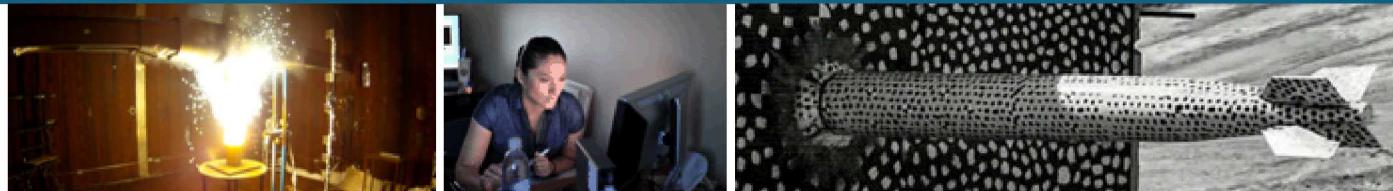


Survey of DAKOTA's V&V Capabilities in the Simulation of Residual Stresses in a Simple Composite Structure



Stacy Nelson and Alexander Hanson

Sandia National Laboratories, Livermore, CA

15th U.S. National Congress on Computational Mechanics
July 28-August 1, 2019, Austin, TX

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Presentation Outline

- Background

- Why do we care about residual stresses?
- How are residual stresses modeled?
- Motivation and objectives for this study

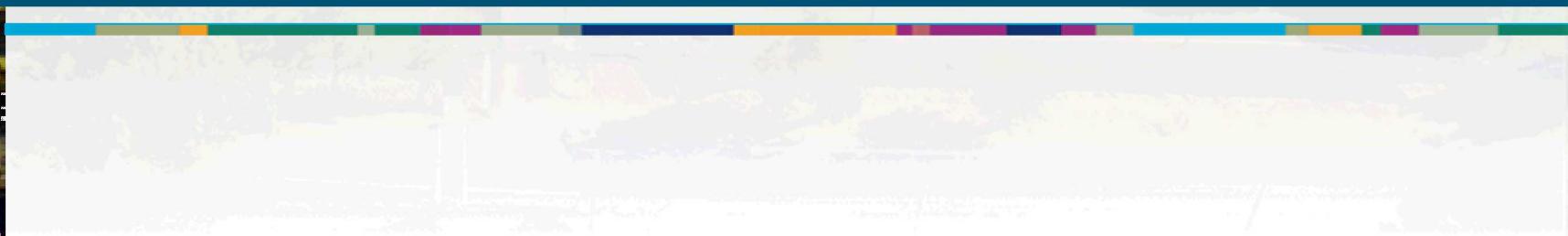
- Methodology - What is an efficient validation procedure for process-induced stresses?

- Validation Experiments
- Finite Element Methods
- Solution Verification and Mesh Optimization
- Survey of DAKOTA's Validation Methods

- Conclusions

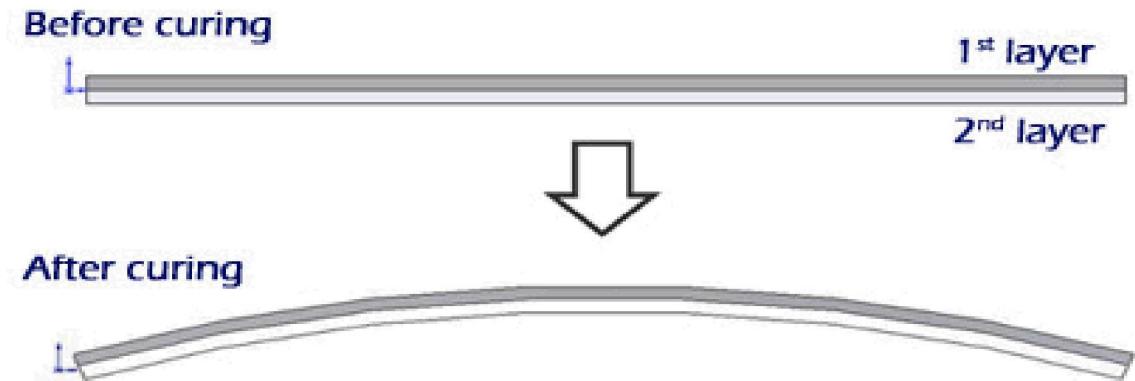
- Summary of results
- Ideal validation approach

Background



Why do we care about residual stresses?

- Hybrid composites are used in many structural applications
 - Lamination of fiber composites, metals, plastics, and paints
 - Exploit materials strengths, but exhibit pronounced process-induced stresses
- Residual stresses develop due to:
 - Differences in the curing conditions
 - Coeff. of thermal expansion mismatch
 - Polymer shrinkage
- Residual stresses manifest as:
 - Physical deformation and warpage
 - Interlaminar delamination
- Experimental quantification of residual stresses is expensive
 - Validated modeling methods are preferred and can be applied to any structure



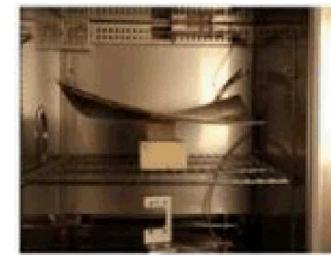
How do we quantify residual stresses?

