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Magnetic reconnection is a fundamental process that controls topological
2 change and energy conversion in magnetized plasmas
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• MHD reconnection theory was developed in the 1950's by Peter
Sweet and Eugene Parker

• Predicts a thinner sheet and slower reconnection with increasing S:

= LNS Trec = AS TA

• According to MHD, solar flares should take way too long!

(100 sec) = many monthsTrec (-N-1 106 •

Tflare ^J 15 minutes
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Numerous theories have been developed to explain fast reconnection
3 rates that exceed the Sweet-Parker MHD limit

Ion
Diffusion
Reglon ..‘

Electron
Diffusion

—4. Reglon

Collisionless / Hall / two-fluid reconnection:

• The current sheet can't keep thinning forever

• Since the magnetic field goes to zero at the X-point,
particles will detach from the field at small scales

• Ions detach at the ion skin depth: SSP <

• In two-fluid reconnection, the reconnection rate is
set by electron processes rather by ion processes
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Numerous theories have been developed to explain fast reconnection
4 rates that exceed the Sweet-Parker MHD limit

Ion
Diffusion
Reglon 4..

Plasmoid-mediated reconnection:

Electron
Diffusion

—4. Reglon

• Large MHD systems will have a large-aspect-ratio
Sweet-Parker current sheet: 6 = LI-Vs

• Above a critical Lundquist number, the long, thin
current sheet will break up into many X- and O-points

• The underlying mechanism is the ̀ plasmoid' instability

• The numerous smaller current sheets that result have
a faster aggregate reconnection rate

Collisionless / Hall / two-fluid reconnection:

• The current sheet can't keep thinning forever

• Since the magnetic field goes to zero at the X-point,
particles will detach from the field at small scales

• Ions detach at the ion skin depth: SSP <

• In two-fluid reconnection, the reconnection rate is
set by electron processes rather by ion processes

Huang & Bhattacharjee Phys. Plasmas 2010
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The various reconnection regimes can be synthesized in a 2D
5 dimensionless 'reconnection phase space'

• The reconnection phase space defines theoretical
boundaries between different reconnection regimes

• The key parameters are the Lundquist number, S, and
the normalized system size, X:

ito vA L BL7- 2 L
S =  x  A = c7

1 
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• The collisional-to-collisionless transition at gsp — di is
shown in magenta

• The laminar-to-plasmoid transition at S = sc — 104 is
shown in cyan
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Gas discharge experiments such as MRX at Princeton are the
6 workhorses of laboratory reconnection research

Gas discharge experiments are exploring the magnetic
reconnection phase space in the low-energy-density regime:
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Next generation gas discharge experiments such as FLARE will access
7 new reconnection parameter regimes

FLARE = Facility for Laboratory Reconnection Experiments

Vacuum vessel = 3 m diameter, Stored energy = 4 MJ

FLARE construction
DRIVER COILS
EF COILS completed in March 2018.
FM CORES Awaiting DoE funding forWIIIDIE RED COUL
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Laser experiments can produce HED reconnection by merging two
8 plasma bubbles magnetic fields generated by the Biermann battery

laser spat A

separatnx

(9Teji

reconnection
layer

laser spot B

Target View: Face-on

(7/Te)2

e trajectory

ne)i

- reconnection
layer

•

ne)2

0

e' trajectory

Target View: Side-on

Nilson et al., Phys. Rev. Lett. 2006 (Vulcan laser)

Li et al., Phys. Rev. Lett. 2007 (OMEGA)
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Pulsed-power reconnection studies have been pioneered using side-by-
9 side inverted wire arrays on MAGPIE
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A magnetic reconnection platform for Z
(Let's set some records)

CLAYTON MYERS - IDTL RESULTS FROM DECEL 18A - JULY 16, 2018



The split inner MITL that Chris presented at the CYI9 shot proposal
11 forum is the key enabling technology for magnetic reconnection on Z

dais
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• Dual circuit operation of Z could be achieved with minimal convolute re-design.

• Gaps and inductances are comparable to those already routinely fielded.

• Retaining both connections enables selective partitioning of current between loads.
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static loads
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• We propose to simultaneously field two static loads and use return can velocimetry
to assess the current delivered to each load.

• The target would be a solid rod target inside a heavy non-imploding liner target to
enable VISAR access to both current paths.

