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3 I Tutorial Overview

Parameter estimation
O Basic concepts
. Sensitivity Coefficients
. Parameter Estimation Algorithm(s)
. Optimal Experimental Design

O Example 1 — Quenching of lumped body
. Thermal Model & Sensitivity Study
. Simulated Data & Parameter Estimation

O Example 2 — Functionally-graded material
. Thermal Model
. Optimal Experimental Design
. Simulated Data & Parameter Estimation

O Example 3 — Estimating Temperature-Dependent and Anisotropic Material
Properties
. Experimental Approach
. 1D Results
. Thermal model
. Estimated parameters and Analysis
. Uncertainty
. 2D Results
. Thermal model
. Estimated parameters and Analysis
. Uncertainty



4 Basic Concepts



1 What is parameter estimation?
• Efficient use of experimental data for

determination of values appearing in a
mathematical model of an engineering system.

• Definitions:
— Data: measurements containing errors (temperature

data for heat conduction applications)

— Model: expression or solution algorithm (for
temperature)

— Parameters may be:

• material properties such as density, specific heat,
conductivity

• correlation coefficients in a formula:

Nu = A Refl2 Prfl3

• Constants related to a property

k = Po + PiT



6 I Transient heat conduction experiment:

Surface heating:
qo 0 < t < ti

q(t)
0 t > ti

Temperature data
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7 I Seek thermal properties k, a in model.

Mathematical
Model 
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Data
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Parameter
Estimation

1(T, - y)2

Other names for
Parameter estimation:
--Regression analysis
--System identification
--Data analysis



8 When can several parameters be estimated
simultaneously?

• If the measured temperatures are "sensitive" to
changes in each of the parameters.

• If you have the "right" data.

Quantify these ideas with sensitivity coefficients:

OT
Xi. =  where is the jth parameter

1 op,

The sensitivity coefficients must be

— large enough

— linearly independent



9 1 Scaled sensitivity coefficients are used in this
course

• Scaled Sensitivity Coefficients

OT
T /3 = je op,

• Scaled sensitivity coefficients will be used as metric for this
course
• Scale factor is the nominal parameter value

• Scaled sensitivity coefficient will have units of the result
(Temperature)
• Will allow for direct comparison of importance of various parameters
• Compare to measured response



1 Sensitivity coefficients

Large enough:

1 then T is sensitive to 181

0.01 then T is insensitive to fli

Linearly Dependent

c al;  +c,  al;  +...+cp al;  =oi afil a/32  afip

where two or more Ci are not zero

Linearly Independent

c al;  +c,  0771 +...+cp al;  =oi afil a/32  afip

only when all Ci = o



1

Determine linear independence — plots
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1 Determine linear independence — math

Combine all the sensitivity coefficients into a matrix,
with p columns (for p parameters)
and N rows (for N measurements):

x

aT1
8161
aT2
8161

aT1 
8132
87-'2
8132

•

aTN aTN aTN
8161 8132 *** aflp

The columns of sensitivity coefficient matrix
Xare linearly independent if:

det XTX # 0



I 3 1 Model linear in parameters

Example. Second-order polynomial in time

T (t) = 181 + At + 183t2

ATI= 'T = 1; X2 = 
1T 

=t; X - aT - t2
8131 8132 

, a/33

(Note sens. coeffs. are independent of parameters.)

A model linear in parameters can be written:

7; = 1 yv,„81 with data Yi and S = 1( Yi — T )2
J

Ordinary least square fitting of the model (minimize
S) is a matrix solution of the form Ab = B:

( x T yv )ks= XTY

bLs = (XTX) 1 XTY

where bLs is the least-squares estimate

0.5 1 1.5

time(sec)



14 I Model non-linear in parameters

For most heat transfer applications
• The model is non-linear in the parameters
• The sensitivity coefficients depend on the parameters
• An iterative solver is needed to fit the parameters
• The iterative Gauss method is well known:

bk+1 = bk + (xTyv) 1 [xi' 07— 01

for measurements Y and model ri

• Most computing environments (Excel, Matlab,
Mathematica, etc.) have a non-linear solver.