- Experimental quantification of residual stresses is expensive
 - Validated modeling methods are preferred and can be applied to any structure
- Two common approaches to simulating residual stresses in composite structures:
 - Method 1: Complex → Complete curing process
 - At least 45 parameters, several for calibration
 - Method 2: Simple → Simplified curing process
 - Only 13 parameters, all can be experimentally determined
 - Sandia's selected approach for efficiency and suitability to structures of interest

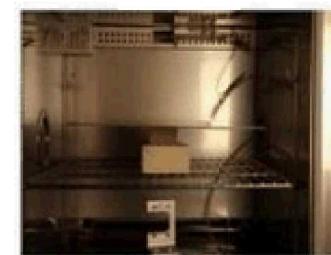
A Method to Predict Residual Stresses in Hybrid Composites

- Stress-free temperature experiment
 - Indicates when thermal strains should develop
 - Accounts for polymer shrinkage
- Approximated composite curing cycle in two consecutive simulations
 - Simulation Process:
 - Composite is uncured, compliant, isotropic
 - Isothermal heating from ambient to stress-free temperature
 - Composite material is “activated” with room temperature, orthotropic material properties
 - Isothermal cooling from stress-free temperature to ambient
 - Differential thermal strains develop and residual stresses are formed

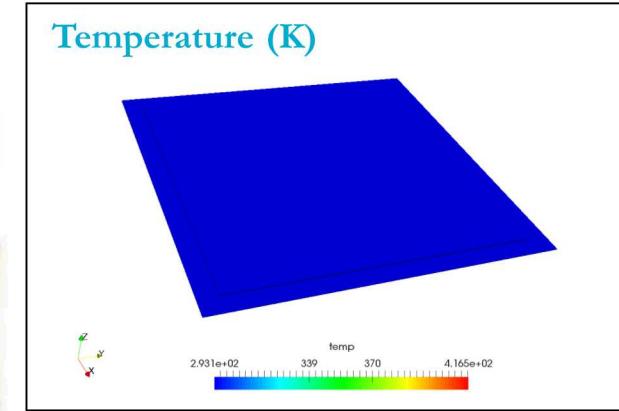
Experimental Determination of T_{SF}



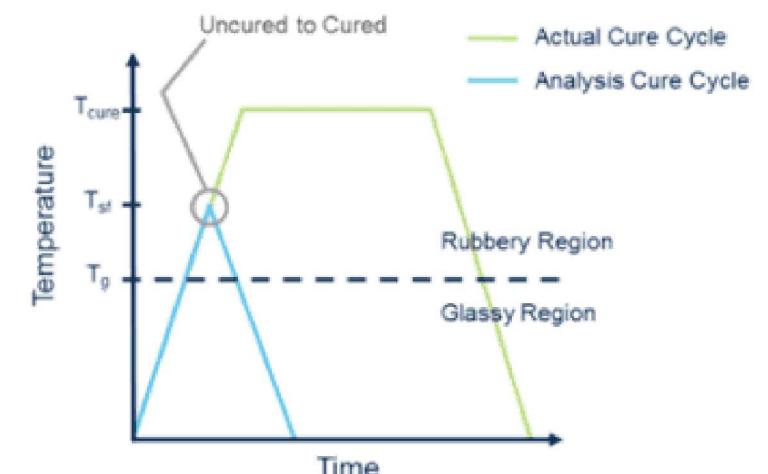
50°C



140°C



Real and Simulated Curing Cycles

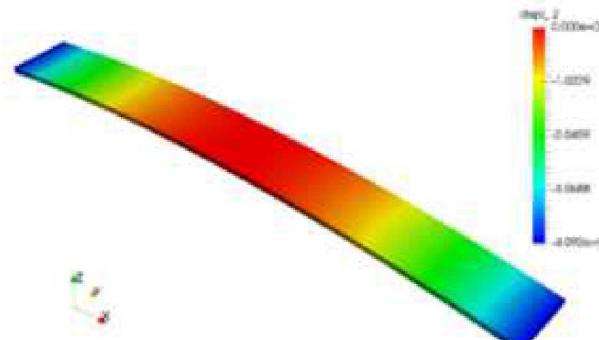


Validation of the Residual Stress Modeling Approach

- Four validation challenge problems
 - Relevant materials
 - Measurable residual stress driven deformation
 - Industry relevant geometries
- Modeling approach is well validated and robust
 - All predictions were mesh convergent and within 10% of measurement
 - Strip/bracket made from different material than plate/rings
 - Formal sensitivity studies and UQ were applied to plate and ring
 - What material parameters are most important?
 - How does parameter uncertainty affect predictions?

