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2 I Why would we study causality?

The world 1s causal

Understanding causality can
improve our ability to:

° Explain the world

° Predict

o Influence
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Dangers of untested causal |
assumptions

°Superstition and the illusion of ‘
controllability ‘
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Moving forward with causality in science

Theory-based modeling already incorporates causality
°But are the assumptions correct?

“Recent” academic interest in causality
° Symbolic and logical language to study causality
° Interest in incorporating into Al

o Pearl: “strong AI” will necessitate causal understanding

° Judea Peatl: One of the well-known causality researchers/writers, 2011 winner of ACM
Turing award

> “Strong AI”’: Hypothesis that machines could act intelligently by actually thinking (as
opposed to simulated thinking)

o Artificial Intelligence, A Modern Approach. 2nd Edition. Russell & Norvig, 2003. page 947ff
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41 System Dynamics and Causality

What does causality mean for System Dynamics modelers?
> Assumptions, conceptual models

> Concepts of causality are different!

Why does it matter what else is going on in causality and causal
modeling?

° Put system dynamics in context

° Improve/combine methods

> New opportunities




s 1 A few intuitive definitions (from Wikipedia)

Causality: How one process or state (the cause) relates to another (the
effect), where the first is partly responsible for the second, and the second 1s
partly dependent on the first

> Examples:
o If it rains, then the ground gets wet. < : ) ,@
° If you study, then you will get a better grade on the test
Counterfactual: A conditional containing an if-clause which is contrary
to fact
> Examples:

o If it had rained yesterday, then the party would have been cancelled.
° If you had not taken a wrong turn, then you would have gotten there on time.

Confounder: A variable that influences both the dependent variable
and independent variable causing a spurious association (correlation,
not causation).
> Examples:
o Weather affects murder rates and ice cream sales
> Economic development affects piracy and climate change




¢ I Plan for today

1. Felix Wang:

> How can causality enable transportability and
inference between application areas?

2. Lauren Hund:

> How can causal modeling make sense of imperfect
data?

5. Ryan Dellana:

o How can machine learning best incorporate
causality?
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Goals

Help you understand what’s going on in causality research to:
Put system dynamics in context
Improve/combine methods

New opportunities
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9 I Causal Models as Data-Generating Processes

Causal models can be thought of as an “inference engine” taking inputs
o Caunsal assumptions and a structural model to encode these assumptions
° Queries about variables of interest and their relationships

° Data from observations (seeing) and interventions (doing)

... and producing outputs
o Logical implications of our assumptions
o Statistical implications of our assumptions

° Claims about the answers to our quetries

Some examples of causal queries
° Was it move/action X that led to winning/losing the game?
> Will a proposed policy on X have the intended results Y?
> How will the release of product X impact the sales of product Y?

> Does the evidence prove, beyond a shadow of a doubt, the crime Y was committed by X...
Or was it an accident that would have happened anyway, because of Z?




10 I Encoding the Structure of Causal Models

Structural Equations Models (SEMs)
° Variables of interest and their background factors
° Probability distributions over the background factors
° Functions that map from variables (and background factors) to variables

° Visually represented as a Directed Acyclic Graph (DAG)

z < fz(uz) Uzt Uxt Uyt
M: x & fx(z,ux) : : :
} SR SEENEN, {

Changes to the model can be reflected as changes in the graph

° Operations (e.g. interventions do(x)) add/remove edges

zefu) gt ey
My: x < xg X :
y < fr(x,uy) ; X y

Py(yldo(x)) = Py, (y)




11 I Inference using Causal Models

Many tools available for working with causal models
> D-separation, belief propagation, adjustment criteria and formulae, etc.

> Graphical representation supplements the discovery of solutions

z < f7(uz)

X <:fX(ZruX)
chw(X,Uw)
y CfY(VVIZqu)

Variables: x = smoking,
W = tar, Y = cancet,
Z = genes (unobserved)

X w y
Query: P(y]do(x))
=X, P(y|ldo(x),w)P(w|do(x)) Probability Axioms
= Eg P (y |do(x), do(w))P(w|do(x)) ._»\. Observation to Intervention
=2X,P (y |do(x), do(w))P(w]|x) /._» Intervention to Observation
= pr(yldO (W))P(WlX) . l Delete Intervention
= le YorP (y | do (W), XI)P (X’ |d0 (W))P (W |x) Probability Axioms
= Zx’ P (ylw’ x’)P (x’ |d0 (W))P (W |x) Y~ "\ Intervention to Observation

— ZerWP(ylw, X')P(X')P(WlX) : Estimand ¥\ Delete Intervention




12 I Selecting Between Causal Models

Selection diagrams identify where two domains of interest may differ
° E.g.: distribution of background factors, mapping functions, causal structure

> Represented graphically through selection variables (adding an edge 5; = v;)

Z
M
N
X w y

P(z) # P'(2) weflx) = f"(x)

Example: Given studies in M', M" how effective will marketing be in population M?
° Variables: x =advertisements, y = purchase, z = age, W = click-through rate
° Study in M’ differs from target population in age

° Study in M"" was done as a randomized trial, and on a platform with high click-through rates




131 Transportability of Causal Models

Transportability allows us to make inferences between domains of interest
> Determine if generalizations are valid or invalid
° “License assumptions” about the transfer of causal relationships
° Ditferent assumptions will yield different routes for transporting information

> Synthesize observational and interventional information from multiple domains

Some more examples highlighting transportability
° How do I navigate/find where I need to go when traveling in a new city?
> Why don’t my physics simulations N match the new experimental measurements M?
° Should I have expected them to match in the first place?
o It’s difficult to measure Y because of cost, what can I use as a proxy?
> Will a government program X in country N be effective if applied to country M?
> What experiments should be conducted to fill in the gaps of understanding?
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Applications to Machine Learning and Artificial Intelligence

