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I Why do we care about residual stresses?
-Hybrid composites are used in many structural applications
• Lamination of fiber composites, metals, plastics, and paints

• Exploit materials strengths, but exhibit pronounced process-induced stresses

oResidual stresses develop due to:
• Differences in the curing conditions

• Coeff. of thermal expansion mismatch

• Polymer shrinkage

oResidual stresses manifest as:
• Physical deformation and warpage

• Interlaminar delamination

Before curing
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After curing

oExperimental quantification of residual stresses is expensive
• Validated modeling methods are preferred and can be applied to any structure
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I How do we quantify residual stresses?

oExperimental quantification of residual stresses is expensive
•Validated modeling methods are preferred and can be applied to any
structure

oTwo common approaches to simulating residual stresses in
composite structures:
• Method 1: Complex —> Complete curing process
• At least 45 parameters, several for calibration

• Method 2: Simple —> Simplified curing process
I Only 13 parameters, all can be experimentally determined

• Sandia's selected approach for efficiency and suitability to structures of interest



A Method to Predict Residual Stresses in Hybrid Composites
Experimental Determination of TsF

oStress-free temp erature experiment
• Indicates when thermal strains should develop

• Accounts for polymer shrinkage

oApproximated composite curing cycle in two
consecutive simulations
• Simulation Process:
• Composite is uncured, compliant, isotropic

• Isothermal heating from ambient to stress-free temperature

• Composite material is "activated" with room temperature, orthotropic
material properties

• Isothermal cooling from stress-free temperature to ambient

• Differential thermal strains develop and residual stresses are formed

•
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oFour validation challenge problems
• Relevant materials

• Measurable residual stress driven
deformation

• Industry relevant geometries

oModeling approach is well validated
and robust

All predictions were mesh convergent
and within 10% of measurement

• Strip/bracket made from different
material than plate/rings

• Formal sensitivity studies and UQ were
applied to plate and ring
• What material parameters are most important?

• How does parameter uncertainty affect
predictions?

Validation of the Residual Stress Modeling Approach
Asymmetric Cornposite Strip
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I Motivation and Objectives

Motivation:
- Modeling and simulation is increasingly being used to support the qualification of
complex composite parts

• Component level models are too expensive for traditional sampling methods

°Objectives:
• Develop a residual stress case study that will be:
• Low-cost to model —> Sensitivity studies will require thousands of simulations

• Reasonable to physically implement —> nominal model validation is important

• Complete a survey of common sensitivity analysis methods
• What parameters are critical to the stress predictions?

• Complete a survey of common UQ methods

• What is the most efficient validation method for the hybrid composite structures?
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Validation Experiment

mBi-material, compo site / aluminum strip
Efficient and low-cost to model

• Process-induced stresses manifest as out-of-
plane warpage/curling along the strip's length

°Materials:
• Carbon composite and Aluminum

• Composite co-bonded to aluminum

• Measurement procedure:
• Granite table, guarantees flatness
• Digital height gage, ±0.01 mm

- Two types strips manufactured and
measured
• Shorter strip for sensitivity study —>
11.01mm
• Limited experimental rigor expended, sensitivity

study is not validation

• Longer strip for UQ —> 26.41 ± 0.21 mm



Model Geometry and Boundary Conditions

oAluminum/carbon composite modeled as separate, homogenized
material layers

oCarbon composite layer merged to aluminum layer
• Merging approximates perfect bonding, delamination is not modeled

oBoundary conditions:
• Quarter model symmetry conditions assumed for computational efficiency

• Residual stress simulated with simplified method
Synonetty

Planes

Yellow Layer = Carbon Conwsite
Green Laycr — Aluminum



Solution Verification, Mesh Optimization, Nominal Model Validation

oMesh study considered element size and aspect ratio
• What is the largest element providing confident

predictions?

•3 element lengths and 3 aspect ratios
• 9 models processed according to described methods

• 3 separate mesh studies based on the 3 aspect ratios

oRichardson's extrapolation estimated "exact" out-of-
plane displacement
• Approximates a higher order estimate of a continuum

value given discrete solutions —> discretization errors

oSummary of results:
• Extrapolated exact solutions do not differ significantly
• 1:4:4 can be used with a reasonable expectation of model accuracy

• Medium, 1:2:2 mesh size offers best combination of
computational efficiency and model accuracy
• Lowest discretization error with fewer than 36 solution cores

• Exact solution and shape of deformation agree well enough with
experiment to satisfy physics

3 Element Aspect Ratios and 3 Levels of Refinement

Aspect

Ratio

1:1A.