Asymmetric Composite Strip

Prediction within 2% of measured

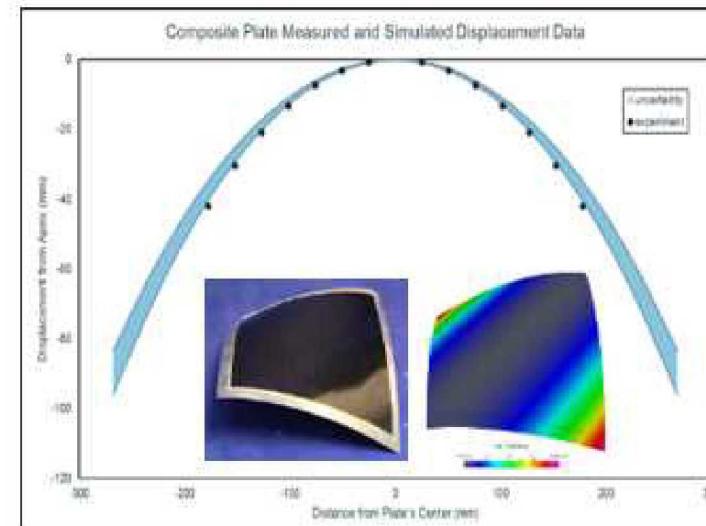


Composite Angle Bracket

Prediction within 8% of measured

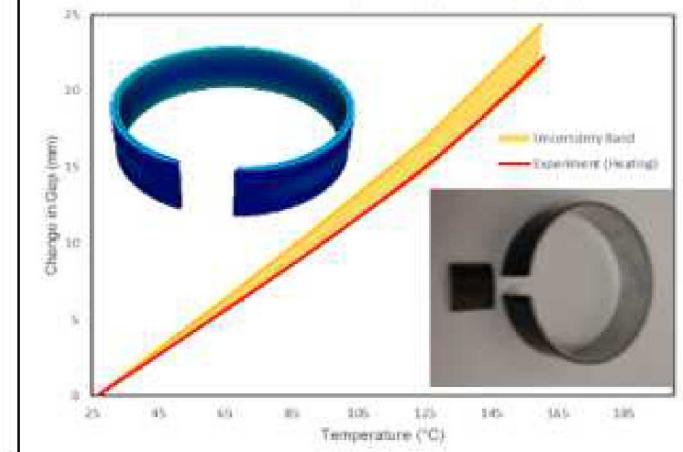


Bi-Material Plate



Bi-Material Split-Rings

Measured Change in Cylinder Gap Width with Simulated Uncertainty Band (Heating Cycle)



*Nelson, S., Hanson, A., Briggs, T., Werner, B., "Verification and Validation of Residual Stresses in Composite Structures," Composite Structures, v194, p662-673.

Motivation and Objectives

■ Motivation:

- Modeling and simulation is increasingly being used to support the qualification of complex composite parts
- Component level models are too expensive for traditional sampling methods

■ Objectives:

- Develop a residual stress case study that will be:
 - Low-cost to model → Sensitivity studies will require thousands of simulations
 - Reasonable to physically implement → nominal model validation is important
- Complete a survey of common sensitivity analysis methods
 - What parameters are critical to the stress predictions?
- Complete a survey of common UQ methods
- What is the most efficient validation method for the hybrid composite structures?

Methodology

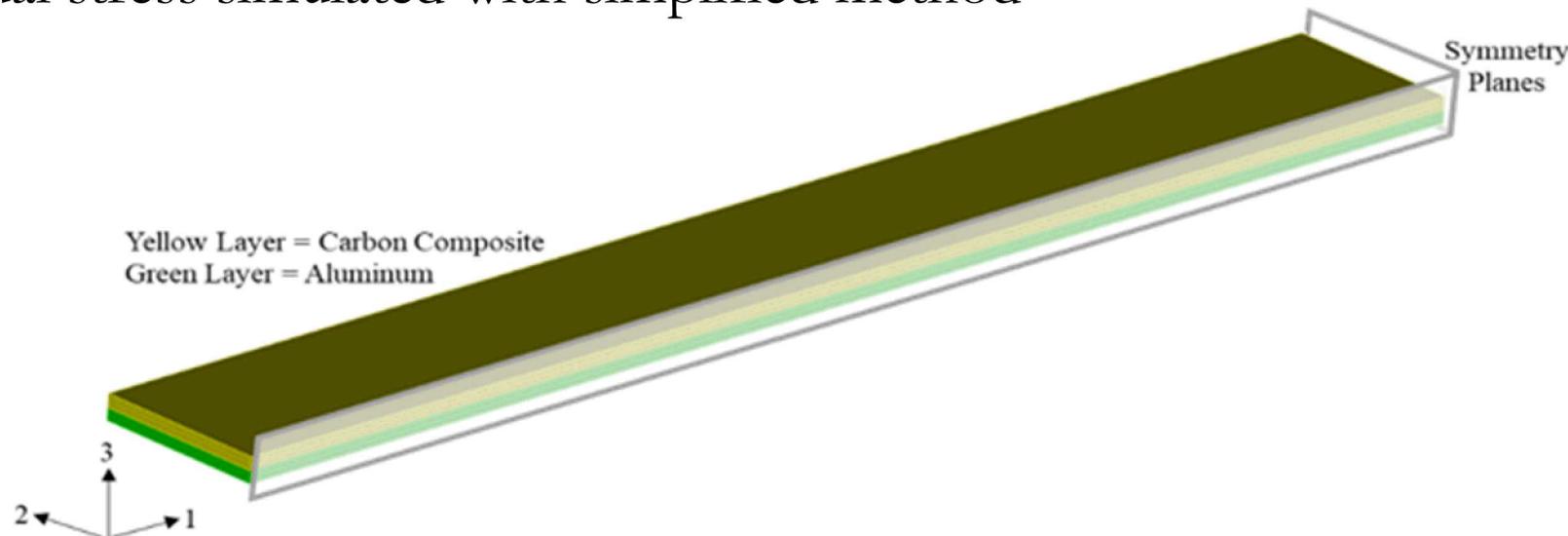
Validation Experiment

- Bi-material, composite/aluminum strip
 - Efficient and low-cost to model
 - Process-induced stresses manifest as out-of-plane warpage/curling along the strip's length
- Materials:
 - Carbon composite and Aluminum
 - Composite co-bonded to aluminum

- Measurement procedure:
 - Granite table, guarantees flatness
 - Digital height gage, ± 0.01 mm
- Two types strips manufactured and measured
 - Shorter strip for sensitivity study $\rightarrow 11.01$ mm
 - Limited experimental rigor expended, sensitivity study is not validation
 - Longer strip for UQ $\rightarrow 26.41 \pm 0.21$ mm

