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2 | Importance of Reduced Electric Field (E/N) -

Electron collisions with neutrals mainly :
excite internal degrees of freedom
Efield-dynamics ~ heating  heat & mass transfer ° Leads to non-equilibrium energy
polarization breakdown ‘thermal equilibrium distributions
atomic reactions
e retabies By controlling E/N, we can choose
" jonreactions | where that energy goes
’e' reactions radicals ¢ ROtatlonal (< 1Td), Vlbratlonal (1—50 Td),

Electronic (50 — 100 Td),
I i —> Ionization (100 Td)

photonic interactions ‘
i i

ps ns 15 ms S min h d Mto a
time scale 1.0 ] |
Reuter, S et. al., . Phys D 2018 —
0.6
" In order to understand how we can use the L
plasma we must have an in depth
. 0.2 - -
understanding of fundamental plasma ===1 |
processes 07 2 4 6 8WTEMNN. e

Yuri P Raizer. Gas Discharge Physics



3 | Noninvasive Electric Field Measurement Methods

Electric field [10° V/m]

A. Sobota et al, PSST 2019
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° Field inferred by monitoring plasma emission

> Requires specific model depending upon gas
composition

E-Field CARS

° 4-wave mixing technique for
sub-nanosecond measurements

> Resonant technique which has only been
demonstrated in H, and N,
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E. V. Barnat et al Appl. Phys. Lett. 2004

LIF Dip

> Able to generate 2D field maps with sensitivity of

~10V/cm

o Pressure limited to

~1 Torr due to pressure broadening

Second Harmonic Generation

> Non-resonant method with
sub-nanosecond resolution

o Signal scales as E2

° Sensitivity to electric field vectors
30 = ‘ . 0.0F
° - :
X ofﬁ'o: 0.5¢F
=" 25 A ° E 3P0 >
g o é 2 g2 % . 1.0
S 204 E B )e e, =15}
= ‘ : J'%o 5"3 gz.o -
% 15 o ° O: “00 [ =]
= ‘ %3 : a3 2 25¢
o 104 | o o o p %30- ——t=-25ns|]
= = ° : o) a7 —=—t=0ns
5 S - o 35¢ ——t=2.5ns |1
D 5 o 20 ) - s t=50
= @ ° i ——t=50ns |}
L °o° H 5 .° ° . 4.0 g ——t="7.5ns
04 o000 o 000 ° 4.5’ 7;? ~—t=15ns [
100 -50 0 50 100 150 200 5' 1'0 1‘5 2‘0 o
Time [ns] Electric Field (kV/cm)

M. Simeni Simeni et al J.Phys. D 2017

B. M. Goldberg et al, Optics Lett 2019



4+ | Electric Field Induced Second Harmonic Generation (E-FISH)

In a centrosymmetric medium, second harmonic generation is not possible  * P: Induced polarization

> By applying an electric field, that symmetry is destroyed allowing for SHG = x: Electric Susceptibility

For SHG, define second order polarization to be: P @)(t) = yP e, E2(b)

Assuming an oscillating electromagnetic field of frequency w:
o E(t) = Eoe—iwt +Ege+iwt
= PP (t) = (2e0xPEE) + 20y @ (EZe 2t + c.c.)
E-FISH is described as a third order nonlinear process:
3
o PR®) = ENXB) (—2w,0, w, C‘))EExtEPumpEPump
o =[2®) = 4. N2 (EExt)z(IPump)2
Benefits of E-FISH Method:

° Signal scales as N2

(e}

Signal scales as E?

o

Time resolution determined by pump beam duration
° Spatial resolution determined by beam focusing parameters

> Non-resonant method works in any species and gas mixtures

Dogartu, A., Physical Review Applied, 7(2), 024024.

" &o: Permittivity of vacuum
= E: Electric Field

= P(2®); Induced polarization at 2w

N: Number Density

X (3). Nonlinear Susceptibility
(species dependent)

Eryt: Electric Field to be measured

" Epump: Electric field of incident
laser

800 nm




Early E-FISH Work

Initial similar work completed in 1960’ and 70’s

° Used nanosecond pulsed lasers, limiting signal generation

> Measured nonlinear susceptibility polarization components

> Measured nonlinear susceptibilities of gasses against known electric fields

> More recently used for detection of Terahertz waves

> We use a more general approach to measure an externally applied

ﬁeld Filter A/2 wave plate
SW&Q@M@@&M&M
-------------------------------------------------------- ~nts in plasmas:
Eo ~Aky 2 103%¢ o Al
(esu) Py  (em™h) (esu) R @ ey
Plasma
H, 35 2.97 1.2740.01 65.2+0.8 2.86+0.03 _—
N, 36 1.86 1.8940.02 86.6+1.0 3.00+0.06 Lens
0, 48 1.46 2.41+0.02 95.3+1.6 2.97+0.07 2019 Filter el . fanckgllie
CO, 43 1.05 3.36+0.03 111.9+1.3 2.81+0.06 T 5 ’ e, SR
SF, 58 1.08 3.47+0.03 130 +2  2.97+0.07 Detector Delay | ! 800 nm, 1kHz
yl ; R —
0 0.25 05 0.75 10 d Flame, 2019 L — > Beam splitter

cos?(20-¢@) —

b, @atmfic dnd & K MERRR




¢ I Typical Experimental Schematic .