15 I Example l



16 I Example I. Quenching problem.

pcV,261,,T0 C)

T(t = 0) = To

hit (T — Too) = pVc 
dT T ; t>o

Solution: T (t) = Too + (To — Too) exp

or T(t)= 161 + 162 exp (—At)

p: density

V : Volume

c : Specific Heat

A, : Surface Area

i hAs t

pVc i

80

75

a
(L-70

sz%...
aco 65
%...
q)
fa.
E 60
a

55

50
0

To : Initial Temperature

h: Convection Coefficient

To : Fluid Temperature

A = 20 °C

)62 = 60 °C

)63 = 0.2 sec-1

0.5 1 1.5 2

time(sec)

Illypically, the experiment is conducted and data is collected
0, before assessing the model to identify what is possible

2.5



17 I Example I. Quenching problem.

Scaled sensitivity coefficients:

T(t)
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18 I Estimation of parameters from data

Synthetic data 0<t<3 sec
with 131 = 20, P2 = 60 , 133 = 0.2
added error a - 0.25 C

Parameter
Estimates

Exp 1

Estimates

Exp 2

T(t) = exp (— At)

(t) = T (t) +

80

ow 70
ca

B1 (20) 10.8841 26.1172

B2(60) 69.0291 54.2988

=Q-60

50
B3(0.2) 0.1672 0.2321

S = Z(Y, — T,)2 0.7940 0.8353

Matlab results using nlinfit
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I 9 I Results for Quenching Example

Exp I
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20 I Explain poor fit -- sensitivity coefficients

• Plot sensitivities for the actual parameter values
• Plot sensitivities for the actual time range

60

a 40
s'....
49 20
co

II 0a)
co
0
c)
-20

-40
0 1 2

time(sec)

Actual time range 0 < t < 3

3

60

-40
0 5

time(sec)

10

Improved time range 0 < t < 10



2 I

Tw= Pi+ A exp(—At)

I Sequential Estimates
80

a..... o a 0.4
sz 60 cLa' 0 . 5 .4. 0.20
co o o CU
CD .. . Z.
tz- 40 . . t3 oE ,....

1. .‘ 0

- z s CD

0.6

• +

I:4 -0.2_
20
0 5

time(sec)

10

Previous data 0<t<3 . . . too short.
Present data 0<t<10 . . . "right" data.

Estimated
parameter

13 2

13 3

Z(Y, — T,)2

0<t<3 0<t<10

10.8841 20.0913

69.0291 59.9413

0.1672 0.2007

0.7940 0.9796

-0.4
0

Residuals +

++

5

time(sec)

10

Sequential Estimates

5

time(sec)

10



22 I Lessons from quenching example

• Compare shape of the sensitivity coefficients for
actual experimental conditions — shape depends
strongly on parameters and time range.

• Sensitivity coefficients must be large and have
different shape to fit several parameters.

• Sequential estimates can show if you have the
"right" data (i.e. sufficiently long data record).

• Examine residuals to see if errors are randomly
distributed (good) or trending/biased (bad).



23 I Example 2.
Functionally-graded (FG) material

• Material (or structure) with properties that
vary though the thickness

• Graded property values are of interest to
improve thermal/mechanical performance

• May include composites, built-up structures,
metal foams, or any structure with variations
designed into the material

• Application: high-performance thermal
insulation for NASA



24 I FG Material with conductivity k(x)
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• k(x) = kav [1 + e(x/L — 0.5)] (W/m/K)

• C(x) = Ca, [1 + e(x/L — 0.5)] (J/m3/K)

• Parameters sought: ka, , Ca, , e



25 I Experiment for studying FG material

• On-off heating on one side

• Fixed temperature on other side

• Several temperature sensors

• Collect data during heating
and continue while
unheated

• Analyze data for desired
properties with parameter
estimation

Transient Heating

k(x) material

T=0



26 Computational Model
(solution method:finite difference) I

a  ( 
IC  

aT = C± 8T+  o < x+ <1ay+ ay+ , a (9
8T+ 1 e < Oh

k+ 
ax+ x=0 0 0 > 0 h

T (x+ = 1, 0) = 0

T (x + , 0 = 0) = 0

with dimensionless parameters

= C(x)
k+ = 1c(x) . C+

km, ' Cav

x+ =
x k
' T+ 

t = T —To
;t 9 =  ;

L Cav L2 q0L 1 km,

Transient Heating

1 1 1 1 1 1
•

k(x) material

T-0

L



27 I Sensitivity coefficients

• Minimization of error requires scaled
sensitivity coefficients (derivatives wrt
parameters bk)

Or
Xjk(i)=bk 

abk
• Finite difference approximation is used

+((1+s)bk)-T,+(bk)
Xik (i) ,tii bk 

77 
'

sbk

• Assembled into sensitivity matrix X



28 I Sensitivities and Optimality

• Sensitivities should be as large as possible.
• Sensitivities must be linearly independent to estimate
two or more parameters.