• The key feature for reconnection is that the current in the two nested loads
flows in opposite directions 4 set up opposing B-fields to reconnect
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We have designed a novel pulsed-power-driven reconnection target that
12 can access entirely new reconnection parameter regimes

Dual 6-mm inner MITLs connect to
nested current paths within the target

Azimuthal fields of opposite polarity
converge on a 6-mm tall vertical wire
array (or gas puff)

The wire mass compresses and
smears out into a ring of plasma

The target is low-inductance due to its
large-radius, non-imploding nature
(-15 MA to each side, negative L-dot!)
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We have designed a novel pulsed-power-driven reconnection target that
13 can access entirely new reconnection parameter regimes

Dual 6-mm inner MITLs connect to
nested current paths within the target

Azimuthal fields of opposite polarity
converge on a 6-mm tall vertical wire
array (or gas puff)

The wire mass compresses and
smears out into a ring of plasma

The target is low-inductance due to its
large-radius, non-imploding nature
(-15 MA to each side, negative L-dot!)

The wire array / gas puff can be moved
from a vertical to a radial configuration
to improve diagnostic access
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Scoping simulations from GORGON indicate that the wires smooth out
14 into a reconnecting current sheet

4mm 5mm

Discrete
wires merge

into a
confined

current sheet

3060ns 3070ns 3080ns

Later in time current sheet is unstable to
radial redistribution of mass
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When driven with Z, this split-inner-MITL reconnection target can
15 readily achieve world-record laboratory reconnection parameters

Z is an energy-rich device that can create multi-MG magnetic
fields at centimeter scales.

We could readily achieve world-record laboratory
reconnection parameters!

Parameter Al wire array H2 gas puff

Current [MA] / B-field [MG] 15 / 2.2 15 / 2.2

Mass density [mg/cc] 0.2-2 5e-4-0.2

Electron density [#/cc] 5e19-6e20 3e18-1e20

Temperature [eV] 500-70 1000-500

Alfvén velocity, vA [km/s] 450-140 2800-450

Alfvén transit time, TA [ns] 200-600 30-200

Sweet-Parker width, 6sp [pm] 200-1600 14-60

lon skin depth, di [pm] 45-14 130-20

Lundquist number, S 4e7-7e2 1e7-5e5

System size, 2e3-6e3 6e2-4e3

Plasma f3 0.3-0.4 0.04-1
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Initial testing of the pulsed-power reconnection target on a I-MA driver
16 could quickly achieve interesting reconnection parameters

A 1-MA driver could access parameter regimes that are close
to the design points for FLARE and N IF

This would also provide a 1-MA platform development
opportunity before moving these targets to Z

Parameter H2 gas puff 1-MA H2 GP

Current [MA] / B-field [MG] 15 / 2.2 0.75/0.1

Mass density [mg/cc] 5e-3-0.2 1e-4-0.01

Electron density [#/cc] 3e18-1e20 7e16-6e19

Temperature [eV] 1000-500 30

Alfvén velocity, vA [km/s] 2800-450 1000-100

Alfvén transit time, TA [ns] 30-200 85-850

Sweet-Parker width, 6sp [pm] 14-60 325-1300

lon skin depth, di [pm] 130-20 930-90

Lundquist number, S 1e7-5e5 2e4-1e3

System size, 6e2-4e3 90-900

Plasma f3 0.04-1 0.01-0.4
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17 
A major challenge is how to diagnose these experiments

Magnetic field / reconnection rate:

• Return-can velocimetry

• Micro B-dots?

• Line VISAR?

• Chordal Faraday rotation?

• Chordal Zeeman splitting?

Morphology:

• Gated self-emission imaging

• Apertured PCDs / XRDs

• ???

Density and temperature:

• Chordal and/or axial spectroscopy

• Volumetric dopants

• Visible interferometry?

• Thomson scattering?

Heating and/or particle acceleration:

• Chordal spectroscopy (bi-directional azimuthal flows)

• Surface dopants (beam-target interaction)

• ???
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Pulsed-power (and Z in particular) can help to unravel multiple
18 fundamental problems in magnetic reconnection

1 • How does reconnection proceed so quickly? (The rate problem)

• Why is reconnection so impulsive? (The onset problem)

• How does reconnection take place in 3D? (The 3D problem)

• How does weak ionization affect reconnection? (The partial ionization problem)

[ • How do boundary conditions affect reconnection? (The boundary problem)

• How are particles energized by reconnection? (The energy problem)

• How to apply local reconnection physics to a large system? (The multi-scale problem)

W. Daughton et al. Nat. Phys. 2011
3D guide field reconnection with VPIC

CLAYTON MYERS Et CHRIS JENNINGS - MAGNETIC RECONNECTION - NEW IDEAS FORUM - OCTOBER 10, 2018


