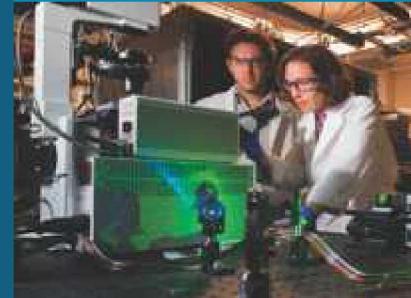


New Directions in Causality and Causal Modeling

International System Dynamics Conference

July 22, 2019



PRESENTED BY

Asmeret Naugle, Felix Wang, Lauren Hund, Fred Rothganger

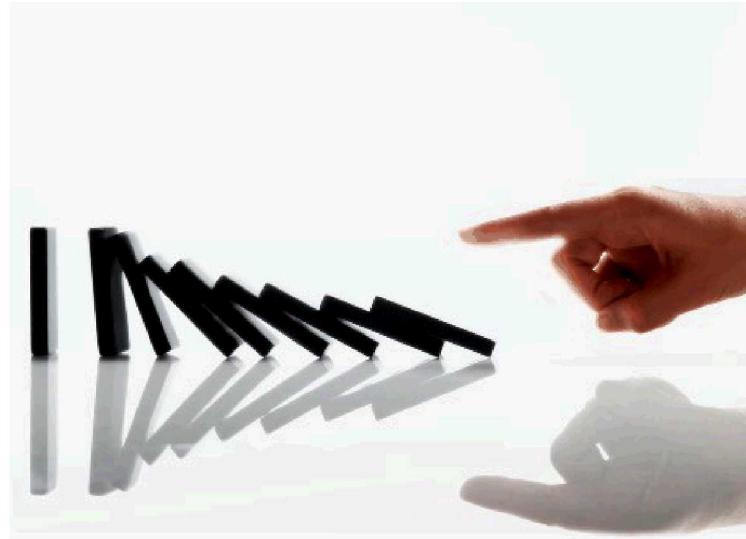
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 Why would we study causality?

The world is causal

Understanding causality can improve our ability to:

- Explain the world
- Predict
- Influence



Dangers of untested causal assumptions

- Superstition and the illusion of controllability

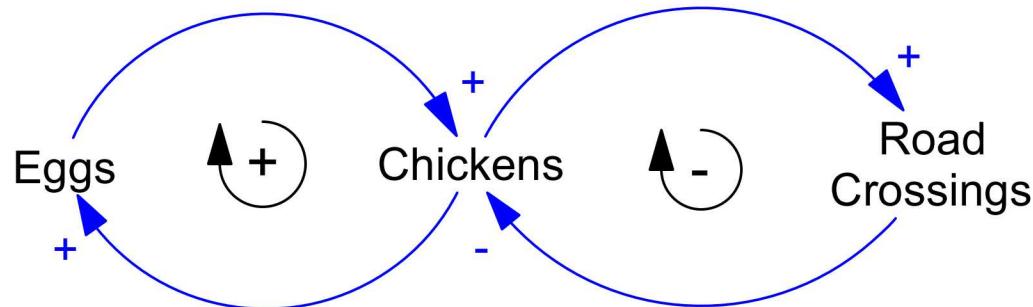
3 Moving forward with causality in science

Theory-based modeling already incorporates causality

- But are the assumptions correct?

“Recent” academic interest in causality

- Symbolic and logical language to study causality
- Interest in incorporating into AI
 - Pearl: “strong AI” will necessitate causal understanding
 - Judea Pearl: One of the well-known causality researchers/writers, 2011 winner of ACM Turing award
 - “Strong AI”: Hypothesis that machines could act intelligently by actually thinking (as opposed to simulated thinking)
 - Artificial Intelligence, A Modern Approach. 2nd Edition. Russell & Norvig, 2003. page 947ff



What does causality mean for System Dynamics modelers?

- Assumptions, conceptual models
- Concepts of causality are different!

Why does it matter what else is going on in causality and causal modeling?

- Put system dynamics in context
- Improve/combine methods
- New opportunities

A few intuitive definitions (from Wikipedia)

Causality: How one process or state (the *cause*) relates to another (the *effect*), where the first is partly responsible for the second, and the second is partly dependent on the first

- Examples:

- If it rains, then the ground gets wet.
- If you study, then you will get a better grade on the test

Counterfactual: A conditional containing an if-clause which is contrary to fact

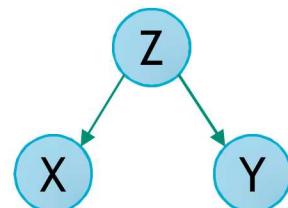
- Examples:

- If it had rained yesterday, then the party would have been cancelled.
- If you had not taken a wrong turn, then you would have gotten there on time.