Given sensitivity matrix X, the optimal experiment is
found at the maximum value of the determinant of
matrix XTX:

I

D =  
1 

det(XTX)
1sn(Ti;,Fax)2

s — number of sensors
n — number of time steps



29 I Seek best experiment by varying:

• Number and location of sensors

• Duration of heating period

• Duration of entire data record

• Location of heating (x=0
or x=L)

• Apply to several different
spatial variations (slope, e)

Transient Heating

k(x) material

T=0



30 I Compare 2 Experimental Designs

Experiment 1:
Heat at x=0
with two sensors:
•Sensor at x=0.
•Sensor at x=1_14.

T T II T II T II

Experiment 2:
Two heating events with
one sensor each:
•Heat/sensor at x=0.
•Heat/sensor at x=L.

Seek optimum for each experimental design by varying heat
duration and data duration, for several values of slope e



3' I Calculated temperatures (e 0.2)

Experiment 1.
Heating at x=0, two sensors.

T
e
m
p
e
r
a
t
u
r
e
 r
is

e 

1

0.8 -

0.6 -

0.4

0.2

Sensor at:

 X-0

x=L/4

1 2 3

dimensionless time

Experiment 2
Separate heating events

T
e
m
p
e
r
a
t
u
r
e
 r
is
e 

1

0.8 -

0.6 -

0.4

0.2 -
Heat and sensor at:

X=0

 x=L

•

•

0 1 2 3

dimensionless time



32 I Sensitivity Coefficients (e 0.2)
Se
ns
it
iv
it
y 
Co

ef
f.

 

Experiment 1 .
_ Heating at x=0, two sensors.

0.8 -

0.4 -

0

-0.4

-

•

 k av

  C av

- - • - e

0 1 2 3

dimensionless time
4

Experiment 2.
_ Sensor at x=L

Se
ns

it
iv

it
y 
Co

ef
f.

 

0.8 -

0.4 -

0 -

-0.4

•

 k _av-
  C av
- • - • - e

0 1 2 3

dimensionless time
4



" I Optimality Criterion (for e 0.2), at several
heating durations.

Experiment 1.
x-O, x = L/4

Experiment 2. Sensors
Two heating events
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34 I Optimal Experiments

e Heat
time

Data
time

Max. D

value

Experiment

Design

1. Heat x=0, 0.2 2.3 2.8 1.7 E-06

sensors at 1.0 1.5 1.8 8.7 E-05

x=0, L/4. 1.8 1.5 1.7 1.2 E-03

2. Two heat 0.2 1.3 1.9 9.5 E-06
events, one 1.0 1.7 2.2 24. E-05
sensor each. 1.8 1.3 1.5 2.2 E-03

3. k = const. -- 2.25 3.0 2.0 E-01



35 I Simulated data analysis

• Compute Texact vs time from simulation of
optimal experiment

• Add noise: Tdata = T- exact + Ei
Ei= Zero mean, gaussian, additive error

• Analyze Tdata to estimate parameters



36 I Simulate Experiment I ,
two sensors, error 5% variance

1.2 -

1 —

0.8 -

0.4 -

0.2 -

0

••

sensor position

• x/L = 0

• x/L = 1/4

0 0.4 0.8 1.2 1.6 2

Dlmensionless time

Exact
value
s

Curv
e fit

kav 1.0 1.0148

Cav 1.0 1.0080

e 1.0 1.0388



37 I Analysis of optimum experiments (one heat
event and two sensors)

slope
e

Error
variance

% error
in kav

% error
in Cav

% error
in e

0.2 1% 0.22 0.92 13.9

1.0 1% 0.41 0.79 0.27

1.8 1% 0.39 0.14 0.14

0.2 5% 2.68 7.13 *

1.0 5% 1.48 0.80 3.88

1.8 5% 0.42 3.00 0.33

* No convergence



38 I Summary, Example 2 Functionally Graded
Material

• Best experiment combines two heat events,
heat/sensor at x=0 and at x=L. Because no interior
sensors are needed, this approach is non-invasive.

• Optimality criterion in D — det(XTX) gives best
heating duration and data record length, and gives
aid in choosing between two competing experiments.

• Optimal heat duration and data record duration
depend somewhat on spatial-variation slope, e.

• It is possible to fit three parameters (kav, Cav, e) with
data from two sensors, for data "not too noisy".

• More accurate parameter estimates are possible for
materials with larger x-variation in k (larger e); that is,
it is easier to "see" larger-e values.