Dealing with data in a smarter way for machine learning
> How the data gets generated is important
> Model-based ML produces specific solutions to specific problems

> Combining human expertise in generating assumptions with ML methods for data analysis

Leveraging causal structure in Al agents
° Transfer learning during domain shift

° Sample efficiency and learning from counterfactuals

> Giving Al “free will”




15

References

° Pearl, Judea and Bareinboim, Elias. “External Validity: From Do-Calculus to
Transportability Across Populations” Stzatistical Science, 2014, Vol. 20. No. 4, 579-595

° Pearl, Judea. Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge Univ. Press, 2009

° Pearl, Judea and Mackenzie, Dana. The Book of Why: The New Science of Cause and Effect, Basic
Books, New York, 2018




Using causal models to analyze
imperfect data

PRESENTED BY

L.auren Hund

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



17

How does causal modeling work!?

Recall that causal queries (counterfactuals) are
outcomes from hypothetical interventions on a
system.

In an ideal world:

> Conduct the intervention on the system and see what
happens — randomization (design of experiments,
clinical trials)

In a data-limited world:

> Analyze observational data (you don’t control the
design — what you see is what you get)

> Common approach to causal modeling: fake
randomization.

Levels of factor 1

|deal

Actual

X

X

X

Levels of factor 2




18 I Sandia is all about counterfactuals!

Sandia problems commonly concern
“extrapolative prediction.”

°> Generating a predictive distribution for an unobserved
outcome — prediction of a counterfactual.

Some examples:

°> Nuclear weapons are the ultimate counterfactual
predictions - without full-system tests, we certify
weapons.

> Weapon components: How will a component perform

across a variety of conditions (temperature,
environments, ager)

> Computer models: Run model and predict to setting
without data (counterfactual).
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19 1 Dealing with data insufficiencies

Causality gives a language to talk about credibility of a prediction given
less-than-ideal data.

> Much of causal inference is simply ensuring that your data analysis methods accurately
reflect the “data generating mechanism,” i.e. how your data were generated.

> Under what set of assumptions is my counterfactual prediction valid?

Structural causal modeling is one language of causality.




20 I Steps of causal analysis

Steps for causal analysis: Step 1: Causal query

1. Define a causal query. P(Y = do(X = x))

o Often a function of a counterfactual.

: Step2: DAG
2. Determine how the collected data relates i
: X —Y
to the true underlying structural causal
model. ‘ /
Z
o Make 2 DAG!

: : : Step 3: Check criteria
3. Check 1f sufficient data to estimate query. &

4. Estimate the query from the data. ‘ /




21 | Estimate Qol

In practice, we want to move from qualitative X —Y
DAG model to quantitative statistical model
in order to estimate a causal query. ‘

Z

Adjustment formula:

P(Y=do(X =x))=X,PY|X=x,Z=2)P(Z = z)

/ .

Unobserved counterfactual Observed in data

Stratifying on Z, we can estimate the counterfactual of interest from the data.

° Other formulations of the adjustment formula exist, e.g. for selection variables and for the
front-door criterion.




22 I Estimate causal query

Causal inference is all about models and assumptions.
> What assumptions are you willing to make?

> Do you have enough data to fit a “good” statistical model under those assumptions?

Fundamental assumptions of causality: Given a random sample from a population:

- Exchangeability: no unmeasured confounding

> Measure enough variables?

- Positivity: enough data to estimate P(Y |X = x,Z = z).
> Have enough datar

- Consistency: no multiple versions of treatment
° Treatment can be hypothetically manipulated in a consistent manner

> Example: drug; counterexample: BMI.




23 I Role of modeling and assumptions

Curse of dimensionality — use statistical

models to approximate distribution of Y | X,Z.
“Art” of statistical modeling.

Picture taken from: https://medium.freecodecamp.org/the-curse-of-
dimensionality-how-we-can-save-big-data-from-itself-d9fa0f872335

There is an implicit fourth assumption needed for causal estimation: correct model
specification.

° Causal methods are often ‘model-agnostic’: how you model is separate from how you

calculate causal estimands given the model.

° The ‘modeling’ stage is where good statistical and ML models come into play.




24 1 Thank you!

“Use of technical causal language, a good use, in our estimation, must be recognized as simply a
shorthand for better versus worse analyses, as judged by the author, and not a metaphysical
statement about causation per se...”

Lipton and Odegaard (2005)
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Definition of “Generative Model”

As a probabilistic expression

X = State variable
Y = Observable variable

Discriminative model:

P(X|Y)

Generative model:

PX,Y)
or P(Y | X), where P(X) is known or estimated




Definition of “Generative Model”

As a procedure

X

State variables
(hidden)

=)

f(X,0)

Generative
process

Y

Observable
variables

Assumes a chain of causality from X, through mechanisms £(0), to Y.

Example: 3D graphics (such as video games or special effects in movies)

° X = Position/otientation of various objects in scene

° 0 = Shape/surface material of objects

° f = Projection process. In the real world, it is reflected light reaching your eye.

° Ray-tracing and other 3D rendering methods simulate this.

> Y = Resulting pixels on the movie screen.




Example: Rao & Ballard
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Example: PredNet
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Example: Generative Adversarial Network (GAN)
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How to learn model structure

* The previous examples use neural networks and associated learning methods.
Despite the generality, these have an implicit, hand-crafted structure.

* An alternative is to represent the generative process in a language suitable for
genetic algorithm (GA) style random search.




Thank You!




330 Goals

Help you understand what’s going on in causality research to:
Put system dynamics in context
Improve/combine methods

New opportunities