Confounder: A variable that influences both the dependent variable and independent variable causing a spurious association (correlation, not causation).

- Examples:

- Weather affects murder rates and ice cream sales
- Economic development affects piracy and climate change



1. Felix Wang:

- How can causality enable transportability and inference between application areas?

2. Lauren Hund:

- How can causal modeling make sense of imperfect data?

3. Ryan Dellana:

- How can machine learning best incorporate causality?

Help you understand what's going on in causality research to:

Put system dynamics in context

Improve/combine methods

New opportunities

Inference Using Causal Models

PRESENTED BY

Felix Wang

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-2336 PE

Causal Models as Data-Generating Processes

Causal models can be thought of as an “inference engine” taking inputs

- *Causal assumptions* and a structural model to encode these assumptions
- *Queries* about variables of interest and their relationships
- *Data* from observations (seeing) and interventions (doing)

... and producing outputs

- *Logical implications* of our assumptions
- *Statistical implications* of our assumptions
- *Claims* about the answers to our queries

Some examples of causal queries

- Was it move/action X that led to winning/losing the game?
- Will a proposed policy on X have the intended results Y?
- How will the release of product X impact the sales of product Y?
- Does the evidence prove, beyond a shadow of a doubt, the crime Y was committed by X...
Or was it an accident that would have happened anyway, because of Z?

Encoding the Structure of Causal Models

Structural Equations Models (SEMs)

- Variables of interest and their background factors
- Probability distributions over the background factors
- Functions that map from variables (and background factors) to variables
- Visually represented as a Directed Acyclic Graph (DAG)

$$M: \begin{aligned} z &\Leftarrow f_z(u_z) \\ x &\Leftarrow f_x(z, u_x) \\ y &\Leftarrow f_y(x, u_y) \end{aligned}$$

Changes to the model can be reflected as changes in the graph

- Operations (e.g. interventions $do(x)$) add/remove edges

$$M_x: \begin{aligned} z &\Leftarrow f_z(u_z) \\ x &\Leftarrow x_0 \\ y &\Leftarrow f_y(x, u_y) \end{aligned}$$

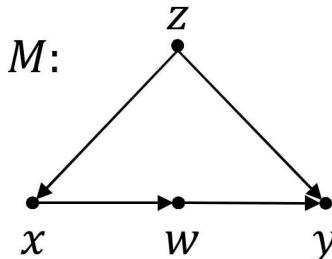
$$P_M(y|do(x)) = P_{M_x}(y)$$

Inference using Causal Models

Many tools available for working with causal models

- D-separation, belief propagation, adjustment criteria and formulae, etc.
- Graphical representation supplements the discovery of solutions

Variables: x = smoking,
 w = tar, y = cancer,
 z = genes (unobserved)

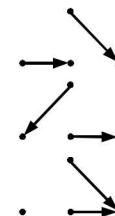


$$\begin{aligned} z &\Leftarrow f_Z(u_Z) \\ x &\Leftarrow f_X(z, u_X) \\ w &\Leftarrow f_W(x, u_W) \\ y &\Leftarrow f_Y(w, z, u_Y) \end{aligned}$$

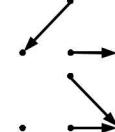
Query: $P(y|do(x))$

$$\begin{aligned} &= \sum_w P(y|do(x), w)P(w|do(x)) \\ &= \sum_w P(y|do(x), do(w))P(w|do(x)) \\ &= \sum_w P(y|do(x), do(w))P(w|x) \\ &= \sum_w P(y|do(w))P(w|x) \\ &= \sum_{x'} \sum_w P(y|do(w), x')P(x'|do(w))P(w|x) \\ &= \sum_{x'} \sum_w P(y|w, x')P(x'|do(w))P(w|x) \\ &= \sum_{x'} \sum_w P(y|w, x')P(x')P(w|x) : \text{Estimand} \end{aligned}$$

Probability Axioms

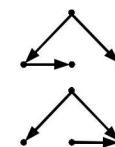


Observation to Intervention

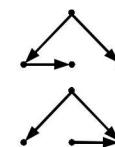


Intervention to Observation

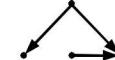
Delete Intervention



Probability Axioms



Intervention to Observation

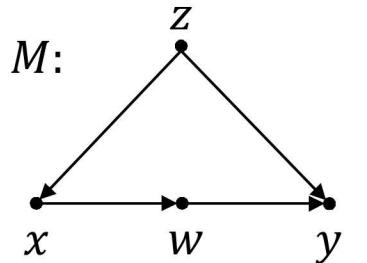
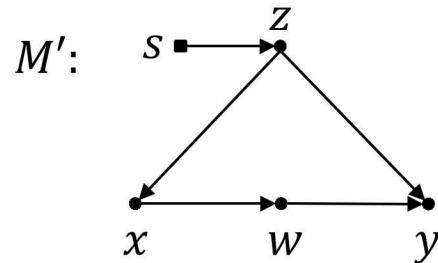