39 I Example 3



Example: Estimating Directionally-Dependent
and Temperature-Dependent Properties

Carbon-Carbon has highly anisotropic thermal
properties kx,„ 1 k „),„ >io

High Temperature applications (tested from room
temperature to 625 °C

Fiber-Direction (xz-plane)
Silicon-Carbide Coating



41 I Temperature Dependent Properties

1D Experiments (ky,„,pC„) 8

25° C to 600° C 6

2D Experiments (ky,„,ky,„, pC„) tw
0.4

25° C to 400° C 0
c 
2

• Experimental Discussion

• 1 D Approach and Results

• 2D Approach and Results
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Experimental apparatus designed to estimate
42 properties of anisotropic carbon-carbon

.084
(.034)

mica
heater
assembly

13

zzz  • •• • •
.

composite specirnen 14

9 10 11 12

4 6
composite specimen

ceramic insulation

41 7.62 (3.00) ►

Sensor
number

Location

x ( cm ) y (cm)

3. 8 0.89 0
4. 9 1.91 0
5. 10 3.18 0
6. 11 4.45 0
7. 12 6.73 0
1. 13 1.27 0.91(4)
2. 14 6.35 0.91(Lo

Thermocouples attached to
2.54 CC Specimen (dia 0.01 in)
(1.00)

- Design allowed for 1D and 2D heat conduction within the
composite sample
• 3 independently controlled electric heaters (1/3 used for 2D)

- Thermocouples located along heater/composite interface and
composite/insulation interface
• Symmetric implementation

- Designed to estimate properties of a high conductivity material



43

Series of experiments conducted to cover the
temperature range

• Apparatus placed in an oven to specify
the initial temperature

• Electric heaters activated to impose a
transient

• Experimental design
• Specify heat flux for a "reasonable" AT

• Experimental duration longer than active
Heat Flux

Typical Experiment AT = I 5-20 °C

Te
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ur
e 
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C
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q(t)

q(t)

q(t)

Can maximize the available information with
Experimental Design

X20B50
e

.„......„.....s.

X22610
X22B5D

....-.'...-."---s",...--.."-

Heat
Flux

A

q= 0

— To

Geometry BCs Sensor Max D Opt (th) Opt (th)

Semi-Infinite
(Beck and Arnold)

(X2OBITO) Heated
Su rface
In-depth

0.00263 1.5 1.5

Semi-Infinite (X20B5TO) Heated 0.0055 1.2 1.2
(Taktak) Su rface

In-depth

Finite
(Beck and Arnold)

(X22B1OTO) Heated
Su rface

0.00098 1.2 1.2

Finite (X22BIOTO) x = 0 0.0058 0.65 0.65
(Beck and Arnold) x = I

Finite
(Beck and Arnold)

(X22B50T0) x = 0
x = I

0.0088 0.4 0.6

Finite (X21650TO) Heated 0.020 2.25 2.98
(Taktak) Su rface

Finite
(Taktak)

(X21650TO) Heated
Su rface

0.012 7 7

X22B50
(step)

X22610
(constant)

 ►

Optimality Criteria (Beck and Arnold, 1977)

D =  
1 

det(XT X)
sn(7;;IP ax)2



45 Analysis of the One Dimensional Experiments

Thermal model of apparatus (1D)

- Mica heater assembly (1/2)

- Ceramic Insultation

PROP1D (Beck Engineering
Consultants)

- Finite difference numerical solution

- Integrated with a Gauss method to
estimate parameters

bk+l bk+ P XTW —1 +U(u—b(k))1

P-1 (x-Twx-

for measurements Y and model

1 2 mica
heater

assembly

t

q = 0

ceramic insulation

1.2 4.13.1
composite specimen

re, 3.1.5.6.7.8.9.10.11.12

Ttftftttfttttttttttfttft 1nuen

Thermal Model -

525.0

520.0

515.0

510.0

505.0

500.0 
0

Heat Flux

10 20

time (seconds)

30

15000.0 "'",

10000.0 7;

5000.0 tj

0.0

Exp Measurements - Y



46 1 Thermal model includes ancillary materials thatwill affect the estimated parameters

Heater Assembly

• Electric heater imbedded in a mica
assembly

• Contact conductance between
heater and composite is unknown

• Short duration experiment
conducted to estimate effective
heater properties
• Conducted for each experiment

