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+ | Basic Concepts




* I What is parameter estimation?

 Efficient use of experimental data for
determination of values appearing in a
mathematical model of an engineering system.

 Definitions:
— Data: measurements containing errors (temperature
data for heat conduction applications)

— Model: expression or solution algorithm (for
temperature)

— Parameters may be:

* material properties such as density, specific heat,

conductivity
» correlation coefficients in a formula:

Nu = 3 Re”* Pr”
» Constants related to a property

k= ,B()+ ,31T
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Transient heat conduction experiment:

: Surface heating: D 1
) q, 0<t<y x 08
q\l) = T oal
0 t>¢ 5 06
Temperature data T 0.4]
0.2}
KY(xlati)ay('Xé:ti) J
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Dimensionless time
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Seek thermal properties k, a in model.

Mathematical
Model
/82T _leor h
ox* «a Ot
oT
k—| =—q(t
ol q(?)
T(L,t)=0

Measured

Data

Y('xlati)a
Y(x,,t,)

CTE0=T,(x)

Parameter

Estimation
e B

Y (T-%)

o 4

Other names for
Parameter estimation:
--Regression analysis
--System identification
--Data analysis



* I When can several parameters be estimated
simultaneously?

» |f the measured temperatures are “sensitive” to
changes in each of the parameters.
« If you have the “right” data.

Quantify these ideas with sensitivity coefficients:

T . .
X. = g ~ where £, 1s the jth parameter

y

J

The sensitivity coefficients must be
— large enough
— linearly independent



» I Scaled sensitivity coefficients are used in this
course

* Scaled Sensitivity Coetficients

-5
op
* Scaled sensitivity coetficients will be used as metric for this

coursce
* Scale factor is the nominal parameter value

* Scaled sensitivity coefficient will have units of the result
(Temperature)

e Will allow for direct comparison of importance of various parameters
* Compare to measured response




Sensitivity coefficients

Large enough:
oT { 1 then 7' 1s sensitive to ,Bj

" 0B I ~10.01 then T is insensitive to B,
Linearly Dependent
i +C, a—T ..+C E:O

o T op, " op,

where two or more C; are not zero

Linearly Independent

or, O . 9T _,

ot
o, 5,32 " op,

only whenall C; = 0

C,—
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Determine linear independence — plots
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2 I Determine linear independence — math

Combine all the sensitivity coefficients into a matrix,
with p columns (for p parameters)
and N rows (for N measurements):

o1, oT, O, |
op, dp, B,
or, or, 0T,
X=|0p 0p op,
oT, 0oT, oT,

0B, 8B, 9B, |

The columns of sensitivity coefficient matrix
X are linearly independent if:

det\XTX\ £0



s 1 Model linear in parameters

N

Example. Second-order polynomial in time
T(t)= 161 +182t+183t2

v O . o _or_ ., _or_,

W

Scaled Senit
N

Y

(=]

(Note sens. coeffs. are independent of parameters.)

A model linear in parameters can be written:

T.=> X,  withdata, and § :Z(Yi —Z)z
J

Ordinary least square fitting of the model (minimize
S) is a matrix solution of the form Ab = B:

(X" X)b,s=X"Y

b =(X"X) XY

where b, 1s the least-squares estimate

0.5

1
time(sec)

1.5



“ 1 Model non-linear in parameters

For most heat transfer applications

 The model is non-linear in the parameters

* The sensitivity coefficients depend on the parameters
* An iterative solver is needed to fit the parameters
The iterative Gauss method is well known:

B ="+ (XTX) [ XT(Y-n)]

for measurements Y and model 7

Most computing environments (Excel, Matlab,
Mathematica, etc.) have a non-linear solver.



s | Example |




|6| Example |I. Quenching problem.

cVi, AT O
P V; 580 p :density
V :Volume

1, : Initial Temperature

h : Convection Coefficient

h, T " c : Specific Heat T :Fluid Temperature
A_ :Surface Area
T(t=0)=T ¥
(t=0)=T] - 75} S, =20"°C
hA (T -T,)=pVe—; t>0 & ol B,=60°C |
dt £ B, =02sec”
hd ) £ '
Solution: 7(¢)=T_+(T1, —T_)exp| —— S
O=L+(%-1.) p( chjE‘“"
or T'(t) = f, + B, exp(~fit) il
0 0.5 1 15 ) 25
time(sec)