l!4:4

Summary of Mesh Convergence Study Results

M nib
Refiurinrcil

Level

Run Timp (min}

/Solution Cores

Prpišictes1

L.14.3/ I Fun
(11131.'14 [1.1.6
2+32.7/36 11.77

0031711 1175

03404.-1/4 11.90

103-243) 36 11_71

013t252/1 933

C0-44.1. '4 10_94
01)-39.' 36 1 L46

Error

'1%)

Representative Deformation Pr edictio n

1 l,666

1/.702



Overview of Completed Surveys

oWhat is the most computational efficient validation procedure?
• Sensitivity study and UQ

■Six sensitivity study methods were examined:
• Parameter study (centered parameter study(CPS))

• Design of Experiments (Box-Behnken Design (BBD))

• Sampling Methods (Monte Carlo (MC), Latin HyperCube (LHS))

• Surrogate Methods (Gaussian process (GP), Polynomial Chaos
Expansion (PCE))

oFour UQ methods were examined:
• Sampling Methods (Monte Carlo, Latin HyperCube)

• Surrogate Methods (Gaussian process, Polynomial Chaos
Expansion)

oApproach to completing the survey:
• Step 1: Define parameter space

• Nominal values ± 3 standard deviations or ± percentage of the nominal

Step 2: Complete sensitivity studies with the six methods

Step 3: Complete N-way ANOVA to find critical parameter list

- Step 4: Complete UQ with the four methods

• Step 5: Calculate means, standard deviations from distribution of
predictions

Sensitivity Study Parameter Space 

Parameter
Minimum

Value

Maximum

Value

Cornposite

Properties

(GPa) 57_5 70_2

E22 (GPa) 56_5 69_0

E33 (GPa) 7.7 9_4

v12 0_043 0_053

v13 0_367 0_449

v23 0_367 0_448

G.12 (GPa) 3.1 3_8
G13 (GPa) 2.9 3_6

G23 (GPa) 2.9 3_6

Tg (DC)

T5f

110_9

140_6

0.2.94e-6
0.357e-6

268.1e-6

3.060e-6

2..585e-6

67.8e-6
57_0

141.8

146.1

1.913e-6CI h11 (1M, rubbery)
2.794e-61E22 (1/°C., rubbery)

290.9e-6CIE.33 (1/°C., rubbery)

3.708e-6crE11 (1/13C, glassy)

4.165e-6CT.E22 (11°C, ghssy)

76_5e-6CrE33 (11°C, gkssy)
E (G-P2)

Athniinum

Properties

85.6

V 0_264 0_396

18.7e-6 28_1e-6C (1/°C)
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Comparison of Sensitivity Analysis Methods

•Surrogate methods require the fewest samples
for a converged list of critical parameters 

Summary of Sensitivity Study Survey

•Sampling methods are the least efficient
approaches —> 4-8x more expensive than
surrogate methods
• Simple to implement without access to DAKOTA

EBBD is more efficient than the sampling
methods, but twice as expensive as the
surrogate methods
• Can be implemented without access to DAKOTA

•CPS provides a reasonable critical parameters
list at a low number of samples, but seems to
omit some of the less influential critical
parameters
• Should be considered when a measure of sensitivity

is required, but only a handful of samples are
computationally affordable

Method .Som . lc ii El- E22 EH. V12 V13 VD G12 GiN

Moils' Parameters

G.  al • C1.22. a %% , 12 L1.R ' R RN T. Tcr Can vai am

41 ■ 1 r
._ PS 81

1?1
M -

22 _

_

1

MC

74D

3b2 ■ 111

[

701
_

1408 1 Edbald M
3.1 I ■

”

44

,klt
a.

El
176

. NS
25?
704 I ■] 4(1 8 A1.1.. -

. i I : if. l 1.

PC1
IL.6

-

MI
am i I
G.72 m
21 ■ b
42

GP
2.4

168

336 Mg l
L :'e

1



Comparison of UQ Methods

oSurrogate methods require the fewest
samples for a converged mean prediction
• Means converged at (n+1) samples

• Standard deviations converge at 4(n+1) samples

oSampling methods are the least efficient
approaches
• LHS requires 4x as many samples for a
converged mean and >32x as many samples for
a converged standard deviation

• MC is not yet converged at 16x as many samples

•Converged predictions: 25.2 mm ± 1.32
mm
• Prediction is within one standard deviation of
measurement (26.41 ± 0.21 mm)!

Sutnmary of UQ Methods Survey
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I Final Summary and Conclusions

■Residual stresses must be considered when designing composite parts
■ Finite element simulation of residual stresses are preferred to experimental measurement for complex structures

■ Sandia's process modeling approach has been well validated through collaboration with the AFRL

■A survey of DAKOTA's sensitivity and UQ capabilities was completed to find a validation
procedure well suited to component qualification

■ What is the ideal sensitivity study approach?