Ceramic Insulation

• Experiments conducted with
composite replaced by insulation
• Estimated for 2 temperatures (40 and 175
°C)
• 50% difference from values provided by
the manufacture

q = 0
\\\\\‘\\y‘\\\‘‘\\\‘\\\\\\\\\\\\\\\‘‘\\‘‘\\\\\\

1/2 mica
heater

assembly

ceramic insulation

1.2 4.13.1
composite specimen

rs 3.4.5.6.7.8.9.10.11.12

A.a"7"/ i"/"/"" " ""ZZ"/"" /Ala-AAAAA AAAÄAAAAAAAAAA

197

oa 196.5

W 195.5

sz 195

196

V

y = 0

y = Ly
1414i 1."6111){11" 4t:A/po,";" lett

194.5 
o 0.5 1 1.5

time(sec)
2



47 1 One-dimensional experiment

Typical experiment (T = 508 °C)
Exp Measurements - Y

525.0

520.0

515.0

7,5

510.0

505.0

500.0
0

Heat Flux

10 20

time (seconds)

30

ro

15000.0 ;:

10000.0 f:

5000.0 7'3

0.0 —

Confidence Intervals

coy CO ,'Z"-% (X T W X )1 S 2

y  \

k 
T

 (Y—T) 2
S

Standard Statistical Assumptions

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER
Vol. 9, No. 2, April—June 1995

Estimated Parameters

ky„ = 4.99 ± 0.05 W / m°C

pcc = 2.97x106 ± 0.02 J 1 m3°C

c:4
-0.3-

-0.5

Residuals, e = Y —

0 5 110 115 20 25 30

time (seconds)

35 40



1 Standard Statistical Assumptions for the
measurement errors

1. Additive measurement errors

2. Zero mean measurement error

3. Constant variance measurement error

4. Uncorrelated measurement error

5. easurement error is normal

6. Known statistical parameters for measurement error

7. Errorless independent variables

8. Constant parameters



49 I Sensitivity Coefficients and Sequential
Parameter Estimates
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50 Uncertainty analysis conducted to assess effect
of experimental uncertainty

Exp Uncertainty

Parameter
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5' Experimental Uncertainty Analysis (1 D)
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52 I Analysis of 2D Experiments

• Need a 2D heat conduction
solver

• Estimate three parameters
for each experiment
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Meas. Sci. Technol. 9 (1998) 877-887.
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54 I Analysis code for 2D parameter estimation

PROP2D (Developed at Michigan State in 1990s)

• Finite element solution (Topaz2D, LLNL)

• Converted to a subroutine and merged with a least-squares
solver

Dakota

• Implements algorithms for optimization, uncertainty, and least-
squares

• Leverages existing direct simulation programs

Parameters

Iterator

Application Interface

IFilter

r — — —

simulator
program

I Optional
Analysis Driver

L J

OFiltei) Responses
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6 I 1 Sequential Estimates
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62 I Uncertainty analysis (2D)
Exp
Parameter
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63 I Experimental Uncertainty Analysis (2D)
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64 I Summary for Example 3



" I Summary -- Parameter Estimation

• Parameter estimation is using experimental data to
find values in a mathematical model — i.e. for finding
thermal properties from a heat transfer experiment.

• Examine the sensitivity coefficients, which must be
large and independent for the conditions at hand.

• Optimality condition D is a formal way to assess the
size and level of independence of sensitivity coeffs.

• Examine the residuals (Tmodel — Tdata)• Are they
normally distributed (good) or biased/trending (bad)?

• Examine sequential estimates to observe the
variability in your estimates and to show if you have
the "right" data range.
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67 I Sequential Estimation over Experiments

• Typically experiments are analyzed individually

• Expand the analysis to estimate properties that are
functions of temperature using a sequential analysis

sn = 11 - tn)T ""n Yn tif ) 8 pn

• Function cannot be estimated from a single test, but
can be estimated through sequential estimation
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68 1 Estimating Parameters Sequentially
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER
Vol. 13, No. 3, July-September 1999

•Typical sum of squares function for exp n

S/I ( Y/1 — tn)T wn(Yry n) S pn

• Prior information
Pn = (un _ 1 — hn)I n - 1(un - 1 — bn)

= E E 111.k.n - 1(ii 1.n - t — bl.n )(11 - 1
k = I 1=1

• Estimation algorithm
n = 1

rl [bilk = w 1[1- 
— 

_ HT Hi;

'7(k) = va)T w va) + HT H
u 1

n>

enk)Fnk + I) _ n(k)1= x?)T wn r - ilk)] U - 1[11n - I —

u(k). x(pTiv,,x(p+u„_,

— hk.n)

Regularization term



Sequentially estimated temperature dependent
properties

• Two linear segments for each thermal property

• Estimated using 1D, 2D, and 1D&2D exps

Sequential Analysis Independent Analysis

•----• ID & 2D Exp

*- - -* 2D Exp
+- - -. 1D Exp

2D Exp

ID Exp

IN

O

200 300 400

Temperature. °C

500 600

Temp. 'C

pC ky k,
- 63), (b4 - b6), (b7 - b9).

