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How does causal modeling work?

Recall that causal queries (counterfactuals) are
outcomes from hypothetical interventions on a
system.

In an ideal world:

> Conduct the intervention on the system and see what
happens — randomization (design of experiments,
clinical trials)

In a data-limited world:

°> Analyze observational data (you don’t control the
design — what you see is what you get)

> Common approach to causal modeling: fake
randomization.
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Sandia is all about counterfactuals!

Sandia problems commonly concern
“extrapolative prediction.”

> Generating a predictive distribution for an unobserved
outcome — prediction of a counterfactual.

Some examples:

°> Nuclear weapons are the ultimate counterfactual
predictions - without full-system tests, we certify
weapons.

> Weapon components: How will a component perform

across a variety of conditions (temperature,
environments, ager)

> Computer models: Run model and predict to setting
without data (counterfactual).
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4 I Dealing with data insufficiencies

Causality gives a language to talk about credibility of a prediction given
less-than-ideal data.

> Much of causal inference is simply ensuring that your data analysis methods accurately
reflect the “data generating mechanism,” i.e. how your data were generated.

> Under what set of assumptions is my counterfactual prediction valid?

Structural causal modeling is one language of causality.
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5 I Steps of causal analysis

Steps for causal analysis: Step 1: Causal query

1. Define a causal query. P(Y = do(X = x))

o Often a function of a counterfactual.

, Step2: DAG
2. Determine how the collected data relates :
. X —Y
to the true underlying structural causal
model. ‘ /
YA
o Make a DAG!

. : : Step 3: Check criteria
5. Check if sufficient data to estimate query. :

4. Estimate the query from the data. ‘ /




6 I Estimate Qol

In practice, we want to move from qualitative X —Y
DAG model to quantitative statistical model
in order to estimate a causal query.

VA
Adjustment formula:

P(Y=do(X=x))=Y,PY|X=x,Z =2)P(Z = z)

/ ™~

Unobserved counterfactual Observed in data

Stratifying on Z, we can estimate the counterfactual of interest from the data.

° Other formulations of the adjustment formula exist, e.g. for selection variables and for the
front-door criterion.
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Estimate causal query

Causal inference is all about models and assumptions.
> What assumptions are you willing to make?

°> Do you have enough data to fit a “good” statistical model under those assumptions?

Fundamental assumptions of causality: Given a random sample from a population:

- Exchangeability: no unmeasured confounding

° Measure enough variables?

- Positivity: enough data to estimate P(Y|X = x,Z = z).
> Have enough data?

- Consistency: no multiple versions of treatment
° Treatment can be hypothetically manipulated in a consistent manner

> Example: drug; counterexample: BMI.
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Role of modeling and assumptions

Curse of dimensionality — use statistical

models to approximate distribution of Y | X,Z.
“Art” of statistical modeling.

Picture taken from: https://medium.freecodecamp.org/the-curse-of-
dimensionality-how-we-can-save-big-data-from-itself-d9fa0f872335

There is an implicit fourth assumption needed for causal estimation: correct model
specification.

o Causal methods are often ‘model-agnostic’ how you model is separate from how you

calculate causal estimands given the model.

° The ‘modeling’ stage is where good statistical and ML. models come into play.
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9 I Thank you!

“Use of technical causal language, a good use, in our estimation, must be recognized as simply a
shorthand for better versus worse analyses, as judged by the author, and not a metaphysical

statement about causation per se...”
Lipton and Odegaard (2005)




