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GOAL: Hole spin qubits are an attractive alternative to electrons.•
Our goal is to demonstrate and characterize hole qubits in Ge/SiGe.

• PROGRESS: We have demonstrated multi-metal-layer gated device
architectures, device tuning protocols, and charge-sensing
capabilities.

• Strained Ge/SiGe: novel material system with
many compelling properties:

Absence of valley states

Low disorder, 6x104 cm2/Vs

Large spin-orbit coupling for all-electrical
spin control

Small effective mass, m* — 0.08 mo

Weak hyperfme interactions; can be isotopically enriched•

CMOS compatible•

Many-hole qubits demonstrated in transport [Hendrickx 2019]
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[Moriya 2014]

3-Layer Device Layout
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Ge/SiGe wafer:

• 70nm thick SiGe buffer layer with 28% Si

• Pure strained Ge quantum well 20 nm thick

• 2DHG mobility p. > 1E5 cm2/Vs.

Original device design: 1 layer of gates (see [Hardy 2019])

• Broad, shallow potential landscape 4 wide Coulomb blockade
lines.

• Not sufficiently tunable. Need overlapping gates.

Multilayer device architecture (layout inspired by [Zajac 2015]):

• 3 layers of Ti/Pt gates

• ALD oxide dielectrics

• Ge implanted ohmics
Coulomb blockade achieved, but cannot tune up both channels
simultaneously (reservoirs tend to merge together)
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Iterative Device Improvement

COMSOL simulations performed with realistic gate potentials and
material stack parameters

• Confirmed that upper/lower
reservoirs tend to merge (a),
which is undesired

• Modified simulation with
additional horizontal isolation
gate 4 better isolation (b)

• Confirmed experimentally in
next device iteration (c)

• Narrower Coulomb blockade
lines: reduced tunnel
broadening between the dot
and the reservoirs (d)

• Broad, relatively featureless
conduction abrupdy
transitions to narrow
Coulomb blockade

• Sudden onset in tight confinement of the holes in the quantum dot

• Typical for these styles of devices in Ge/SiGe

Charge Sensing

Comparison of charge
sensing with 2 isolation
gate widths:

280 nm / 140 nm

• Charge sensing achieved
in both device designs

• Signal is — 150% larger
for isolation gate width of
140 nm than for 280 nm
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• No change in fabrication yield for the narrower gate

• Faster-than-linear increase in sensitivity with decreasing gate width is
expected

I 1/12 relationship is not fully realized, likely due to the influence of
surrounding potential landscape
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In-Plane g-Factor

Charge sensed lines appear insensitive
to in-plane B-field gi„-pia„, — 0

• Next experiment: apply B out-of-plane

• g-factor anisotropy expected [Lu 2017,
Sammak 2019]
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Future Directions

LDot (V)

Remotely determine the dot's occupation number down to the last hole

Confirm with charge sensing and magnetospectroscopy

• Single-shot readout, single spin electric dipole spin resonance (EDSR)

• Pave the way toward a single-spin hole qubit demonstration in this device
architecture.
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