J/m3°C W/m°C Whn -C

One-dimensional experiments
(al = a2 = 0.5E -12), (a4 = a5 = 0.25)

30
260
525

1.41 1 0.003 3.35 1 0.013
2.56 1 0.006 4.60 1 0.019
3.06 1 0.009 4.85 f 0.022

Two-dimensional erperiments
(a1 = a2 =0.5E-12), (a4 = as = 1.0), (a7 = a8 =0.05)

65 1.52 1 0.008 3.82 1 0.078 59.510.89
250 2.29 1 0.008 4.76 1 0.056 61.210.59
430 2.71 f 0.012 5.17 1 0.065 56.910.68

One- and two-dimensional experiments
(a1 = a2=0.5E-12),(a4 =a5=0.25),(cp=a8=0.05)

30 1.41 1 0.004 3.32 1 0.021 61.011.0
260 2.34 1 0.007 4.81 f 0.034 60.510.57
525 2.98 f 0.016 5.01 f 0.052 55.7 f 1.22



1 Optimal Design of an Experiment to estimate
temperature varying properties

Study Experimental Design to estimate linearly
varying thermal properties

k,—k1 T —Ti = - c„-c,(T — T1 )iaT
ax+
a 1[1+ - k - 

7,)]
x _ 1 —

C1 T 2- T 1 at-, T 2 1 a 

k2-k1 C 2- C1 T —T1

k1 C1 T 2- T
 Parameter Groups (0.66, 1.22, 1.0)

(X1T

A .7,
(x+)Tx.+

(T,+„ax)2NtNs

Pi  ar  P2  aT Pp  ar
.0"x0 0131 (40"A-011)a132 • • • WA-041013p]



7 1 I Proposed Experimental Approaches and

Sensitivity Coefficients
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72 I Optimal Experimental Design
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74 I Tutorial Overview

Inverse Heat Conduction
O Basic concepts

O Damping and lagging

O Solution methods and examples



75 I Inverse Heat Conduction Problem

• What is the Inverse Heat Conduction Problem
(IHCP)?

• Stolz Method

• Damping and Lagging —> ill-posed

• Future Times (Function Specification) Method

• Tikhonov Regularization Method

• Singular Value Decomposition Method

• Summary



76 DimensionlessVariables

Xd
X =

L

at
dt = 

L2

qd 
q=

q ref

T=
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(grefL 1 k)
x



77 I What is the IHCP?

• "Usual" or forward heat conduction problem:

C Given:
82T aT
ax2 at
aT
ax
aT
ax

= q(t)
x=0

x=1

=1

T (x,0) = o(x)

Find:
T (xi,t) a)

E
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1.4

1.2

0.8

0.6

0.4

0.2
0

q(t)

X 
0.5 1 1.5 2 2.5 3 3.5 4.5

I
X 
time

X



78 I Nature of Boundary IHCP

• This is a function estimation problem

— Requires estimation of a "large" number of
unknown parameters q(ti)

• The problem is ill-posed in the sense of
Hadamard

— Solution may not exist or may not be unique

— Solution does not depend continuously on the
data (T(xi, t1))

• Noise in data is amplified in the solution



79 I Piecewise Constant Heat Flux

• Consider a piecewise-constant representation
of the boundary heat flux

— Note fluxes are "centered" at the "t-1/2" times

q(t)

qM

q3

q2

ql



8° I Forward Problem Solution

• For the piece-wise constant heat flux
representation, the solution for the linear
forward heat conduction problem can be
written as

where

x
OT

Oq

T = Xq

t=ti



81 I Forward Problem — Property I

• Due to the parabolic nature of the heat conduction
process, the X matrix is lower triangular

XII 0 0 • •• 0 0

X2 1 x22 0 • • • 0 0
• • .
• • . :
• • . o .
XM1 ••• Xmm- 1 Xmm- O O

•
•

XN1 XN 2 • • •

•

XNN-2 XNN-1 XNN _

— Physically, this means the current temperature only
depends on all the past and current heat flux
components



82 I Forward Problem — Property 2

• A further property of the X matrix is that each
column is the same — only shifted down one
position
This makes values along each band the same (this
is called a Toeplitz matrix)



83 I Stolz Method for IHCP (1960)

• Stolz realized, with the lower-
triangular form of the X matrix, that
the model values T = Xq can be
written sequentially:

= A7141
T2 = A7241+x142

x-341+x-242 + x-;43
•
•
•

M-1

Tm =IA7m+ j+ X14m

• Then the heat fluxes can be found
sequentially by exactly matching the
model to the data, Y = T:

-X241

A7l

â Y3 X341 X242 
"/3 

Xl

i=

Xi



84 I Sensitivity Coefficients

q(t)

• The first column of the X matrix is the solution of
the forward problem to a unit heat flux pulse of
width At
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85 I Example

0.8

0 6
LL

a)
0 4

0.2

0

• Consider heat flux that is quartic in time:

4

q(t) =
— 4t3 + 4t2 t

start 
< t < t

stop

0 otherwise
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time
3.5 4 4.5 5

1.4

1.2

sa_3
a )

0.8

0.6

E
CD1- 0.4

0.2

Start of heat flux

x=L

0 5 1.5 2 2.5

time
3.5 4 4.5



86 I Damping and Lagging

• Temperature at an interior point are both
damped and lagged with respect to the
surface response

1.4

1.2

0 6a)

0.4

0.2

damping

Start of heat flux
lagging

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time



87 I Stoltz Method - At = 0.5

1.2
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88 I Stolz Method - At = 0.25
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89 I Stolz Method - At = 0.20

1
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90 I III-posed problem

• As time steps get smaller, the inverse
solution becomes more unstable

— This is apparent from the Stolz algorithm
and consideration of the X1 term

qM

YM

m-1

Xm j+14i

j=1

+X1qj

0.06

0.05

0.04

(/) 0.03
c
a)

0 02

0.01

At=0.05

0.05 0.1 0.15 0.2 0.25 0.3 0.35

time
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9' I Function Specification Method

• To combat ill-posedness resulting from exact
matching while retaining a sequential method,
Beck developed the Function Specification
Method
— Assume a defining form for the unknown heat flux
(piece-wise constant, piece-wise linear, etc)

— Minimize sum of squared error between model-
computed temperature and measurement

— Consider limited subset of available data (say r time
steps) beginning at current time tM

— Invoke temporary assumption that current variation of
heat flux does not change



92 I Function Specification Method(2)

• Assume simplest (piece-wise constant) q(t)

• Partition T(q) assuming ch, ..., qM-1 are known

Ti
T2
.
•
•

TM
•
•
.

TM+r-1

Xl 0 0

X2 X1 0

• .
• .
• •

•

.

• • •

. • •

0 0

0 0

q1
q2
.
•
•

x • • •m  x2
•
•
•

x N x N-1

X1 0 0
•
•
•

• • • X3 X2 X1

qm
•
•
.

qM+r-1



93 I Function Specification Method (3)

TM

Tm+1
•

TM+r-1

XM

Xm+1
•

XM+r-1

• • •

• • •

X3 X2

X4 X3

•
•
•

X r+2 X r+1

x1

X2 X1

.•

0

0

0

X • • • X xr 2 1
- rxr

TM->M+r-1 = Xrxr4M->M+r-1+T.

ql

q2
•
•
•

qM

qM +1

M +r-

lx(M -1)

rxl

Known
components

Unknown
components



94 I Function Specification (4)

• Final assumption is the temporary assumption that
the assumed heat flux variation is unchanged over
the next r time steps

• For the piece-wise constant assumption:

4M 4M +1 • • • 4,-+,-1
eii,,,,m+r 1 = 1 • • • 1]7:zid 4,

• So the model equation becomes

Tiv,m+, = Xrxrp 1 • • • l]Trx14111



95 I Function Specification (5)

• Note

Xrxr [1 1 • • • 1frx1

• Now minimize the sum of squared errors:

s = (yr -,c4,,, -Ft

ds =2,C
r 
(yr -xr4„, + t

cr4m 

41 • • • 4M-1

T

-Yr ,c4m -Ft

) 

=0
41 • • • 4M-1



96  Function Specification (6)

• Finally, the estimation equation is obtained

Vr (Yr +- Xr4m i )= 0

41•••4A1-1

-1 ( i
4m = ( XrT X1, ) X )L7,, -i

1rk=1

41' • /4M-1 ))

( k r M-1

IX i 17M+k-1 14 -4 Y J Al- j+ki=1 i j=1 i

r ( k 
2

k=1 i=1 )



97 I Example — Function Specification

• With r=1, this is the same as Stolz method:

1
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1 *1
* Function Specification

Exact

r = 1, At= 0.20

0 0.5 1 1.5 2 2.5

time
3 3.5 4 4.5 5



98 Example — Function Specification

• With r=3, dt can be much smaller:

1.2

1
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X
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" Example — Function Specification

• With noisy data and r=6:

1.2

0.2

-0.2
0 0.5 1.5 2.5

time

* Function Specification

Exact

r = 6, At= 0.05

gaussian noise sigma = 0.010
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100  Tikhonov Regularization (I)

• Is a "batch processing" or whole time
domain method

— Contrasted with the sequential nature of Stolz
or Function Specification Method

• Stabilizes the solution by penalizing unwanted
variations in the solution for q

— Zeroth order — penalizes function value

— First order — penalizes function time derivative

— Etc.