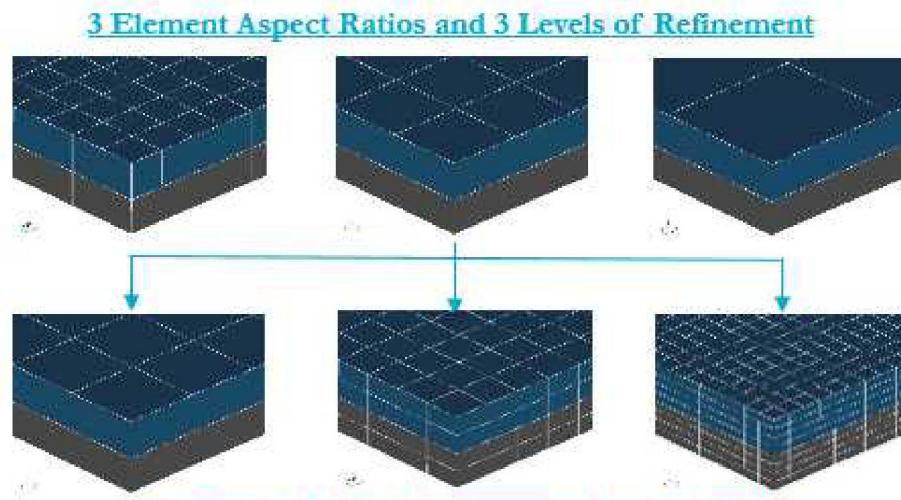
Model Geometry and Boundary Conditions

- Aluminum/carbon composite modeled as separate, homogenized material layers
- Carbon composite layer merged to aluminum layer
 - Merging approximates perfect bonding, delamination is not modeled
- Boundary conditions:
 - Quarter model symmetry conditions assumed for computational efficiency
 - Residual stress simulated with simplified method



Solution Verification, Mesh Optimization, Nominal Model Validation

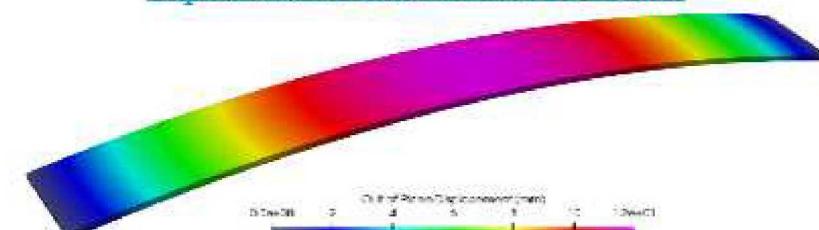
- Mesh study considered element size and aspect ratio
 - What is the largest element providing confident predictions?
- 3 element lengths and 3 aspect ratios
 - 9 models processed according to described methods
 - 3 separate mesh studies based on the 3 aspect ratios
- Richardson's extrapolation estimated "exact" out-of-plane displacement
 - Approximates a higher order estimate of a continuum value given discrete solutions → discretization errors
- Summary of results:
 - Extrapolated exact solutions do not differ significantly
 - 1:4:4 can be used with a reasonable expectation of model accuracy
 - Medium, 1:2:2 mesh size offers best combination of computational efficiency and model accuracy
 - Lowest discretization error with fewer than 36 solution cores
 - Exact solution and shape of deformation agree well enough with experiment to satisfy physics



Summary of Mesh Convergence Study Results

Aspect Ratio	Mesh Refinement Level	Run Time (min) / Solution Cores	Predicted Deflection (mm)	Error (%)	Exact Solution (mm)
1:1:1	Coarse	01:14.3/1	14.02	20.2	
	Medium	04:51.7/4	12.16	4.3	11.666
	Fine	24:32.7/36	11.77	0.9	
1:2:2	Coarse	00:33.7/1	12.75	9.4	
	Medium	01:04.4/4	11.90	2.2	11.652
	Fine	03:24.3/36	11.71	0.5	
1:4:4	Coarse	00:25.2/1	9.33	20.3	
	Medium	00:40.1/4	10.94	6.5	11.702
	Fine	00:59.7/36	11.46	2.1	

Representative Deformation Prediction



Overview of Completed Surveys

- What is the most computational efficient validation procedure?
 - Sensitivity study and UQ
- Six sensitivity study methods were examined:
 - Parameter study (centered parameter study(CPS))
 - Design of Experiments (Box-Behnken Design (BBD))
 - Sampling Methods (Monte Carlo (MC), Latin HyperCube (LHS))
 - Surrogate Methods (Gaussian process (GP), Polynomial Chaos Expansion (PCE))
- Four UQ methods were examined:
 - Sampling Methods (Monte Carlo, Latin HyperCube)
 - Surrogate Methods (Gaussian process, Polynomial Chaos Expansion)
- Approach to completing the survey:
 - Step 1: Define parameter space
 - Nominal values \pm 3 standard deviations *or* \pm percentage of the nominal
 - Step 2: Complete sensitivity studies with the six methods
 - Step 3: Complete N-way ANOVA to find critical parameter list
 - Step 4: Complete UQ with the four methods
 - Step 5: Calculate means, standard deviations from distribution of predictions

