UQ Methods

=Surrogate methods require the fewest
samples for a converged mean prediction
" Means converged at (n+1) samples

= Standard deviations converge at 4(n+1) samples

=Sampling methods are the least efficient
approaches

= LHS requires 4x as many samples for a
converged mean and >32x as many samples for
a converged standard deviation

= MC is not yet converged at 16x as many samples

"Converged predictions: 25.2 mm * 1.32
mm

* Prediction is within one standard deviation of
measurement (26.41 * 0.21 mm)!

Mean - Strip Center Deflection (mm]

Standard Deviaiton - Strip Center Deflection {mrm)

Summary of UQ Methods Survey
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Final Summary and Conclusions

"Residual stresses must be considered when designing composite parts
= Finite element simulation of residual stresses are preferred to experimental measurement for complex structures

= Sandia’s process modeling approach has been well validated through collaboration with the AFRL

=A survey of DAKOTA’s senstitivity and UQ capabilities was completed to find a validation
procedure well suited to component qualification
= What is the ideal sensitivity study approach?

= Surrogates demonstrated the best computational efficiency

= CPS should be used if a measure of sensitivity is needed for a expensive model

= What is the ideal UQ approach?

= Surrogates demonstrated the best computational efficiency

= 4(n+1) samples appear to be sufficient for a surrogate converged for both mean and standard deviation predictions

= Convergence must be checked!

*This approach can be applied generally when considering residual stress development in
thin-walled composite structures
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20 I Parameter Study Method: Centered Parameter Study (CPS)

"One parameter study method was selected for consideration — CPS
= DAKOTA also has multi-dimensional and vector parameter studies

= CPS 1s cheapest, quantifies relationships between multiple model inputs and Samples Required for CPS:
the simulated response (n=dimensions, s=steps)
"General CPS approach: “One-at-a-Time” Samplescps = 1 + 2 2 ng
= Step 1: Define the parameter space and an initial value set i=1

= Step 2: Process a simulation with the initial value set

= Step 3: For each parameter, process simulations at s steps * the initial value. Values for all other

model parameters held constant. Sample 2-Dimensional CPS

Parameter Space

= Step 4: Apply the ANOVA to the ensemble of predictions to determine the critical parameter
list

4 Parameter 1

"Bi-material strip CPS process:

= Step 1: 20-dimensional parameter space, initial values defined by nominal properties

Step 2: Simulation processed with nominal material properties

Step 3: Starting with s=1 and step size= (max value — nominal value) /s, independently process
simulations along each dimension.

Step 4: ANOVA applied to resulting 41 predictions to generate critical parameter list

Step 5: Repeat steps 3-4 with incrementally increasing s until critical parameter list is converged > Parameter 2
® Indicates a sample



21 I Design of Experiments: Box-Behnken Design (BBD)

*"One DOE method was selected for consideration — BBD

* BBD does not sample outside of parameter space, requires
fewer samples than other DOE methods

*General BBD approach:
= Step 1: Detine the parameter space with minimum, maximum, mean values

= Step 2: Parameter combinations are created at the center and midpoints of the
process space edges.

= Step 3: A simulation is processed at each parameter combination

= Step 4: Apply the ANOVA to the ensemble of predictions to determine the
critical parameter list

“Bi-material strip BBD process:
= Step 1: 20-dimensional parameter space
= Step 2: BBD specified 761 parameter combinations
= Step 3: 761 simulations were processed

= Step 4: ANOVA applied to resulting 761 predictions to generate critical

parameter list

Samples Required for BBD:

(k=number of parameters)

Samplesggp = 1+ 2k(k — 1)

Sample 3-Dimensional BBD
Parameter Space

Parameter 1
F 3

» Parameter 2

f//‘.'// /. » Parameter 3
o]
P

® [ndicates a sample




22 I Sampling Methods: Monte Carlo (MC)

“Two sampling methods were considered — MC and LHS
= MC is simple and easy to implement with any deterministic FE code

= LHS is more complex, but provides better parameter space coverage with fewer samples

"Monte Carlo (MC)
= Completely random sampling
= No guarantee that any number of samples will cover parameter space
= Convergence is assured, but a prohibitive number of samples may be required
= General approach:
= Step 1: Define the parameter space with minimum, maximum values
= Step 2: Define the desired number of samples, N
= Step 3: Process IN simulations
= Step 4: Apply the ANOVA to the N predictions to determine the critical parameter list
= Bi-material strip MC process:

= Step 1: 20-dimensional parameter space

Step 2: Initial samples size = 22, or #+2

Step 3: Process 22 simulations

Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list

Step 5: Repeat steps 2-4 with incrementally increasing N until critical parameter list is converged



23 I Sampling Methods: Latin HyperCube Sampling (LHYS)

=Latin HyperCube Sampling (LHS)
= Stratified sampling technique

= If N samples are desired, each parameter space dimension is divided into N segments of

equal probability

= Relative length of segments governed by probability distributions Sample 2-Dimensional LHS
= N samples placed throughout parameter space grid — Owne, and only one, sample can be placed T — Space

in each bin P

(2 parameters and 4 samples)
= Better coverage of parameter space!