Example I. Quenching problem. |

N
S

0.5 1 1.5 2 2.5 3
time(sec)

(=)

Scaled sensitivity coefficients: ‘
__ 80
T(t)=p+p, eXp(—,B3t) 08_
2 60
s p S
1 181 1 % 40t
(%]
:Bz Fz = [, exp(—f;t) g 20 |
oT S
py—=-p.pitexp(-fit) & o
B S |
& |
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Estimation of parameters from data

Synthetic data 0<t<3 sec T(¢)= B, + B, exp(~fit)
with B, = 20, B, =60, B5= 0.2 Y(t)=T(t)+¢
added errorc =0.25C 80
Parameter Estimates Estimates oE’:
Exp 1 Exp 2 £70
B, (20) 10.8841 26.1172 -
g—eo-
B, (60) 69.0291 54.2988 S
50
B,4(0.2) 0.1672 0.2321
time(sec)
S=2(Y,-T)? 0.7940 0.8353 0.4
) 0.2
T of
Matlab results using nlinfit T§-o.2
(V]
X 04}
-0.6 : -
0 1 2 3

time(sec)
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Results for Quenching Example
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» I Explain poor fit -- sensitivity coefficients

* Plot sensitivities for the actual parameter values
* Plot sensitivities for the actual time range

60 v - 60
O 40} O 40}
L L
S 20} S 20 —
%] %]
g o g 0 -
n -20¢ n -20} ]
-40 - : -40 '
0 1 2 3 0 5 10
time(sec) time(sec)
Actual time range 0 <t<3 Improved time range 0 <t <10



2 I Sequential Estimates

D

80 -
o T(t)= B, + B, exp(-pBit)
_
060
S
A
S
2 40}
5
I~
20 :
0 5
time(sec)

10

Previous data 0<t<3. . . too short.
Present data 0<t<10. . . “right” data.

Estimated 0<t<3 0<t<10
parameter

B, 10.8841
B 69.0291
Bs 0.1672
S(Y,—T))? 0.7940

20.0913

59.941

0.2007

0.9796

0.6 -
Residuals *
o 04
U +
% 0.2t *
= + +4
% or+ + T+ ++
@ +
X 0.2 + 4 )
* 4
-0.4
0 5 10
time(sec)

-3
o

o

Parameter Variation (%)
n

(3]

Sequential Estimates

-
o
o

e |
L
5

10
time(sec)



2 I Lessons from quenching example

« Compare shape of the sensitivity coefficients for
actual experimental conditions — shape depends
strongly on parameters and time range.

« Sensitivity coefficients must be large and have
different shape to fit several parameters.

« Sequential estimates can show if you have the
“right” data (i.e. sufficiently long data record).

« Examine residuals to see if errors are randomly
distributed (good) or trending/biased (bad).



» I Example 2.
Functionally-graded (FG) material

« Material (or structure) with properties that
vary though the thickness

« Graded property values are of interest to
improve thermal/mechanical performance

« May include composites, built-up structures,
metal foams, or any structure with variations
designed into the material

 Application: high-performance thermal
insulation for NASA



#» I FG Material with conductivity k(x)

] e _
N ] 0.2 -7
o 15 _ 1o //’ _
x . 18 e —
O : _______ /// -

- ///
C 1 =
) — -

_ ///

— / ”~
- 05 — — ///
< n -
= 1 -
£ o071 .-

I | I | I | I | I
0 0.2 0.4 0.6 0.8
x/L

o k(x) =k, [1 + e(xX/L—-0.5)] (W/m/K)
« C(x)=C, [1+e(x/L-0.5)] (J/m3K)
« Parameters sought: k_,, C,, , €



» I Experiment for studying FG material

. On-off heating on one side Transient Heating

* Fixed temperature on other side l l 1 l l l

» Several temperature sensors " *

S

« Collect data during heating § .

and continue while 2 o
unheated k(x) material

* Analyze data for desired
properties with parameter
estimation

T=0



Computational Model

26

(solution method:finite difference)

g (k 8T):C+8T 0<x" <1
ox* ox* 06

Transient Heating

k(x) material )

T=0

v oL ={1 " HEEEN
ox'| _, |0 0>96,
T(x' =1,0)=0 5
T(x*,6=0)=0 5 ks
with dimensionless parameters
b= k(X); v C)
k C




7 I Sensitivity coefficients

* Minimization of error requires scaled
sensitivity coefficients (derivatives wrt

parameters b,) oT*
Xjk (i) = b, ab]k

 Finite difference approximation is used

X, (i)=D, ];((l-l_g)bk)_];(bk)

&b,

« Assembled into sensitivity matrix X



» I Sensitivities and Optimality

« Sensitivities should be as large as possible.