Most experiments utilize either femto- or picosecond lasers Femtosecond Laser
o Fs Laser: 7 m] per pulse at 1 kHz with 50 fs pulses and ~15 nm bandwidth
o Ps Laser: 30 m] per pulse at 10 Hz with 100 ps pulses and frequency tunable

L iallf Wave Plate
'iiﬂihﬁm il Polarizer

Ry IHigh Reflector
Detection accomplished with either PMT or CCD depending upon "
desired parameters
> 1-D sensitivity has been achieved using cylindrical focusing and ICCD

e [Foowsing Leps

Key experimental difficulties: L3 lLong Pass Filter

> High intensity lasers generate SHG on upstream optics which needs to be
filtered

o White light from multiphoton ionization can damage detection equipment

> Cannot rely upon simple spectrometer to separate pump from SHG signal

Discharges studied:

o Bare metal electrodes in 100 Torr room air
> Atmospheric pressure plasma jet with Argon core flow and N2 co flow

° Dielectric barrier discharges in Fuel and Oxygen containing mixtures



7 | Measurements with Picosecond Laser in 100 Torr Room Air

Used different electrode cross sections to increase
local field at anode

> Probe region 1s center of discharge gap 7000 1 e
. _ . ] BCS Data: y
Electric field follows the applied voltage until 6000 5 - - -With Plasma | 1
breakdown occurs ] . — Sub-Breakdown) 3
o L = 1 loi =N Ps E-Fish Measurements:| ]
° Kink in field corresponds to initiation of breakdown g 5000 + e . = With Plasma | ]
< L \ i _ .
° Field continues to rise as plasma fills the gap > A00D ] \ Sulb-Sreakionn |2
° Field begins to fall once gap is filled with highly % 1 g \
conductive plasma iT : N
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2 y
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s I Cylindrical Focusing for |-D Sensitivity

Alternatively, we can focus into a laser sheet to reduce the net intensity

o Using a camera for detection allows for 1-D measurement sensitivity

> Detect SHG signal using PI-MAX4 ICCD with pixels size of 12.8 x 12.8 um

...................................................
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° Scanned a localized field across laser sheet to determine spatial sensitivity ll'D Fuulrlelr Tlral'lmsfqrm
. Raw Image
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9 I Cold Atmospheric Pressure Plasma Jet

Hfiggh Voltage

Laminar Argon core flow with N, co-flow

co-illom
o Streamer front dimensions are ~30-100 um |

o Plasma travels as an ionization wave, creating
spatially and temporally evolving fields

° Measurement volume: 10 um x 220 um x 2 cm

FID GmbH FPG 20-10 NM
> 3.7 kV applied with FWHM of ~30 ns

> Run at 1 kHz synchronized with fs laser

ﬁm}mﬁ.ll

° Time t=0 defined to be "2 peak voltage amplitude

Forcusing Lens TP et i
-x —— Collimating Lens
y ome oo i Y Dichoic Mirvor
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6
3 ns ICCD gate with 1 ns time steps

Red line represents laser probe region



| CAP Calibration Routine

CAP does not have a well defined ground plane making calibration difficult

Key concerns: Use cylindrical electrodes using short focal length lens

o Different gas mixture fractions > Measured and accounted for gas species using Rayleigh scattering

° Localized field enhancements due to dielectrics ° Removed jet output to remove dielectrics

o “Extent” of calibration field compare with ° Measured confocal parameter to be 220 um and
field due to plasma jet coherence length to be ~1 cm
° Systematic errors such as Gaussian ° Pixel-by-pixel calibration map

pump beam intensity

High Voltage
feed| gas

st o ectrode | -

2ay s i
»"ll 7 A | l
Giround| . . .....Y
-300  -250  -200 -150  -100 -50 0 50 100 150 200 250 300
cecuroge CCD Chip Position (pixels)




T | Time Resolved Electric Field Measurements

Individual laser shots collected and
analyzed in a post processing routine

° Time bins of 500 ps used
o ~100 shots per bin

Ionization wave propagation clearly
visible
o Wave speed ~0.3 mm/ns, consistent with
ICCD images