Sensitivity Study Parameter Space

	Parameter	Minimum Value	Maximum Value
Composite Properties	E_{11} (GPa)	57.5	70.2
	E_{22} (GPa)	56.5	69.0
	E_{33} (GPa)	7.7	9.4
	ν_{12}	0.043	0.053
	ν_{13}	0.367	0.449
	ν_{23}	0.367	0.448
	G_{12} (GPa)	3.1	3.8
	G_{13} (GPa)	2.9	3.6
	G_{23} (GPa)	2.9	3.6
	T_g (°C)	110.9	141.8
	T_{sf} (°C)	140.6	146.1
	CTE_{11} (1/°C, rubbery)	0.294e-6	1.913e-6
Aluminum Properties	CTE_{22} (1/°C, rubbery)	0.357e-6	2.794e-6
	CTE_{33} (1/°C, rubbery)	268.1e-6	290.9e-6
	CTE_{11} (1/°C, glassy)	3.060e-6	3.708e-6
	CTE_{22} (1/°C, glassy)	2.585e-6	4.165e-6
	CTE_{33} (1/°C, glassy)	67.8e-6	76.5e-6
	E (GPa)	57.0	85.6
	ν	0.264	0.396
	CTE (1/°C)	18.7e-6	28.1e-6

Results

Comparison of Sensitivity Analysis Methods

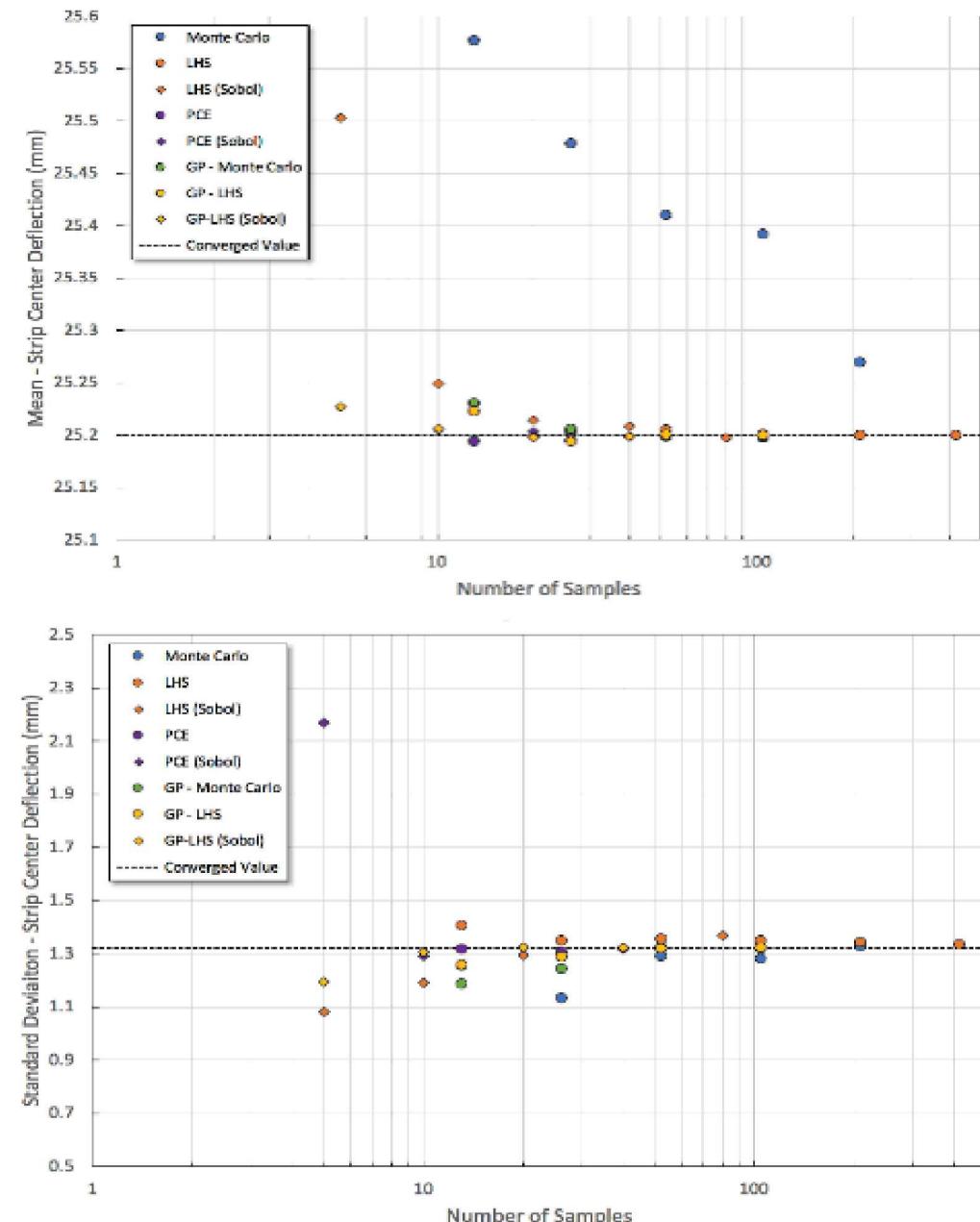
- Surrogate methods require the fewest samples for a converged list of critical parameters
- Sampling methods are the least efficient approaches → 4-8x more expensive than surrogate methods
 - Simple to implement without access to DAKOTA
- BBD is more efficient than the sampling methods, but twice as expensive as the surrogate methods
 - Can be implemented without access to DAKOTA
- CPS provides a reasonable critical parameters list at a low number of samples, but seems to omit some of the less influential critical parameters
 - Should be considered when a measure of sensitivity is required, but only a handful of samples are computationally affordable

Summary of Sensitivity Study Survey

Comparison of UQ Methods

- Surrogate methods require the fewest samples for a converged mean prediction
 - Means converged at $(n+1)$ samples
 - Standard deviations converge at $4(n+1)$ samples
- Sampling methods are the least efficient approaches
 - LHS requires 4x as many samples for a converged mean and $>32x$ as many samples for a converged standard deviation
 - MC is not yet converged at 16x as many samples
- Converged predictions: $25.2 \text{ mm} \pm 1.32 \text{ mm}$
 - Prediction is within one standard deviation of measurement ($26.41 \pm 0.21 \text{ mm}$)!