« Sensitivities must be linearly independent to estimate
two or more parameters.

Given sensitivity matrix X, the optimal experiment is
found at the maximum value of the determinant of

matrix XTX:

D = 1+ —det(X' X)
sn(T

max

s — number of sensors
n — number of time steps
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Seek best experiment by varying:

Number and location of sensors Transient Heating
Duration of heating period l l l l l l

Duration of entire data record v

Location of heating (x=0 L e

or x=L) Z o

Apply to several different ) © ¢ | )
spatial variations (slope, e) k(x) material

T=0



© I Compare 2 Experimental Designs

Experiment 1: Experiment 2:

Heat at x=0 Two heating events with
with two sensors: one sensor each:
*oenseratx=u. Heat/sensor at x=0.

*Sensor at x=L/4. *Heat/sensor at x=L.

T T

[ |

Seek optimum for each experimental design by varying heat
duration and data duration, for several values of slope e
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Calculated temperatures (e = 0.2)

Experiment 1.

Temperature rise

1 4

0.8 —

0.6 —

0.4 —

0.2

Heating at x=0, two sensors.

dimensionless time

Experiment 2.

Temperature rise

1 —

0.8 —

0.6 —

0.4 —

0.2

Separate heating events

dimensionless time



2 I Sensitivity Coefficients (e = 0.2)

Experiment 1. Experiment 2.

Heating at x=0, two sensors. Sensor at x=L

0.8 —
e =
) )
o o

@) O 044
= =
= >
o c
$ [0)

7)) 0 —

-04

dimensionless time dimensionless time



» I Optimality Criterion (for e = 0.2), at several
heating durations.

Experiment 1. Experiment 2. Sensors
x=0, x =L/4 Two heating events
2.0E-006 — 1e-005 —
1.6E-006 — 8e-006 —
< 1.2E-006 — . 6e-006 —
© 8.0E-007 — S 4e-006 —
4.0E-007 26-006
0.0E+000 0




# 1 Optimal Experiments

Experiment e |Heat |Data |[Max. D
Design time |time |yalue
1. Heat x=0, |0.2| 2.3 2.8 | 1.7 E-06
sensorsat|1.0| 1.5 1.8 | 8.7 E-05
x=0, L/4.|1.8] 1.5 1.7 | 1.2 E-03
2. Two heat 0.2 1.3 1.9 | 9.5 E-06
events, one 1.0| 1.7 2.2 | 24. E-05
sensoreach. |(1.8| 1.3 | 1.5 | 2.2 E-03
3. k = const. -- 12.25 | 3.0 | 2.0 E-01




» I Simulated data analysis

« Compute T, Vs time from simulation of
optimal experiment

&= Zero mean, gaussian, additive error

* Analyze T 4,10 estimate parameters
Kavs Cavs €.



* I Simulate Experiment |,

two sensors, error 5% variance

Temperature

1.2 4

0.8 7

0.6 7

0.4 7]

0.2 H

sensor position

Exact Curv

value e fit

S
Ky 1.0 1.0148
Cay 1.0 1.0080
e 1.0 1.0388

@® x/L=0
| xIL=1/4
]
0.8 1.2

DImensionless time



7 I Analysis of optimum experiments (one heat
event and two sensors)

slope Error % error | % error | % error

e variance in Ky, in C,y in e
0.2 1% 0.22 0.92 13.9
1.0 1% 0.41 0.79 0.27
1.8 1% 0.39 0.14 0.14
0.2 5% 2.68 7.13 x

1.0 5% 1.48 0.80 3.88
1.8 5% 0.42 3.00 0.33

* No convergence




Summary, Example 2 Functionally Graded
Material

» Best experiment combines two heat events,
heat/sensor at x=0 and at x=L. Because no interior
sensors are needed, this approach is non-invasive.

« Optimality criterion in D ~ det(XTX) gives best
heating duration and data record length, and gives
aid in choosing between two competing experiments.

« Optimal heat duration and data record duration
depend somewhat on spatial-variation slope, e.

