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Magnetic reconnection is a fundamental process that controls topological
change and energy conversion in magnetized plasmas
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* MHD reconnection theory was developed in the 1950’s by Peter
Sweet and Eugene Parker

4 * Predicts a thinner sheet and slower reconnection with increasing S:
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» According to MHD, solar flares should take way too long!
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Numerous theories have been developed to explain fast reconnection
3 | rates that exceed the Sweet-Parker MHD limit

lon Flow

Collisionless / Hall / two-fluid reconnection:
» The current sheet can’t keep thinning forever

« Since the magnetic field goes to zero at the X-point,

lon particles will detach from the field at small scales

Diffuslon >

lons detach at the ion skin depth: Jdsp < d|

* In two-fluid reconnection, the reconnection rate is
set by electron processes rather by ion processes
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Numerous theories have been developed to explain fast reconnection |
4 | rates that exceed the Sweet-Parker MHD limit

lon Flow

Collisionless / Hall / two-fluid reconnection:
» The current sheet can’t keep thinning forever

« Since the magnetic field goes to zero at the X-point,

lon particles will detach from the field at small scales

Diffusion ~—3

lons detach at the ion skin depth: Jdsp < d|

* In two-fluid reconnection, the reconnection rate is
set by electron processes rather by ion processes

Plasmoid-mediated reconnection:

« Large MHD systems will have a large-aspect-ratio
Sweet-Parker current sheet: § = L/v/S

« Above a critical Lundquist number, the long, thin
current sheet will break up into many X- and O-points

« The underlying mechanism is the ‘plasmoid’ instability

 The numerous smaller current sheets that result have
a faster aggregate reconnection rate

Huang & Bhattacharjee Phys. Plasmas 2010
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The various reconnection regimes can be synthesized in a 2D
dimensionless ‘reconnection phase space’

The reconnection phase space defines theoretical
boundaries between different reconnection regimes

The key parameters are the Lundquist number, S, and

the normalized system size, A:
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The collisional-to-collisionless transition at ogp ~ d, is

shown in magenta

The laminar-to-plasmoid transition at S = S, ~ 10% is

shown in cyan
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Adapted from Ji & Daughton Phys. Plasmas 2011
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Gas discharge experiments such as MRX at Princeton are the
6 I workhorses of laboratory reconnection research

Magnetic Reconnection Phase Space

Gas discharge experiments are exploring the magnetic 108 T ' '
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Next generation gas discharge experiments such as FLARE will access
7 I new reconnection parameter regimes

Magnetic Reconnection Phase Space

9% ' '
FLARE = Facility for Laboratory Reconnection Experiments F Single X-line | Multiple X-line
Vacuum vessel = 3 m diameter, Stored energy = 4 MJ 107 collisionless collisionless Multiple X-line 1
hybrid 3
6L ]
o 10
@ ]
-g 105 E Multiple X-line |
= collisional
c A
' Plasmoid
S 104 F
=) Two-fluid
o
|
— 103 F
.1 Single X-line ]
FLARE construction 10 FLARE callsianal
gyt completed in March 2018. N ]
/ i e PR Awaiting DoE funding for 10 Bl
&8/ OHSOLENOID operations. 101 102 10° 104 10°

Normalized system size, A

Adapted from Ji & Daughton Phys. Plasmas 2011

CLAYTON MYERS & CHRIS JENNINGS — MAGNETIC RECONNECTION — NEW IDEAS FORUM — OCTOBER 10, 2018



8

Laser experiments can produce HED reconnection by merging two
plasma bubbles = magnetic fields generated by the Biermann battery

Target View: Face-on Target View: Side-on

Nilson et al., Phys. Rev. Lett. 2006 (Vulcan laser)

Laser on from0—-1ns
(B) 0.04

.
[ 55

Li et al., Phys. Rev. Lett. 2007 (OMEGA)
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Reconnection
Layer Wires

s0506_15

Hare et al., Phys. Plasmas 2018
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Lundquist number, S

Pulsed-power reconnection studies have been pioneered using side-by- F
side inverted wire arrays on MAGPIE
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A magnetic reconnection platform for Z
(Let’s set some records)

CLAYTON MYERS — IDTL RESULTS FROM DECEL 18A — JULY 16, 2018



The split inner MITL that Chris presented at the CY 19 shot proposal
11 I forum is the key enabling technology for magnetic reconnection on Z

radius N
Load Region
Load 1
Heavy non- ——
imploding e oo
liner
Load 2
PEE focine
—— Visar

Dual circuit operation of Z could be achieved with minimal convolute re-design.
Gaps and inductances are comparable to those already routinely fielded.
Retaining both connections enables selective partitioning of current between loads.