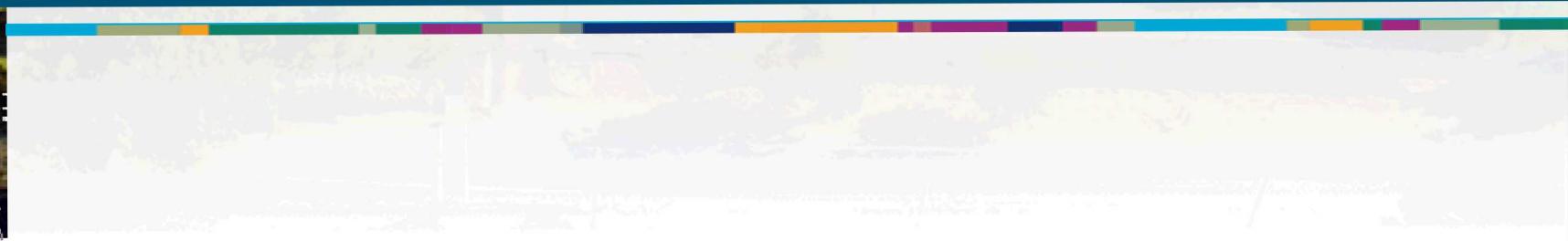
Summary of UQ Methods Survey



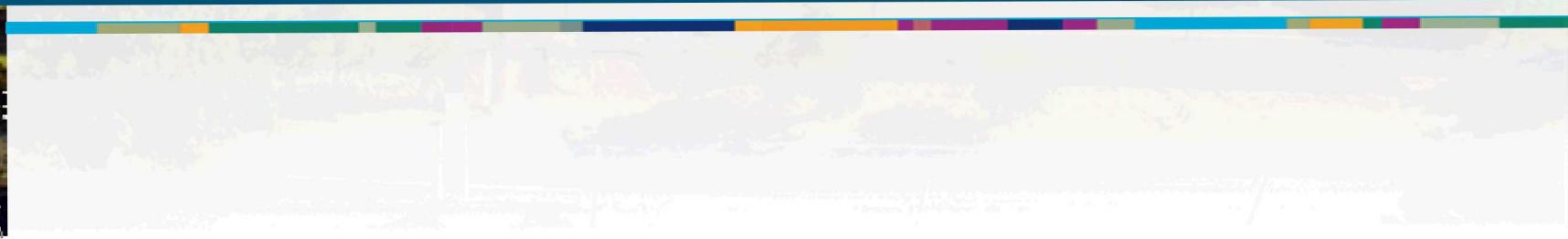
Final Summary and Conclusions

- Residual stresses must be considered when designing composite parts
 - Finite element simulation of residual stresses are preferred to experimental measurement for complex structures
 - Sandia's process modeling approach has been well validated through collaboration with the AFRL
- A survey of DAKOTA's sensitivity and UQ capabilities was completed to find a validation procedure well suited to component qualification
 - What is the ideal sensitivity study approach?
 - Surrogates demonstrated the best computational efficiency
 - CPS should be used if a measure of sensitivity is needed for a expensive model
 - What is the ideal UQ approach?
 - Surrogates demonstrated the best computational efficiency
 - $4(n+1)$ samples appear to be sufficient for a surrogate converged for both mean and standard deviation predictions
 - Convergence must be checked!
- This approach can be applied generally when considering residual stress development in thin-walled composite structures

Thank you!



Back-Up



Parameter Study Method: Centered Parameter Study (CPS)

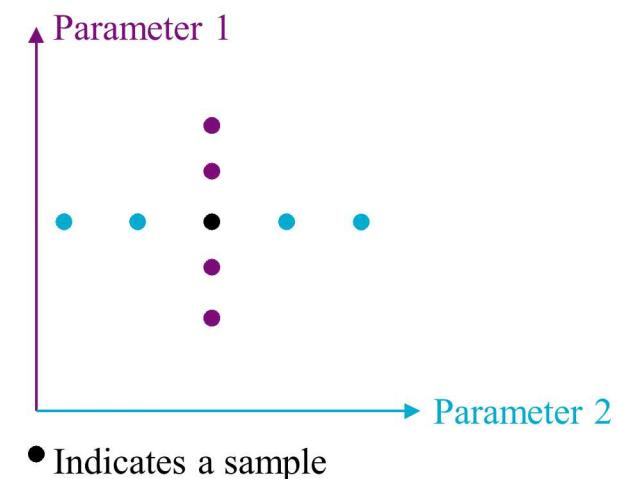
- One parameter study method was selected for consideration → CPS
 - DAKOTA also has multi-dimensional and vector parameter studies
 - CPS is cheapest, quantifies relationships between multiple model inputs and the simulated response
- General CPS approach: “One-at-a-Time”
 - Step 1: Define the parameter space and an initial value set
 - Step 2: Process a simulation with the initial value set
 - Step 3: For each parameter, process simulations at s steps \pm the initial value. Values for all other model parameters held constant.
 - Step 4: Apply the ANOVA to the ensemble of predictions to determine the critical parameter list
- Bi-material strip CPS process:
 - Step 1: 20-dimensional parameter space, initial values defined by nominal properties
 - Step 2: Simulation processed with nominal material properties
 - Step 3: Starting with $s=1$ and step size = $(\text{max value} - \text{nominal value})/s$, independently process simulations along each dimension.
 - Step 4: ANOVA applied to resulting 41 predictions to generate critical parameter list
 - Step 5: Repeat steps 3-4 with incrementally increasing s until critical parameter list is converged