- Itis possible to fit three parameters (k,,, C,,, €) with
data from two sensors, for data “not too noisy”.

 More accurate parameter estimates are possible for
materials with larger x-variation in k (larger e); that is,
it is easier to “see” larger-e values.



3 | Example 3




© I Example: Estimating Directionally-Dependent
and Temperature-Dependent Properties

Carbon-Carbon has highly anisotropic thermal
properties &,../k,. >10

High Temperature applications (tested from room
temperature to 625 °C

* Fiber-Direction (xz-plane)
Silicon-Carbide Coating




+ I Temperature Dependent Properties |

1D Experiments (%,,,,poC,,) 8 : . : ‘
k. /10
25°C t0 600°C N
2D Expetiments (k, .k, ..pC.) £ Rt
Q4 & +F = e +
25°C to 400°C o |« " o 9
Q o ©® ° ° ° °
2 o ® % 7 5C /1x10°
° I i ; 0 . . .
Experimental Discussion 0 200 700 P
* 1D Approach and Results Temperature(°C)

» 2D Approach and Results



Experimental apparatus designed to estimate
2 1 properties of anisotropic carbon-carbon

Location
Sensor
ceramic insulation number x (cm) y (cm)
3.8 0.89 0
; 4,9 1.91 0
e - - 510 318 0
{034 : composite specimen 6, 11 445 0
8 9 0 1 12 712 673 0
‘ //JS///////EI//// Em%yymm 1, 13 127 0.91(Ly)
4 8 S ok e |4 oy 2.14 635  091(L)
) composite specimen . (-
mica " " i Thermocouples attached to
heater . . .
assembly - : 5 CC Specimen (dia 0.01 in)
ceramic insulation =
1(1.00)
7.62 (3.00) - e

- Design allowed for 1D and 2D heat conduction within the
composite sample

> 3 independently controlled electric heaters (1/3 used for 2D)

- Thermocouples located along heater/composite interface and
composite/insulation interface
o Symmetric implementation

- Designed to estimate properties of a high conductivity material



Series of experiments conducted to cover the

“# I temperature range

» Apparatus placed in an oven to specify

the initial temperature

 Electric heaters activated to impose a
transient

» Experimental design
» Specify heat flux for a “reasonable” AT

« Experimental duration longer than active
Heat Flux

Typical Ex

Temperature (C)

525.0

periment AT = 15-20 °C

520.0+

515.0

510.0

505.0

Heat Flux

rt
) =)

Prope

-15000.0
-10000.0

500.0
0

1 Y 1
10 20
time (seconds)

T
30

™
o
o

o

Heat Flux (W/m?)

£

N

o

........................

......
.........

+
+-|.++

(o]
e® o ©
o 09 ®

200 400 600
Temperature(°C)




Can maximize the available information with
Experimental Design

1.5

q(t) X20B50 Semi-Infinite (X20BITO)  Heated  0.00263 1.5
(Beck and Arnold) Surface
In-depth
Semi-Infinite (X20B5TO0) Heated 0.0055 1.2 .2
(Taktak) Surface
q(?) X22B50 g= 0 Finite (X22BIOTO)  Heated 0.00098 1.2 1.2
—) S0 g= (Beck and Arnold) Surface
Finite (X22BIOTO) x=0 0.0058 0.65 0.65
| (Beck and Arnold) x =
Finite (X22B50T0) x=0 0.0088 0.4 0.6
(Beck and Arnold) x =1
q(t) X21B>5 _T Finite (X21B50T0) Heated 0.020 2.25 2.98
—) o (Taktak) Surface
Finite (X21B50T0) Heated 0.012 7 7
(Taktak) Surface
A
Heat | X22B50 X22BI 0 Optimality Criteria (Beck and Arnold, 1977)
Flux | (step) constant 1 ¥
(constant) = _det(X"X)
» SI’Z(T




= I Analysis of the One Dimensional Experiments |
Thermal model of apparatus (1D) | 1 “ ‘
ok ceramic insulation Lo
- Mica heater assembly (1/2) e - !
- Ceramic Insultation Sl N ey L
PROP1D (Beck Engineering o T
Consultants) Thermal Model - 7
- Finite difference numerical solution o -
- Integrated with a Gauss method to -0
estimate parameters
b =bt 4P| XTW (YT )+ Uu—-b")| § |
pl— ( YTWX + U) R TE NE T ‘
Exp Measurements - Y

for measurements Y and model T



Thermal model includes ancillary materials that
will affect the estimated parameters