Peak field ~20 kV/cm, much lower
than expected

o Likely due to spatial sensitivity as plasma
tilaments move
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DBD with Fuel and Oxidizer ToVacuum 10 Nanosecond |
Pulser Streamwise:
| ﬁ i* to flow:
Reactor Fi;mf' rﬂ =re N

. . ropagation =

Pressure: 60 Torr L / I IKZQWKCIM@.&
° Initial Temperature: 293 K p— B THow  Camera

5000 T . T T
> Gap distance: 14 mm 4000 .
3000 | : \ e
o Quartz double dielectric barrier: 1.6 mm o200 @Wgﬁgj@mﬁ”
. RS i to i
° Argon bath gas with CH, and/or O, o P |
E-looof ICCDY/CMIOS
Two pulsers used: ol Camera
> FID GmbH FPG 20-10 NM ol WS =. B
0 20 40 60 80 100 120 140 160 180

> Applied Voltage: ~7 kV Diees(i

o Pulse Duration: ~30 ns FWHM 10 R FETSIOTFCL

> Continuous 1 kHz synchronized with fs laser 8 o
o FID GmbH FPG 30-50MC4 §

o Peak Voltage: ~10 kV — ;;

° Pulse Duration: ~12 ns FWHM

° Pulse burst mode: 150 pulses, 30 kHz

-10 0 10 20 30 40 50 60 70 80
Time (ns)




13

Voltage (kV)

A o »r o

| kHz — Time Resolved Imaging

0.9 Ar + 0.1 CH, 0.8 Ar + 0.2 O,

/VV\K\ - - - ‘ - - ——— ;;8 /\,\,\ - - : e
y = ] Y A |
- o S SRS P S ] 20 S R N (S
20 0 20 40 60 80 100 120 140 160 180 200 200 20 40 60 8 100 120 140 160 180 200
Time (ns) Time (ns)

0.7 Ar + 0.1 CH, + 0.2 O,

- ]

T

0 20 40 60 80 100 120 140 160 180 200
Time (ns)

Voltage (kV)
A o p oo

[
(=]

Averages of 5 shots per frame
Plasmas appear to be uniform, although radial field appears as well

Breakdown occurs on reflected pulse as well

Camera gate: 1 ns

All videos on same intensity scale

.



: : #NOTE#* - PIXIS 512 CCD Used with 500
4 I | kHz — Calibration Results sed with 500 ms gate

JCW) & A - NZ(EExt)Z (Ipump)z Laser Propagation
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| kHz — Electric Field Results

0.7 Ar + 0.1 CH, + 0.2 O,
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Burst Mode - Time Integrated Imaging

ToVacuwm 70 Nanosecond

4  Pulser
. | | 1/

Using high speed sCMOS cameras, we can image each pulse in  yggey .
a burst E?y@pﬁg@mgm I]l T [" H
Filaments begin forming around pulse 100 Plasma Cell T Flow

o Within a given burst, filaments are stationary

o ¥*Note** movement in flow direction due to convection “ Orthogonal

to flow
ICCD/CMOS
6.6% CH, 13.4% O, 80% Ar Camera

End View: Streamwise direction Side View: Orthogonal direction

Pulse Num 0

Pulse Num 0

Streamwise:
to: ﬁbw

!M@!KM@;&
Camera




17 | Burst Mode - Time Resolved Imaging

Voltage

6000
4000
2000

0

93.3% Ar + 6.6% CH, 86% Ar 13% O, 6.6% CH, 13.4% O, 80% Ar
Pulse 150 Pulse 150 Pulse 150

6000
4000 |
2000 ¢

0
-2000

6000
4000 ¢
2000 ¢

0
-2000

Voltage

Voltage

-2000 '

-10 0 10 20 30 40
Time (s) x10°

20 40 60 80 100 120
Time (s) %10

Nanosecond resolution of single pulses

° 1 ns gate, but only 10 Hz camera repetition rate

° Image not from the same burst: uncorrelated shot to shot

Diffuse discharge with just O, or CH, addition, but significant filamentation with both present

o Filaments stationary within a given burst, but move from burst to burst



18 | Burst Mode — Averaged Electric Field Results
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Single Shot Measurement Capability

Data presented was an average of ~100 individual laser shots

> We can look at single shot data for streamer formation!