■ Surrogates demonstrated the best computational efficiency

- CPS should be used if a measure of sensitivity is needed for a expensive model

What is the ideal UQ approach?

■ Surrogates demonstrated the best computational efficiency

■ 4(n+1) samples appear to be sufficient for a surrogate converged for both mean and standard deviation predictions

■ Convergence must be checked!

■This approach can be applied generally when considering residual stress development in
thin-walled composite structures
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20 I Parameter Study Method: Centered Parameter Study (CPS)

• One parameter study method was selected for consideration —> CPS
• DAKOTA also has multi-dimensional and vector parameter studies

• CPS is cheapest, quantifies relationships between multiple model inputs and
the simulated response

• General CPS approach: "One-at-a-Time"
• Step 1: Define the parameter space and an initial value set

• Step 2: Process a simulation with the initial value set

• Step 3: For each parameter, process simulations at s steps ± the initial value. Values for all other
model parameters held constant.

• Step 4: Apply the ANOVA to the ensemble of predictions to determine the critical parameter
list

oBi-material strip CPS process:
• Step 1: 20-dimensional parameter space, initial values defined by nominal properties

• Step 2: Simulation processed with nominal material properties

• Step 3: Starting with s=1 and step size= (max value — nominal value)/s, independently process
simulations along each dimension.

• Step 4: ANOVA applied to resulting 41 predictions to generate critical parameter list

• Step 5: Repeat steps 3-4 with incrementally increasing s until critical parameter list is converged

Samples Required for CPS: 
(n=dimensions, s=steps) s

Samples cps = 1 + 2 1 ns
i=i_

Sample 2-Dimensional CPS
Parameter Space 

Parameter 1

•

•

• • • •

•

•

• Indicates a sample

 ► Parameter 2



21 I Design of Experiments: Box-Behnken Design (BBD)

•One DOE method was selected for consideration —> BBD

BBD does not sample outside of parameter space, requires
fewer samples than other DOE methods

General BBD approach:
Step 1: Define the parameter space with minimum, maximum, mean values

Step 2: Parameter combinations are created at the center and midpoints of the
process space edges.

• Step 3: A simulation is processed at each parameter combination

• Step 4: Apply the ANOVA to the ensemble of predictions to determine the
critical parameter list

•Bi-material strip BBD process:
1 Step 1: 20-dimensional parameter space

• Step 2: BBD specified 761 parameter combinations

• Step 3: 761 simulations were processed

• Step 4: ANOVA applied to resulting 761 predictions to generate critical
parameter list

Samples Required for BBD: 
(k=number of parameters)

SamplesBBD = 1 + 2k(k — 1)

Sample 3-Dimensional BBD 

Parameter Space 

Parameter 1

Paratneter 3

• Indicates a sample



22 1 Sampling Methods: Monte Carlo (MC)

•Two sampling methods were considered —> MC and LHS
• MC is simple and easy to implement with any deterministic FE code

LHS is more complex, but provides better parameter space coverage with fewer samples

Monte Carlo (MC)
Completely random sampling
No guarantee that any number of samples will cover parameter space

Convergence is assured, but a prohibitive number of samples may be required

• General approach:
• Step 1: Define the parameter space with minimum, maximum values

• Step 2: Define the desired number of samples, N

- Step 3: Process N simulations

Step 4: Apply the ANOVA to the N predictions to determine the critical parameter list

• Bi-material strip MC process:
• Step 1: 20-dimensional parameter space

• Step 2: Initial samples size = 22, or n+2

• Step 3: Process 22 simulations

• Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list

Step 5: Repeat steps 2-4 with incrementally increasing N until critical parameter list is converged



23 Sampling Methods: Latin HyperCube Sampling (LHS)

°Latin HyperCube Sampling (LHS)
• Stratified sampling technique
• If N samples are desired, each parameter space dimension is divided into N segments of

equal probability

• Relative length of segments governed by probability distributions

• N samples placed throughout parameter space grid —> One, and only one, sample can be placed
in each bin

• Better coverage of parameter space!

• General approach:
• Step 1: Define the parameter space and probability distributions for each parameter

• Step 2: Define the desired number of samples, N —> Stratify parameter space

• Step 3: Process N stratified simulations

• Step 4: Apply the ANOVA to determine the critical parameter list

• Bi-material strip LHS process:
• Step 1: 20-dimensional parameter space, uniform distributions for all parameters

• Step 2: Initial samples size = 22, or n+2

• Step 3: Process 22 simulations

• Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list

• Step 5: Repeat steps 2-4 with incrementally increasing N until critical parameter list is
converged

Sample 2-Dimensional LHS

Parameter Space 
(2 parameters and 4 samples)

Parameter 1
A

e

•

e

is

• Indicates a sample

 ...