46

Heater Assembly | : f

+ Electric heater imbedded in a mica A mmemuee
assem b Iy * }.\ composi.tcli:éi;éléimen X[_
« Contact conductance between TTTTTTIvivivee T
heater and composite is unknown TTTTTTTTTTTTTﬁTTTTTTTTTTTTT T

« Short duration experiment
conducted to estimate effective 197

heater properties O 196.5
» Conducted for each experiment oig 106
2 .
Ceramic Insulation s
. _ &195.5
* Experiments conducted with £ ool ek
: . : 0 195} Bt s
composite replaced by insulation

 Estimated for 2 temperatures (40 and 175  194.5
OC)

* 50% difference from values provided by
the manufacture

0 0.5 1 1.5 2
time(sec)



7 1 One-dimensional experiment

Typical experiment (1" = 508 °C)

Exp Measurements - Y

525.0 T T T T T

520.0

515.04

Temperature (C)

510.0 —
Heat Flux E

505'0_ €a ux -" 1 5000.0 5
-10000.0 =

-5000.0 %

500.0 T T - T . T 0.0 =

0 10 20 30
time (seconds)

Confidence Intervals

Estimated Parameters

k

y

pC. =297x10°£0.02 J/m>*C

. =4.99%0.05 W /m’C

cov(h) = (X TWx ) s

AN\T A

L oT) (-7
h—p

Standard Statistical Assumptions

S

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER
Vol. 9. No. 2, April-June 1995

Residual (C)

0.5

0.3

Residuals, e=Y —-T

T

rms(e)=0.096"C

_0.34 —— sensor(y =Ly) .
----- sensor (y = 0) 1
-05 T T T T T T T
0 5 10 15 20 25 30 35

time (seconds)



© I Standard Statistical Assumptions for the
measurement errors

1. Additive measurement errors

2. Z.ero mean measurement error

3. Constant variance measurement error

4. Uncorrelated measurement error

5. Measurement error 1s normal

6. Known statistical parameters for measurement error
7. Errorless independent variables

8. Constant parameters
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Sensitivity Coefficients (C)

Sensitivity Coefficients and Sequential

Parameter Estimates

Scaled Sensitvity Coefficients

— \I I
~
- = y: y

I

T
20

time (seconds)

T
10

40

Thermal Conductivity (W/mC)

Sequential Estimates

6.0 T T T T T T T

v’— (pC) cc
5'°‘v Ky, ce
4.0
3.0 o e

k.. :0.9% variation >15 sec

201 pC.. :3.5% variation >15 sec
1.0+
0.0

© 5 10 15 20 25 30 35

3.2E+06

-2.BE+06

-2.4E+06

-2.0E+086

-1.6E+08

1.2E+06

~8.0E+05

~4.0E+05

time (seconds)

0.0E+00
0

Volunietric Heat Capacity (J/m>C)



© I Uncertainty analysis conducted to assess effect
of experimental uncertainty

Exp

Parameter

Yi

mica

pCmica

ins

pCins

Uncertainty

A

74

125 W/m?
0.05 mm
0.025mm
20%

20%

20%

20%

2_2 A, (SfiAzjz/Ag

Pl Ky Pl Ky
J(m3C) WImCQC) (%) (%)
0.033 0.049 0.162 0.345
0.016 0.027 0.038 0.105
0.014 0.015 0.029 0.032
0.04 0.0 0237 0
0.06 0.06 0.534 0.518
0.0 0.0 0 0
0.0 0.0 0 0
0.082 0.083

eater
assembly

q 0

ceramic insul

ation

1.2.13,14
composite specimen
13.4.5,6,7,89.10,11,12

i

i

-

Uncertainty due to measurement error

k,..=4.99£0.05 W/m'C
pC. =2.97x10°+0.02 J/m*C

a3 bl ~ . ~



s I Experimental Uncertainty Analysis (1D) 4

0.6
(7] (7]
& (S
(@) (@)
O O
& =
L w 04
) )
bs] be]
c c
< =
O O
o o
o a 0.2+t
= k=

ob N Ob Heat Flux and properties of the (mica)
i Az / Z z heater are main contributors to uncertainty
0z, T\ Oz,

q I—y Yi kmica pCmica q Ly Yi kmica pCmica |



Temperature (C)