Samples Required for CPS:

$(n=\text{dimensions}, s=\text{steps})$

$$Samples_{CPS} = 1 + 2 \sum_{i=1}^s n_s$$

Sample 2-Dimensional CPS Parameter Space



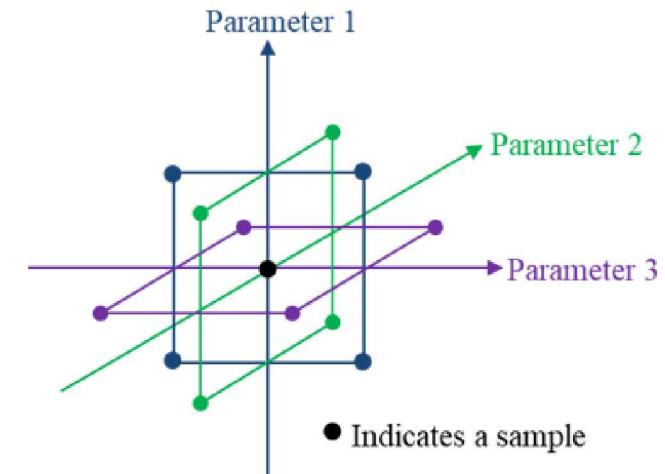
Design of Experiments: Box-Behnken Design (BBD)

- One DOE method was selected for consideration → BBD
 - BBD does not sample outside of parameter space, requires fewer samples than other DOE methods
- General BBD approach:
 - Step 1: Define the parameter space with minimum, maximum, mean values
 - Step 2: Parameter combinations are created at the center and midpoints of the process space edges.
 - Step 3: A simulation is processed at each parameter combination
 - Step 4: Apply the ANOVA to the ensemble of predictions to determine the critical parameter list
- Bi-material strip BBD process:
 - Step 1: 20-dimensional parameter space
 - Step 2: BBD specified 761 parameter combinations
 - Step 3: 761 simulations were processed
 - Step 4: ANOVA applied to resulting 761 predictions to generate critical parameter list

Samples Required for BBD:
($k = \text{number of parameters}$)

$$\text{Samples}_{BBD} = 1 + 2k(k - 1)$$

Sample 3-Dimensional BBD
Parameter Space



Sampling Methods: Monte Carlo (MC)

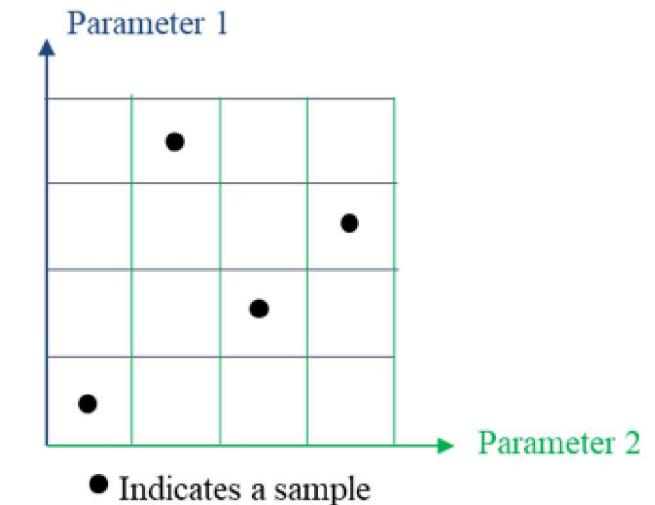
- Two sampling methods were considered → MC and LHS
 - MC is simple and easy to implement with any deterministic FE code
 - LHS is more complex, but provides better parameter space coverage with fewer samples
- Monte Carlo (MC)
 - Completely random sampling
 - No guarantee that any number of samples will cover parameter space
 - Convergence is assured, but a prohibitive number of samples may be required
 - General approach:
 - Step 1: Define the parameter space with minimum, maximum values
 - Step 2: Define the desired number of samples, N
 - Step 3: Process N simulations
 - Step 4: Apply the ANOVA to the N predictions to determine the critical parameter list
 - Bi-material strip MC process:
 - Step 1: 20-dimensional parameter space
 - Step 2: Initial samples size = 22, or $n+2$
 - Step 3: Process 22 simulations
 - Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list
 - Step 5: Repeat steps 2-4 with incrementally increasing N until critical parameter list is converged

Sampling Methods: Latin HyperCube Sampling (LHS)

Latin HyperCube Sampling (LHS)

- Stratified sampling technique
 - If N samples are desired, each parameter space dimension is divided into N segments of equal probability
 - Relative length of segments governed by probability distributions
 - N samples placed throughout parameter space grid → *One, and only one, sample can be placed in each bin*
 - Better coverage of parameter space!
- General approach:
 - Step 1: Define the parameter space and probability distributions for each parameter
 - Step 2: Define the desired number of samples, N → Stratify parameter space
 - Step 3: Process N stratified simulations
 - Step 4: Apply the ANOVA to determine the critical parameter list
- Bi-material strip LHS process:
 - Step 1: 20-dimensional parameter space, uniform distributions for all parameters
 - Step 2: Initial samples size = 22, or $n+2$
 - Step 3: Process 22 simulations
 - Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list
 - Step 5: Repeat steps 2-4 with incrementally increasing N until critical parameter list is converged