Delete Intervention

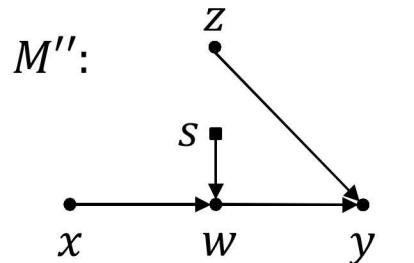
Selecting Between Causal Models

Selection diagrams identify where two domains of interest may differ

- E.g.: distribution of background factors, mapping functions, causal structure
- Represented graphically through selection variables (adding an edge $s_i \rightarrow v_i$)



$$P(z) \neq P'(z)$$



$$w \Leftarrow f(x) \neq f''(x)$$

Example: Given studies in M', M'' how effective will marketing be in population M ?

- Variables: x = advertisements, y = purchase, z = age, w = click-through rate
- Study in M' differs from target population in age
- Study in M'' was done as a randomized trial, and on a platform with high click-through rates

Transportability of Causal Models

Transportability allows us to make inferences between domains of interest

- Determine if generalizations are valid or invalid
- “License assumptions” about the transfer of causal relationships
- Different assumptions will yield different routes for transporting information
- Synthesize observational and interventional information from multiple domains

Some more examples highlighting transportability

- How do I navigate/find where I need to go when traveling in a new city?
- Why don’t my physics simulations N match the new experimental measurements M ?
- Should I have expected them to match in the first place?
- It’s difficult to measure Y because of cost, what can I use as a proxy?
- Will a government program X in country N be effective if applied to country M ?
- What experiments should be conducted to fill in the gaps of understanding?

Applications to Machine Learning and Artificial Intelligence

Dealing with data in a smarter way for machine learning

- How the data gets generated is important
- Model-based ML produces specific solutions to specific problems
- Combining human expertise in generating assumptions with ML methods for data analysis

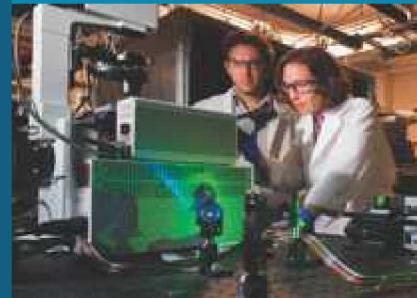
Leveraging causal structure in AI agents

- Transfer learning during domain shift
- Sample efficiency and learning from counterfactuals
- Giving AI “free will”

References

- Pearl, Judea and Bareinboim, Elias. “External Validity: From Do-Calculus to Transportability Across Populations” *Statistical Science*, 2014, Vol. 20. No. 4, 579-595
- Pearl, Judea. *Causality: Models, Reasoning, and Inference*, 2nd ed. Cambridge Univ. Press, 2009
- Pearl, Judea and Mackenzie, Dana. *The Book of Why: The New Science of Cause and Effect*, Basic Books, New York, 2018

Using causal models to analyze imperfect data



PRESENTED BY

Lauren Hund

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

How does causal modeling work?

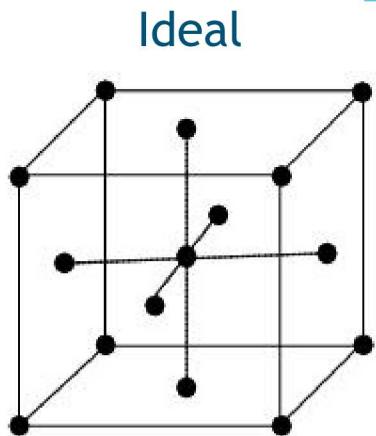
Recall that causal queries (counterfactuals) are outcomes from hypothetical interventions on a system.

In an ideal world:

- Conduct the intervention on the system and see what happens – randomization (design of experiments, clinical trials)

In a data-limited world:

- Analyze observational data (you don't control the design – what you see is what you get)
- Common approach to causal modeling: fake randomization.