•

Parameter 2



24 Surrogate Methods: Polynomial Chaos Expansion (PCE)

oTwo surrogate methods were considered —> PCE and GP

oGeneral surrogate model approach:
• Minimally sample the parameter space to find a numerical function defining the relationship between the desired model

output and the design variables

• Sample the surrogate model 1000's of time at negligible cost

oPolynomial Chaos Expansion (PCE) —> Stochastic expansion method
• Multivariate orthogonal polynomials build the functional relationship between a response function and its random inputs

• Polynomials are tailored to the specific input parameter distribution types —> Legendre polynomial represent uniform distributions

• Polynomial coefficients found through regression

• LHS samples of the parameter space build a response function set that is fit with polynomials of varying order —> Cross-validation
determines best polynomial order

• General Approach:

• Step 1: Define the parameter space and probability distributions for each
parameter

• Step 2: Define the desired number of LHS samples (N), stratify parameter
space, process N stratified simulations

• Step 4: Build the PCE surrogate using cross-validation to determine the best
polynomial order

• Step 5: Sample the surrogate model 1000's of times

• Step 6: Apply the ANOVA to the surrogate samples to determine the critical
parameter list

• Bi-Material Strip PCE process:

• Step 1: 20-dimensional parameter space, uniform distributions for all
parameters

• Step 2: Initial samples size = 21, or n+1 —> response function set size = 21

• Step 4: PCE surrogate built considering polynomial orders 1-5

• Step 5: 10000 samples were taken of the PCE surrogate

• Step 6: ANOVA applied to resulting 10000 predictions to generate critical
parameter list

• Step 7: Repeat steps 2-6 with incrementally increasing N until critical
parameter list is converged



25 I Surrogate Methods: Gaussian Process (GP)

oGaussian Process (GP)
• All finite dimensional distributions must have a multivariate normal, or Gaussian, distribution
• Example: Given a stochastic process, X, that is a function of the variables within a set T, for any choice of distinct values of T, the

corresponding vector Xmust have a multivariate normal distribution

• Normal distribution can be described by the finite dimensional distribution's mean and covariance functions —> the Gaussian
distribution is defined

oGeneral Approach:
• Step 1: Define the parameter space and probability distributions for each parameter

• Step 2: Define the desired number of LHS samples (N), stratify parameter space, process N stratified simulations

• Step 4: Assume response function set adheres to a Gaussian distribution and build the GP surrogate

• Step 5: Sample the surrogate model 1000's of times

• Step 6: Apply the ANOVA to the surrogate samples to determine the critical parameter list

oEd-Material Strip GP process:
• Step 1: 20-dimensional parameter space, uniform distributions for all parameters

• Step 2: Initial samples size = 21, or n+1 —> initial response function set size = 21

• Step 4: GP surrogate was built

• Step 5: 10000 samples were taken of the GP surrogate

• Step 6: ANOVA applied to resulting 10000 predictions to generate critical parameter list

• Step 7: Repeat steps 2-6 with incrementally increasing N until critical parameter list is converged



26 Material Parameter Criticality

°Summary of critical parameters:

• All methods selected as critical: E11, E22, °C11,G, (X11,R, Tg, Tsf, EA1, (XA1
• In-plane mechanical/thermal properties of CFRP and aluminum properties should be critical

• Residual stress development governed by in-plane CFRP/A1 contraction mismatch

• Tg and Ts f should be critical

• Ts f indicates when residual stresses begin to develop

• Tg governs rate of stress development

• All methods, except CPS, selected as critical: v12 ,K22,G
All methods, except CPS and BBD, selected as critical: v

• Only surrogate methods selected: 0C22,R

m v12 , C(22,G3 vA13 C(22,R may be less influential

PC1-4, surrogate can determine Sobol indices

Sensitivity indices —> rank critical parameters by relative influence

• Parameters selected by some, but not all, methods as critical of the lowest indices

• The most significant indices govern the development of thermal strains

• ocAl is most significant by a large margin

• In-plane CTE of CFRP « CTE of aluminum —> aluminum thermal contractions drive residual stress
development

PCE Sobol Indices

Parameter Sobol Index

T.

111 R

E11

=EMI

Al

v13

E33

133 R

623

G

MR=

98.003763%

L091548%

0.363556%

0.354474%

0-059520%

0.056149°A

0.027971%

aco1954%
0.000305%

0.000301%

0-000295%

0.000018%

0.0000OCKYO

.00000VA,

0,00000Mo

0.000000%

0-000000D

0.000000°,

0.000000%

0.000000°A