2 I Analysis of 2D Experiments

* Need a 2D heat conduction
solver

* Estimate three parameters
for each experiment

325.0

320.0-

315.0+

310.0+

305.0+

300.0-

295.0+

290.0

composite specimen

W/m2

Heat Flux (W/m

Meas. Sci. Technol. 9 (1998) 877-887.
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. ek,
zz——‘—’—ws(z el )i T
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I Analysis code for 2D parameter estimation

PROP2D (Developed at Michigan State in 1990s)
* Finite element solution (Topaz2D, LI.NL)

* Converted to a subroutine and merged with a least-squares
solver

Dakota

* Implements algorithms for optimization, uncertainty, and least-
squares

* Leverages existing direct simulation programs

Iterator -l

4 Application Interface N\
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I Scaled Sensitivity Coefficients
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Scaled Sensitivity Coefficient (°C)

Scaled Sensitivity, %5 — —
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-12 4 L i 1 L !
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time (seconds)

—y = 0
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» I Scaled Sensitivity, &7
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Residual (°C)

Residual (°C)

Residuals demonstrate signatures
Active Heater(y =0) Inactive Heater(y =0)
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Sequential Estimates

Thermal Conductivity (W/mC)

70.0

3.0E+06

60.0

50.0-

40.0

30.0-

20.0+

10.0

k_ .. :7.7% variation >70 sec

X,c

k  :3.0% variation >70 sec

y,cc

pC.. :1.6% variation >70 sec

k

0.0

Vo y,ce

-2.5E+06

-2.0E+06

-1.9E+06

-1.0E+06

-5.0E+05

0.0E+00
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60

Volumetric Heat Capacity (J/m3C)



2 I Uncertainty analysis (2D)

Exp Uncertainty ab ( ab AZJ
Parameter oz %
z A, pC.. Ky cc Korie pC.. Ky e
JJ((m3C) W/(mC) W/(mCQC) (%) (%)
3% 0.086 1.9 0.15 0.89 0.59
9 (W/m?)
L, 0.05mm 0.014 0.43 0.066 0.02 0.03
7 0.025mm  5.5E-4 0.14 0.016 0.0 0.00
X, 1.0 mm 8.0E-4 0.72 0.20 0.0 0.09
K. 20% 0018 0.55 0.073 0.04 0.05
OC 20% 0.020 1.2 0.14 0.05 0.24
k... 20% 0.0 0.0 0 0.0 0.0
OC. 20% 0.0 0.0 0 0.0 0.0
A, = 0.091 2.5 0.30
A 2

N
;=2

i=1

%,
Oz,

pC. =236x10°+0.007 J/m*C
k.. =588+0.38 W/m’C
k,..=497+0.06 W/m°C

k

y,cc
(%)
0.25

0.05
0.00
0.43
0.06
0.21
0.0

0.0



3 | Experimental Uncertainty Analysis (2D)
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“ I Summary for Example 3




« I Summary -- Parameter Estimation

Parameter estimation is using experimental data to
find values in a mathematical model — i.e. for finding
thermal properties from a heat transfer experiment.
Examine the sensitivity coefficients, which must be
large and independent for the conditions at hand.
Optimality condition D is a formal way to assess the
size and level of independence of sensitivity coeffs.
Examine the residuals (T oqel — Tqata)- Are they
normally distributed (good) or biased/trending (bad)?
Examine sequential estimates to observe the
variability in your estimates and to show if you have
the “right” data range.



¢« I Additional Topics




¢ I Sequential Estimation over Experiments

* 'Typically experiments are analyzed individually
S=(Y-TYW({Y-T)

* Expand the analysis to estimate properties that are
functions of temperature using a sequential analysis

Sn = (Yn - 7’;n)T“rn( Yn - fn) + Spn

* Function cannot be estimated from a single test, but
can be estimated through sequential estimation

4 8 )
IC.Y.CC/IO
B b,; ___________________ ” 6' o . * - s b
- . . /: Eﬁ - £t 1 o+ ¢
v bz --------- (] + ¥
3 : : Q4 . Ky cc #
= ' ++ =2
I~ ' : E o o © 9
; : s l ® ) g) o e
B By Je=s : : 2l 50 ® %P 7 5C /1x10° '
T T . a ; ; '
1 . 2 r 3 0 200 400 600
emperature,
Temperature(°C)



« | Estimating Parameters Sequentially

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER
Vol. 13, No. 3, July-September 1999