Actual

Levels of factor 1					
x	x				
x		x		x	
x	x	x			
	x		x		x
x	x				
x	x				x

Levels of factor 2

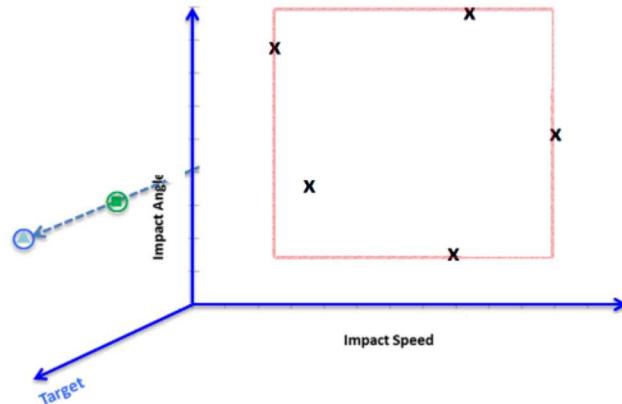
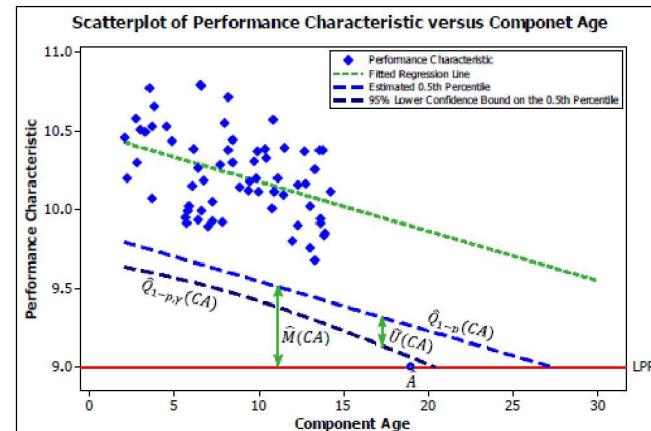
Sandia is all about counterfactuals!

**Sandia problems commonly concern
“extrapolative prediction.”**

- Generating a predictive distribution for an unobserved outcome – prediction of a counterfactual.

Some examples:

- Nuclear weapons are the ultimate counterfactual predictions - without full-system tests, we certify weapons.
- Weapon components: How will a component perform across a variety of conditions (temperature, environments, age?)
- Computer models: Run model and predict to setting without data (counterfactual).



Causality gives a language to talk about credibility of a prediction given less-than-ideal data.

- Much of causal inference is simply ensuring that your data analysis methods accurately reflect the “**data generating mechanism**,” i.e. how your data were generated.
- Under what set of assumptions is my counterfactual prediction valid?

Structural causal modeling is one language of causality.

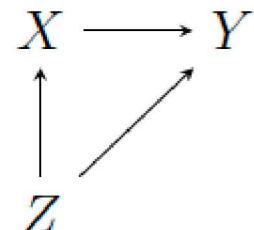
Steps for causal analysis:

1. Define a causal query.
 - Often a function of a counterfactual.
2. Determine how the collected data relates to the true underlying structural causal model.
 - Make a DAG!
3. Check if sufficient data to estimate query.
4. Estimate the query from the data.

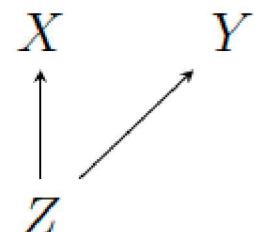
Step 1: Causal query

$$P(Y = do(X = x))$$

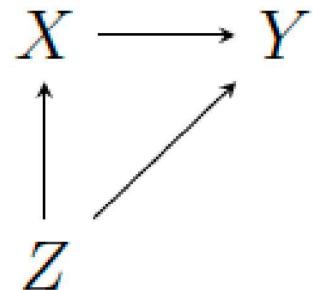
Step 2: DAG



Step 3: Check criteria



In practice, we want to move from *qualitative* DAG model to *quantitative* statistical model in order to estimate a causal query.



Adjustment formula:

$$P(Y = do(X = x)) = \sum_z P(Y|X = x, Z = z)P(Z = z)$$

Unobserved counterfactual

Observed in data

Stratifying on Z , we can estimate the counterfactual of interest from the data.

- Other formulations of the adjustment formula exist, e.g. for selection variables and for the front-door criterion.

Causal inference is all about models and assumptions.

- What assumptions are you willing to make?
- Do you have enough data to fit a “good” statistical model under those assumptions?

Fundamental assumptions of causality: Given a random sample from a population:

- **Exchangeability:** no unmeasured confounding

- Measure enough variables?

- **Positivity:** enough data to estimate $P(Y|X = x, Z = z)$.

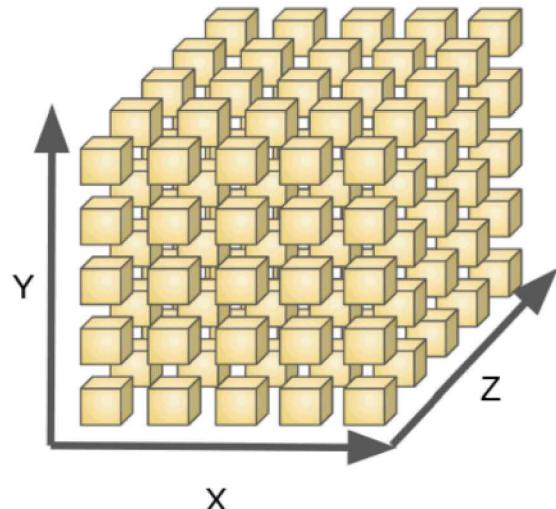
- Have enough data?