Electric Field

—-10 ns

2 ‘/‘\ —UU}HLE {k‘u’} ]
2| T
5 s w ""‘\-.\b_’/ \"»\

-10 10 20 30 ( ( 70 8O
Time (_ns)

30 m— Average| |

i

-2 -1 0 |
CCD Chip Position (mm)
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Conclusions

Electric field induced second harmonic generation is a unique method for non-invasive electric field
measurements

o Key benefits include: time response. field vector sensitivity, and species independent measurements
y P ’ Y P p

> Measurements have been demonstrated using femtosecond and picosecond lasers

Cylindrical focusing can be used for 1-D spatial sensitivity

° Measurements in a cold atmospheric plasma jet demonstrated an ionization wave travelling with ~0.3 mm/ns
> Measurements in DBD demonstrated a uniform diffuse discharge

° Single shot measurements can be used to observe localized streamer formation for plasma instabilities

Time (ns)

1236 _
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E B a 80% Ar +20% O 0 /\'\,/\__,
St ._‘,} E 3 il 2 ] 141 m L L 1 1 L | L L
_ 3 dalai - S ‘ —a—70% Ar+20% O, + 10% CH, ) -0 0 10 20 30 40 50 60 70 80
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& = 2F {94 7 35 @s) .
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= A Ir 147 o = 25 ¢
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21 I Current Work — Looking at gas surface interactions using SFG

|
; T 2
SGI;II(l}e r1;tiaoilpecmhzed form of Sum Frequency Iere HX}(QZ)‘ oid 4 ‘X;E/Z}g‘ oic
> At the surface interface, inversion symmetry 1s \_Y_) \_Y_J
broken, allowing for SFG Resonant Contribution
> Used to measure vibrational spectra of molecules Non-resonant Contribution |
at interfaces
Key benefits to SFG: 2) _ B Xg): Resonant susceptibiliy
o Signal generation localized to interfacial molecules X R Wy—Wp—il B: Strength of vibrational mode

between gaseous phase and bulk media wy:Frequency of mode

o Can measure the degree of order of interfacial
molecules

A wig: Probe Frequency

«%

o 1 1 {\:‘”‘“«‘:;, 2 . .
Can measure the orientation of the molecul o™ - I Resonant linewidth

o Can determine the average tilt angle of the
interfacial molecules

Resonant enhancement

occurs when Wip = Wy,




22 | Experimental Schematic for SFG

Coherent Legend Elite I'S laser system

> Use 1 leg to pump a Light Conversion High
Energy TOPAS + nDFG

TOPAS + nDFG

Coherent Legend Elite Fs Laser System

° frequency tunable pulse from ~2-10 um with 210 puJ per Delay Ling
pulse é )
° 50 fs pulse with ~200 cm™! bandwidth 1
> Generate visible light using second harmonic % |

bandwidth compression

o Split single pulse into two pulses with equal but opposite
orientation of chirp

> Beams recombined on SHG crystal, generating a frequency
narrow pulse with ~6 ps duration

Signal detection done with Newton iStarr ICCD

0.5 m Spectrometer
2400 grimm
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Initial Results — CH Stretch on Gold Surface

3000 ———————

2500 |

Intensity (counts)
TR~
) ()
) )

[
o
S
)

500 f

Spectral Data
Fitted Curve

Non-Resonant | |

Resonant

N

Frequency (cm'l)

2400 2600 2800 3000 3200 3400 3600 3800

2

Tepg ‘X£z>‘eia+ ‘Xﬁg‘eis

Assume;
(2)

Xg | is given by a Lorentzian

X 1(\,213 is given by a Gaussian

(e]

(e]

Used 10 second camera gate with 50 averaged images
—> 500,000 laser shots averaged!!

Nonlinear LSQ fit for following parameters:
> Resonant frequency (constrained by known CH stretches)
> Resonant linewidth (constrained by realistic values)
> Resonant amplitude
> Phase between resonant and non-resonant

> Non-resonant amplitude

Measured and calibrated non-resonant frequency and
linewidth using polystyrene calibration film



24 | Initial Results — Measurements on a Steel Wall with a Flame
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27 | Phase Matching
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In transparent media, the index of refraction
increases as a function of frequency

For second harmonic generation:
o Ak = 2 . 2Pump@Pump _ MSHGWSHG ()
C C

‘ 2 TTAKL
< ISHG X Ssinc T

If measurement length is greater than 2/,
efficiency goes down as second harmonic goes
out of phase with driving polarization

Robert W Boyd. Nonlinear optics
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Phase Matching
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29 | Benefits of E-FISH Method

Quadratic Dependence upon Electric Field
o Sensitive down to 100’s of V/cm

Time Resolution ——

Fs 5 funct d with 5. RARSSFAREE
s laser acts as a & function compared with ns 059———71— 420 uJ per Pud] *
changes in fields Q I (®
o
S = 0.
Measurement length o % 145 |
> Determined by beam focusing parameters % 8 03 | |
allowing for sub-mm spatial resolution s & : |
L % 10 ' : T
: — : :
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30 | CAP - Calibration
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31 | Burst Mode - Time Resolved Imaging

6.6% CH, 13.4% O, 80% Ar 6.6% CH, 13.4% O, 80% Ar
Pulse 25 Pulse 100
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Nanosecond resolution of single pulses
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) | Burst Mode — Averaged Electric Field Results
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| kHz — Electric Field Results
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