1 Tikhonov Regularization (2)
• Zeroth order (TRO) s=(Y-T)T(Y-T)+aoqTq

• First order (TR1) s=(Y-T)T (Y - T) + aiciTHTHq

where H is a matrix operator the
approximates the first time derivative, e.g.

( aq 1
at , At

-1 1 0 • • • 0 
-1 1 • • • 0

•
. .

o o

0 
• • •

• • • -1 1

0 0 0

q 1 Hq
At

— Note the 1/At is generally absorbed into the al



10
2 1 Tikhonov Regularization (3)

• Now minimizing the sum of squares with
respect to the unknown vector q.

• For TR1:

dS
=-2XT (Y -Xq)T + 2a1HTHq = 0

dq

2XT (Xq -Y) +2a1HTHq = 0

(XTX+ a1HTH)q - XTY = 0

4 = (xTx+ all-ITH) 1 XTY

• For TRO:

q =(xTx+ aoI) 1 XTY



w3 I Tikhonov Regularization (4)

• Example — TRO with no noise in data

1
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1 °4 I Tikhonov Regularization (5)

• Example — TRO WITH noise in data
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I Tikhonov Regularization (6)
• Example — TR1 WITH noise in data
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,06 I Singular Value Decomposition (SVD)

• Method is ostensibly a batch or whole time
domain method

• Based on numerical decomposition of the
coefficient matrix by standard techniques

• Regularization afforded by discarding near-
zero entries in the coefficient matrix that
causes the near singularity



I SVD Method (I)
• Based on direct matching of the model

equation to the data:
Y = Xq

• This is inverted directly to yield the estimates:

cf= 'CY

• However, the entries of X can be small,
leading to a near-singular matrix, which is a
manifestation of the ill-posed nature of the
inverse problem



I SVD Method (2)
• To address the instability, the matrix X is first
decomposed (or factored) using the singular
value decomposition method into

X = UWVT

— U is a column orthogonal matrix
— W is a diagonal matrix of the singular values
— V is another orthogonal matrix

• This decomposition is a built-in function call in
MatLab:

[U,N IT ,17]= svd(X)



I SVD Method (3)
• One benefit of SVD is that the inverse of

the matrix is easily computed:

X-1 = vw-1UT

— Note that W-1 is easily computed since W
is a diagonal matrix

\V-1
1/ w1 ••• 0
. . 
• • •
• • •

0 ••• 1/ wii_



'o I SVD Method (4)

• Regularization in the SVD method is
introduced by simply eliminating the near-
zero (singular) values of the W matrix.
— The singular values are ordered, largest to
smallest, along the diagonal of W as a result
of the SVD operation

• The corresponding columns of the U and V
matrices are also discarded



i; I SVD Method (5)

• If the first n eigen values are retained

x-1
(v) NxIleigen

( W-1 )

neigenXneigen

(uT
) 11eigenxN

• Then the heat fluxes are estimated as

ti Nxneigen) Wneigenxneigen neigen )T



I SVD Method (6)
• SVD with no noise in data

1.2
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SVD Method (7)

• SVD with noise in data

1.2
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'4' I Summary of Inverse Heat Conduction

• Inverse heat conduction is ill-posed
• Solution is not unique (or may not exist)
• Noise in data is amplified in solution
• Exact matching (Stolz) goes unstable for small time steps

• All IHCP methods have an adjustable parameter to
tame the instability:
• Specify the functional form of q with future times (Beck)
• Limit variation in q or dq/dt (Tikhonov)
• Throw out eigenvalues that allow rapid variation in q-values

(singular value decomposition)
• Parameter estimation perspective on IHCP:

• Seek many parameters q i -- tends to make Xdependent
• Thus XTX (or X) has a badly behaved inverse
• IHCP methods improve (XTX)-1 (or X-1) in someway
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117 I Back-ups
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I Temperature Dependent Properties
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1 Sensitivity Coefficients for the one-dimensional
experiment
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