- **Consistency:** no multiple versions of treatment

- Treatment can be hypothetically manipulated in a consistent manner
- Example: drug; counterexample: BMI.

Role of modeling and assumptions

Curse of dimensionality – use statistical models to approximate distribution of $Y | X, Z$.
“Art” of statistical modeling.



Picture taken from: <https://medium.freecodecamp.org/the-curse-of-dimensionality-how-we-can-save-big-data-from-itself-d9fa0f872335>

There is an implicit fourth assumption needed for causal estimation: correct model specification.

- Causal methods are often ‘model-agnostic’: how you model is separate from how you calculate causal estimands given the model.
- The ‘modeling’ stage is where good statistical and ML models come into play.

Thank you!

“Use of technical causal language, a good use, in our estimation, must be recognized as simply a shorthand for better versus worse analyses, as judged by the author, and not a metaphysical statement about causation per se...”

Lipton and Odegaard (2005)

Generative Models in Machine Learning

PRESENTED BY

Fred Rothganger

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Definition of “Generative Model”

As a probabilistic expression

X = State variable

Y = Observable variable

Discriminative model:

$$P(X | Y)$$

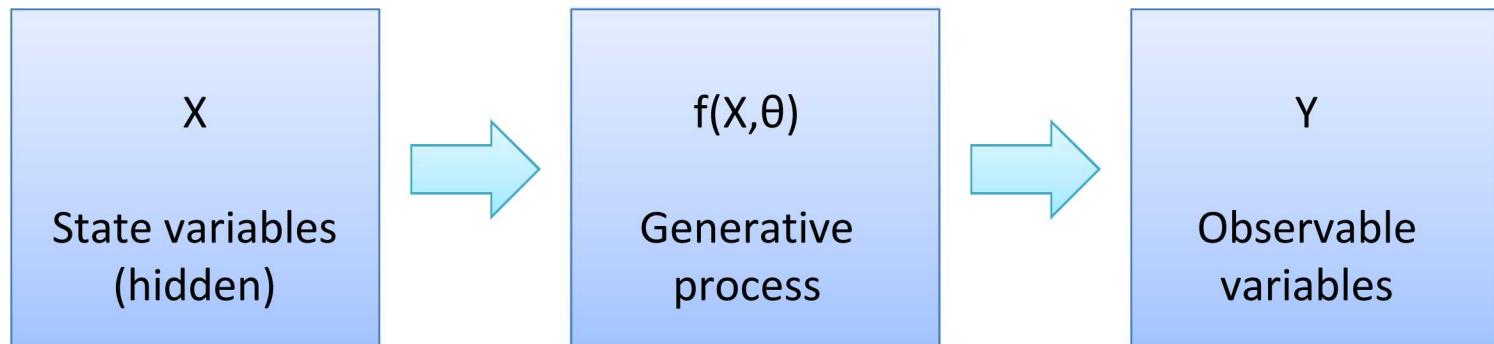
Generative model:

$$P(X, Y)$$

or $P(Y | X)$, where $P(X)$ is known or estimated

Definition of “Generative Model”