Example circuit driving

stack
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25— i
Line A ~~~] Load <§‘: circ2
Z 20/
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We propose to simultaneously field two static loads and use return can velocimetry
to assess the current delivered to each load.

The target would be a solid rod target inside a heavy non-imploding liner target to
enable VISAR access to both current paths.

The key feature for reconnection is that the current in the two nested loads
flows in opposite directions - set up opposing B-fields to reconnect
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We have designed a novel pulsed-power-driven reconnection target that
can access entirely new reconnection parameter regimes

Dual 6_mm inner MITLS Connect to = Reconn'ection Target'-- Vertical Will'e Array
nested current paths within the target < 0;'
5 o
Azimuthal fields of opposite polarity S s \/
converge on a 6-mm tall vertical wire 5
array (or gas puff) <
) € 10
The wire mass compresses and = . \
smears out into a ring of plasma 3 . \
Ke] L
. . . S 20 .
The target is low-inductance due to its o
large-radius, non-imploding nature 2 |
(~15 MA to each side, negative L-dot!) 3 . %
Q N —
%
g
= 10 b § !
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We have designed a novel pulsed-power-driven reconnection target that
can access entirely new reconnection parameter regimes

Dual 6-mm inner MITLs connect to

nested current paths within the target Plasmoids viewed from top

Azimuthal fields of opposite polarity

converge on a 6-mm tall vertical wire

array (or gas puff)

The wire mass compresses and
smears out into a ring of plasma

The target is low-inductance due to its
large-radius, non-imploding nature

(~15 MA to each side, negative L-dot!) Plasmoids viewed from side

The wire array / gas puff can be moved
from a vertical to a radial configuration
to improve diagnostic access
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Scoping simulations from GORGON indicate that the wires smooth out
into a reconnecting current sheet

Discrete
wires merge
into a
confined
current sheet

< >
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Later in time current sheet is unstable to
radial redistribution of mass
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When driven with Z, this split-inner-MITL reconnection target can
readily achieve world-record laboratory reconnection parameters

Z is an energy-rich device that can create multi-MG magnetic

fields at centimeter scales.

We could readily achieve world-record laboratory

reconnection parameters!

Parameter Al wire array m

Current [MA] / B-field [MG]
Mass density [mg/cc]
Electron density [#/cc]
Temperature [eV]

Alfvén velocity, v, [km/s]
Alfvén transit time, 7z, [ns]
Sweet-Parker width, dgp [umM]
lon skin depth, d, [um]
Lundquist number, S
System size, A

Plasma

Magnetic Reconnectio

n Phase Space
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Adapted from Ji & Daughton Phys. Plasmas 2011
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Initial testing of the pulsed-power reconnection target on a I-MA driver
could quickly achieve interesting reconnection parameters

A 1-MA driver could access parameter regimes that are close

to the design points for FLARE and NIF

This would also provide a 1-MA platform development

opportunity before moving these targets to Z

Current [MA] / B-field [MG]
Mass density [mg/cc]
Electron density [#/cc]
Temperature [eV]

Alfvén velocity, v, [km/s]
Alfvén transit time, 7z, [ns]
Sweet-Parker width, dgp [umM]
lon skin depth, d, [um]
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System size, A
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Magnetic field / reconnection rate:

Return-can velocimetry
Micro B-dots?

Line VISAR?

Chordal Faraday rotation?
Chordal Zeeman splitting?

Morphology:

» Gated self-emission imaging

» Apertured PCDs / XRDs

?7?77?

A major challenge is how to diagnose these experiments

Density and temperature:
« Chordal and/or axial spectroscopy
* Volumetric dopants
* Visible interferometry?
« Thomson scattering?

Heating and/or particle acceleration:
» Chordal spectroscopy (bi-directional azimuthal flows)

« Surface dopants (beam-target interaction)
o 277

CLAYTON MYERS & CHRIS JENNINGS — MAGNETIC RECONNECTION — NEW IDEAS FORUM — OCTOBER 10, 2018



Pulsed-power (and Z in particular) can help to unravel multiple
18 I fundamental problems in magnetic reconnection

| * How does reconnection proceed so quickly? (The rate problem)

 Why is reconnection so impulsive? (The onset problem)
* How does reconnection take place in 3D? (The 3D problem)

* How does weak ionization affect reconnection? (The partial ionization problem)

 How do boundary conditions affect reconnection? (The boundary problem)
* How are particles energized by reconnection? (The energy problem)

* How to apply local reconnection physics to a large system? (The multi-scale problem)

W. Daughton et al. Nat. Phys. 2011
3D guide field reconnection with VPIC
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