= General approach: 3, MR |
= Step 1: Define the parameter space and probability distributions for each parameter
= Step 2: Define the desired number of samples, [N — Stratify parameter space *
= Step 3: Process NN stratified simulations °

= Step 4: Apply the ANOVA to determine the critical parameter list

= Bi-material strip LHS process:

Step 1: 20-dimensional parameter space, uniform distributions for all parameters °

» Parameter 2

Mniti oo 0 _
Step 2: Initial samples size = 22, or n+2 ® Ddicates agmle

Step 3: Process 22 simulations

Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list

Step 5: Repeat steps 2-4 with incrementally increasing IN until critical parameter list 1s
converged



24 | Surrogate Methods: Polynomial Chaos Expansion (PCE)

“Two surrogate methods were considered — PCE and GP

"General surrogate model approach:

= Minimally sample the parameter space to find a numerical function defining the relationship between the desired model
output and the design variables

= Sample the surrogate model 1000’ of time at negligible cost

"Polynomial Chaos Expansion (PCE) — Stochastic expansion method
= Multivariate orthogonal polynomials build the functional relationship between a response function and its random inputs
* Polynomials are tailored to the specific input parameter distribution types — Legendre polynomial represent uniform distributions
= Polynomial coefficients found through regression

= LHS samples of the parameter space build a response function set that is fit with polynomials of varying order — Cross-validation
determines best polynomial order

" General Approach: = Bi-Material Strip PCE process:
= Step 1: Define the parameter space and probability distributions for each = Step 1: 20-dimensional parameter space, uniform distributions for all
parameter parameters
= Step 2: Define the desired number of LHS samples (IN), stratify parameter = Step 2: Initial samples size = 21, or #+7 — response function set size = 21

space, process N stratified simulations = Step 4: PCE surrogate built considering polynomial orders 1-5

= Step 4: Build the PCE surrogate using cross-validation to determine the best

pol ol order = Step 5: 10000 samples were taken of the PCE surrogate
olynomial orde

= Step 6: ANOVA applied Iting 10000 predicti itical
= Step 5: Sample the surrogate model 1000’s of times tep - apphied to resuiung predictions to generate crifica

parameter list
= Step 6: Apply the ANOVA to the surrogate samples to determine the critical

pamsmerer Tst = Step 7: Repeat steps 2-6 with incrementally increasing [N until critical

parameter list is converged



25 | Surrogate Methods: Gaussian Process (GP)

"Gaussian Process (GP)
= All finite dimensional distributions must have a multivariate normal, or Gaussian, distribution

= Example: Given a stochastic process, X, that is a function of the variables within a set T, for any choice of distinct values of T, the
corresponding vector X must have a multivariate normal distribution

= Normal distribution can be described by the finite dimensional distribution’s mean and covariance functions — the Gaussian
distribution is defined

"General Approach:
= Step 1: Define the parameter space and probability distributions for each parameter

Step 2: Define the desired number of LHS samples (IN), stratify parameter space, process [N stratified simulations

Step 4: Assume response function set adheres to a Gaussian distribution and build the GP surrogate

Step 5: Sample the surrogate model 1000’ of times

Step 6: Apply the ANOVA to the surrogate samples to determine the critical parameter list

=Bi-Material Strip GP process:

= Step 1: 20-dimensional parameter space, uniform distributions for all parameters

Step 2: Initial samples size = 21, or »+7 — initial response function set size = 21

Step 4: GP surrogate was built

Step 5: 10000 samples were taken of the GP surrogate

Step 6: ANOVA applied to resulting 10000 predictions to generate critical parameter list

Step 7: Repeat steps 2-6 with incrementally increasing N until critical parameter list is converged



26 I Material Parameter Criticality

“Summary of critical parameters: PCE Sobol Indices
= All methods selected as critical: E;y, Ep, oyy G, 011 p, Ty, Ty B, 0y Sobol Index |
* In-plane mechanical/thermal properties of CFRP and aluminum properties should be critical 98.003763%
* Residual stress development governed by in-plane CFRP/Al contraction mismatch 1.091548%
* T, and T; should be critical 0.363556%
= T indicates when residual stresses begin to develop 0.354474%
0.059520%
= T, governs rate of stress development
N 0.056149%
= All methods, except CPS, selected as critical: v, oy, g 0.027971%
= All methods, except CPS and BBD, selected as critical: vy, 0.001954%
0.000305%
= Only surrogate methods selected: oy, g -
_ s 0.000301%
" Vip %G VA Oppr May be less influential 0.000295%
: g " 0.000018%
=]

PCE surrogate can determine Sobol indices S D0
= Sensitivity indices —> rank critical parameters by relative influence 0.000000%
= Parameters selected by some, but not all, methods as critical of the lowest indices LULLDLL G

. - . 0.000000%

" The most significant indices govern the development of thermal strains 0.000000%
" o, 1s most significant by a large margin 0.000000%
* In-plane CTE of CFRP < CTE of aluminum — aluminum thermal contractions drive residual stress 0.000000%
development 0.000000%