As a procedure

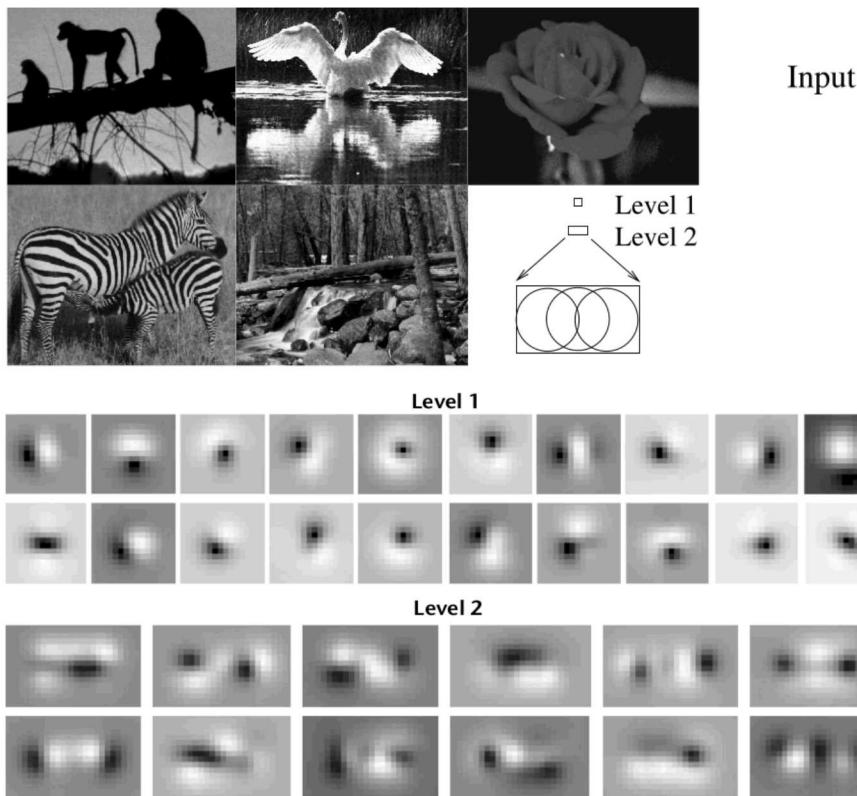
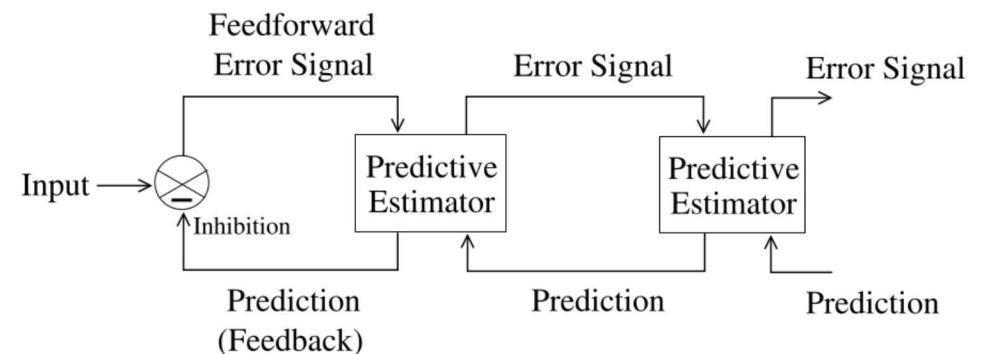
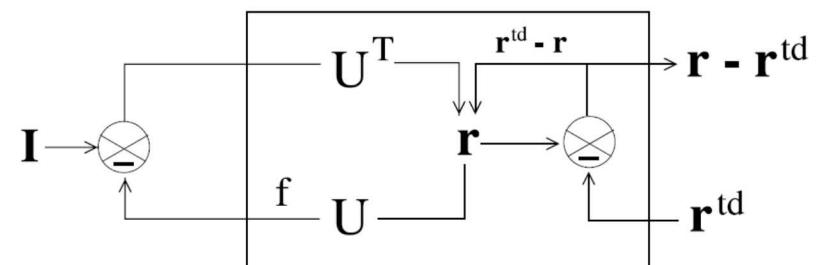
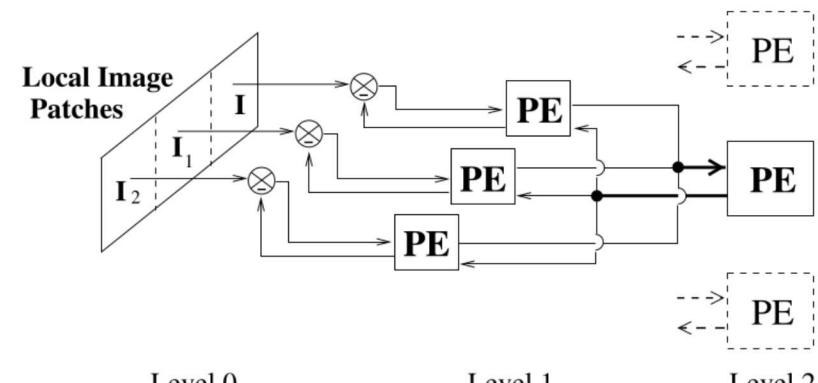


Assumes a chain of causality from X, through mechanisms $f(\theta)$, to Y.