Sample 2-Dimensional LHS
Parameter Space
(2 parameters and 4 samples)



Surrogate Methods: Polynomial Chaos Expansion (PCE)

- Two surrogate methods were considered → PCE and GP
- General surrogate model approach:
 - Minimally sample the parameter space to find a numerical function defining the relationship between the desired model output and the design variables
 - Sample the surrogate model 1000's of time at negligible cost
- Polynomial Chaos Expansion (PCE) → *Stochastic expansion method*
 - Multivariate orthogonal polynomials build the functional relationship between a response function and its random inputs
 - Polynomials are tailored to the specific input parameter distribution types → Legendre polynomial represent uniform distributions
 - Polynomial coefficients found through regression
 - LHS samples of the parameter space build a response function set that is fit with polynomials of varying order → Cross-validation determines best polynomial order
- General Approach:
 - Step 1: Define the parameter space and probability distributions for each parameter
 - Step 2: Define the desired number of LHS samples (N), stratify parameter space, process N stratified simulations
 - Step 4: Build the PCE surrogate using cross-validation to determine the best polynomial order
 - Step 5: Sample the surrogate model 1000's of times
 - Step 6: Apply the ANOVA to the surrogate samples to determine the critical parameter list
- Bi-Material Strip PCE process:
 - Step 1: 20-dimensional parameter space, uniform distributions for all parameters
 - Step 2: Initial samples size = 21, or $n+1 \rightarrow$ response function set size = 21
 - Step 4: PCE surrogate built considering polynomial orders 1-5
 - Step 5: 10000 samples were taken of the PCE surrogate
 - Step 6: ANOVA applied to resulting 10000 predictions to generate critical parameter list
 - Step 7: Repeat steps 2-6 with incrementally increasing N until critical parameter list is converged

Surrogate Methods: Gaussian Process (GP)

▪ Gaussian Process (GP)

- All finite dimensional distributions must have a multivariate normal, or Gaussian, distribution
 - *Example:* Given a stochastic process, X , that is a function of the variables within a set T , for any choice of distinct values of T , the corresponding vector \mathbf{X} must have a multivariate normal distribution
 - Normal distribution can be described by the finite dimensional distribution's mean and covariance functions → the Gaussian distribution is defined

▪ General Approach:

- Step 1: Define the parameter space and probability distributions for each parameter
- Step 2: Define the desired number of LHS samples (N), stratify parameter space, process N stratified simulations
- Step 4: Assume response function set adheres to a Gaussian distribution and build the GP surrogate
- Step 5: Sample the surrogate model 1000's of times
- Step 6: Apply the ANOVA to the surrogate samples to determine the critical parameter list

▪ Bi-Material Strip GP process:

- Step 1: 20-dimensional parameter space, uniform distributions for all parameters
- Step 2: Initial samples size = 21, or $n+1$ → initial response function set size = 21
- Step 4: GP surrogate was built
- Step 5: 10000 samples were taken of the GP surrogate
- Step 6: ANOVA applied to resulting 10000 predictions to generate critical parameter list
- Step 7: Repeat steps 2-6 with incrementally increasing N until critical parameter list is converged

Material Parameter Criticality

▪ Summary of critical parameters:

- All methods selected as critical: E_{11} , E_{22} , $\alpha_{11,G}$, $\alpha_{11,R}$, T_g , T_{sf} , E_{Al} , α_{Al}
 - In-plane mechanical/thermal properties of CFRP and aluminum properties should be critical
 - Residual stress development governed by in-plane CFRP/Al contraction mismatch
 - T_g and T_{sf} should be critical
 - T_{sf} indicates when residual stresses begin to develop
 - T_g governs rate of stress development
- All methods, *except* CPS, selected as critical: ν_{12} , $\alpha_{22,G}$
- All methods, *except* CPS and BBD, selected as critical: ν_{Al}
- *Only* surrogate methods selected: $\alpha_{22,R}$
 - ν_{12} , $\alpha_{22,G}$, ν_{Al} , $\alpha_{22,R}$ may be less influential

▪ PCE surrogate can determine Sobol indices

- Sensitivity indices → *rank critical parameters by relative influence*
- Parameters selected by some, but not all, methods as critical of the lowest indices
- The most significant indices govern the development of thermal strains
- α_{Al} is most significant by a large margin
 - In-plane CTE of CFRP ≪ CTE of aluminum → aluminum thermal contractions drive residual stress development

PCE Sobol Indices

Parameter	Sobol Index
α_{Al}	98.003763%
T_{sf}	1.091548%
T_g	0.363556%
$\alpha_{11,G}$	0.354474%
E_{Al}	0.059520%
$\alpha_{11,R}$	0.056149%
E_{11}	0.027971%
E_{22}	0.001954%
ν_{12}	0.000305%
ν_{Al}	0.000301%
$\alpha_{22,G}$	0.000295%
$\alpha_{22,R}$	0.000018%
ν_{13}	0.000000%
E_{33}	0.000000%
$\alpha_{33,R}$	0.000000%
G_{23}	0.000000%
$\alpha_{33,G}$	0.000000%
ν_{23}	0.000000%
G_{13}	0.000000%
G_{12}	0.000000%