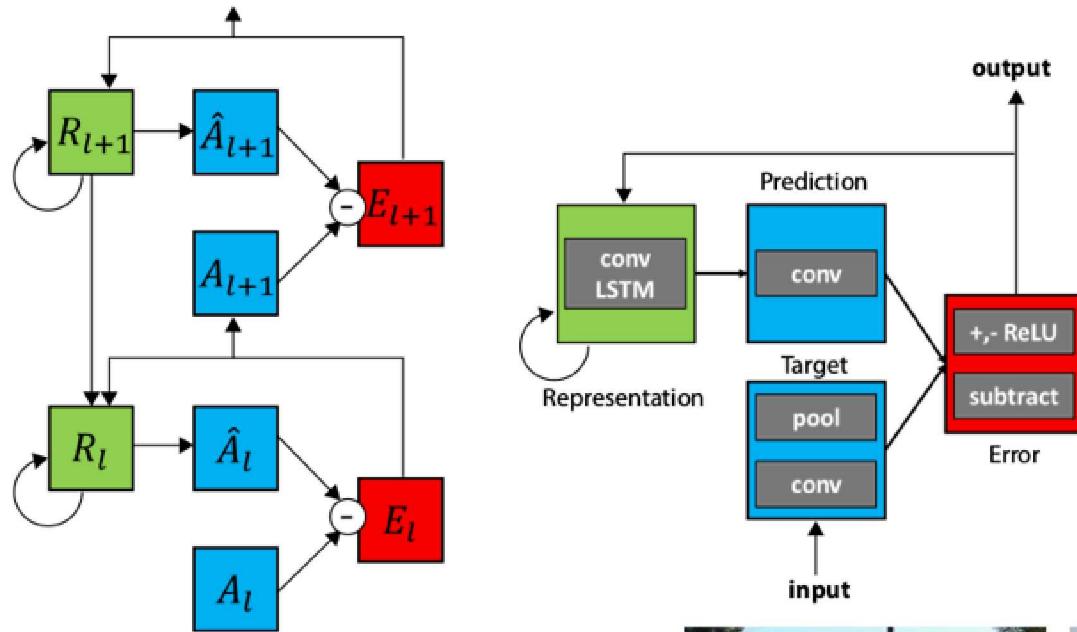
Example: 3D graphics (such as video games or special effects in movies)

- X = Position/orientation of various objects in scene
- θ = Shape/surface material of objects
- f = Projection process. In the real world, it is reflected light reaching your eye.
 - Ray-tracing and other 3D rendering methods simulate this.
- Y = Resulting pixels on the movie screen.

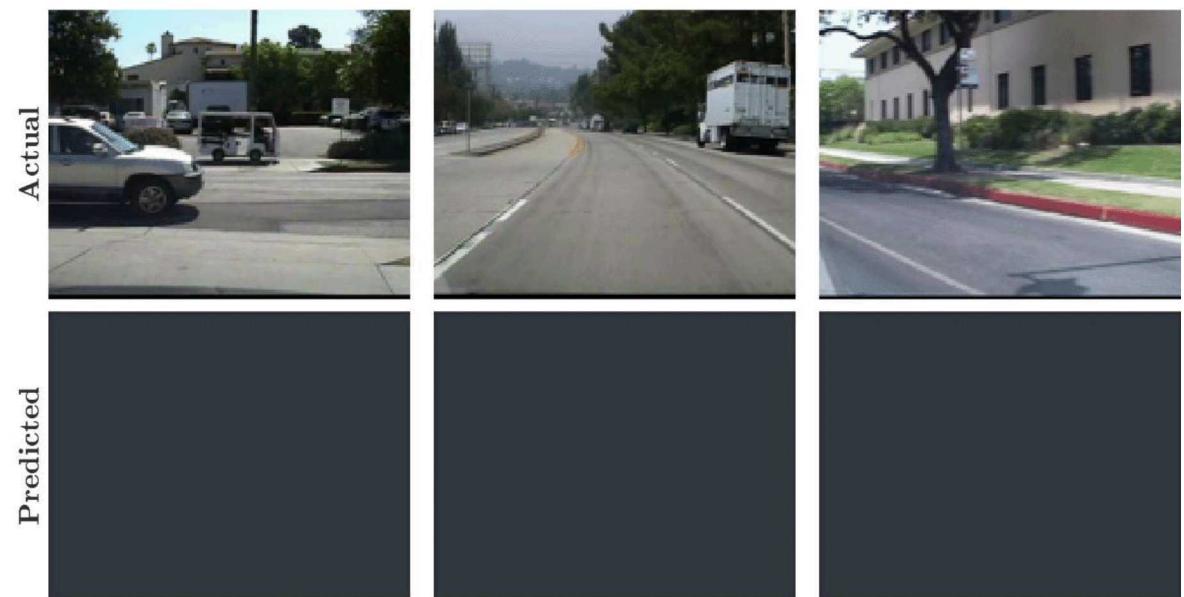
Example: Rao & Ballard



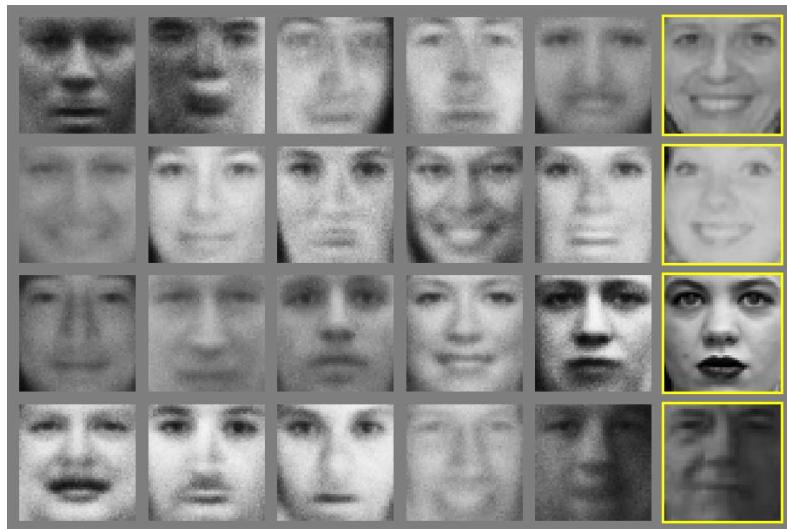
Example: PredNet



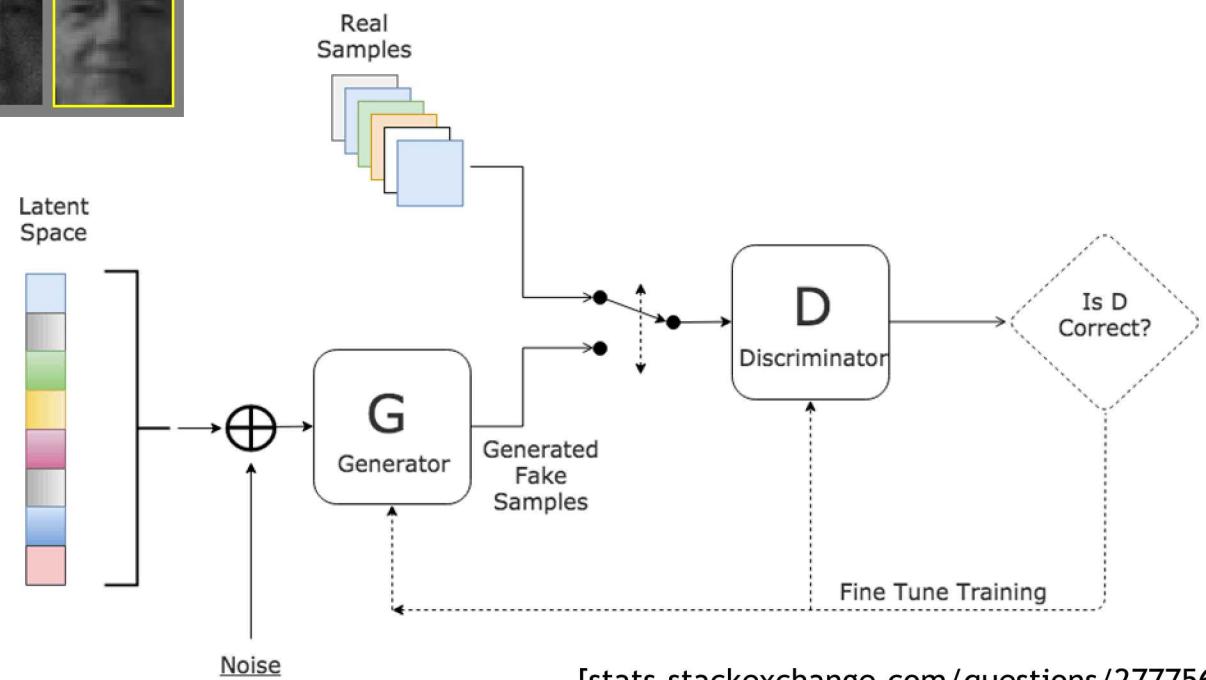
[<https://coxlab.github.io/prednet>]



Example: Generative Adversarial Network (GAN)



[Goodfellow 2014]

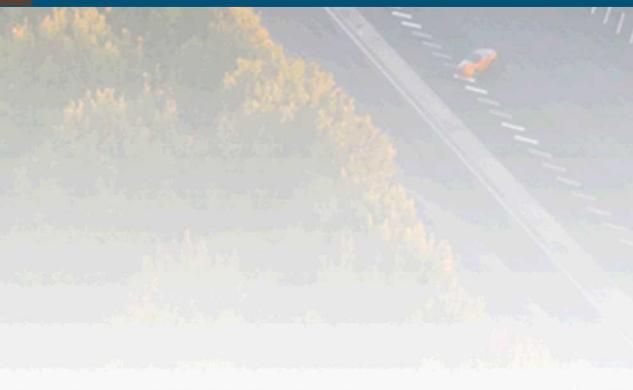


[\[stats.stackexchange.com/questions/277756\]](https://stats.stackexchange.com/questions/277756)

How to learn model structure

- The previous examples use neural networks and associated learning methods. Despite the generality, these have an implicit, hand-crafted structure.
- An alternative is to represent the generative process in a language suitable for genetic algorithm (GA) style random search.

Thank You!



Help you understand what's going on in causality research to:

Put system dynamics in context

Improve/combine methods

New opportunities