*Iypical sum of squares function for exp n
% =0 —-1)War.- 1)+ 8,

* Prior information
Sl’n = (un—l —b,,)TL",,__|(ll,,__| _bn)

p

P
— Z Z Ul.k.n (g1 — bl.n)(”k.n -1 bk.n)
k=

t=1 I=1

* Estimation algorithm

n=l
U'ik'[l;(lkﬂ) _ 5<lk) - X‘,“TW][Y] _ flk)] _ HTHé(lk‘n
U =X""WiX\" + H'H *———— Regularization term
n> 1
UP[BE = b0 ] = XPTWa[¥s = T+ Un - i[un -1 - 5]

UP =XPTW,XP + U, _,




Sequentially estimated temperature dependent

69

properties

* Two linear segments for each thermal property
* Estimated using 1D, 2D, and 1D&2D exps

Sequential Analysis

Independent Analysis

+— |D & 2D Exp
*— — — 2D Exp

o - ¢ IDExp

0 2D Exp
O 1D Exp

7

Thermal Properties

0 100 200 300 400 500

Temperature, °C

pC ky kx
(by —b3), (by —bg), (b7 — by),
Temp, °C Jim3°C W/m°C W/m°C
One-dimensional experiments
(a) =a;=0.5E—12), (ay = a5 =0.25)
30 1.41 +£0.003 3.35+0.013 _—
260 2.56 +£0.006 4.60+0.019 ——
525 3.06 = 0.009 4.85+0.022 —_

Two-dimensional experiments
(aj =ay =0.5E—-12), (ag =as5 = 1.0), (a7 = ag =0.05)

1.52 £0.008 3.82+0.078 59.5+0.89
2.29 +£0.008 476 £ 0.056 61.2+0.59
2.71 £0.012 5.17 £ 0.065 56.9 +0.68

One- and two-dimensional experiments
(a)y =a;=0.5E-12), (ag =a5 =0.25), (& =ag =0.05)

1.41 £ 0.004 3.324+0.021 61.0+1.0
2.34 £0.007 4.81£0.034 60.5 £ 0.57
298 £0.016 5.01 £ 0.052 35,7 = 1.22




o I Optimal Design of an Experiment to estimate
temperature varying properties

Study Experimental Design to estimate linearly
varying thermal properties

3 J[l+k3—k1( T-T, )}af } _ [ch—cl(r—rl )]ar

ax*| ky \T,-T,)Jox* ¢, \I,-T,)jor*

ky ° C 'T,-T,

Parameter Groups (0.66, 1.22, 1.0)

AT=|_(XDTX" |
( T;rax)thNs
(x-)f={, By oar . B, oar .B,,‘ ar}
(do"xo/k1)9PBy (4o"xo/k1)IPy  (do"xo/k1)9PBp
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Proposed Experimental Approaches and

Sensitivity Coefficients

1 T
0.0} Semi- infinite Case
z (L=34.3cm)
= (xp =2.54cm) ~
&~ 0.7F 200
: 2.
0.6 . / =
E:I qO“"‘O"’kl (x 1) ) \3
< 0.5 150 =
f~ 0.4 5o
! S
., 0.3 100 =
e _ D
0.2} S
0.1 {50 T
GO 0.5 1 1.5 2
-
0.2

(L=34.3 cm)
(xp=2.54cm)

Semi- infinite Case

1] 0.5

(=TT =2y)

Finite Case
(L =2.54 cm)
(xg=2.54cm)

0.2

1 2

r+

"~
o
=
C

Heat Magnitude(°C)

—
h
(]

100

N
(]

(L=2.54cm)
(xp=2.54cm)

Finite Case

A+

of Cl




7 I Optimal Experimental Design

x 107"° opio” . . . .
. R = ) 1.68 .
L th - 1.40 186 j + e
'Go" %o ky (°C) = 156 i
aF L o

Semi- infinite Case e— .
Finite Case

+
N W s O O N @

. 3 xp = 2.54cm 86.3 y |
A x/xg = 0,0.5
| g
5.59 1
1 - 1 I
0 -
% 0.5 1 15 2 2.5 3 = £} 2 3 3 S
. . . 0 1 2 3 4 5 6
t 4
Sensor Heating M Optimal
*0 | Locations do"xo/ky Tmax—Th ix time
(cm) x/xg ,; ' I,-T, A £A")
(°0) I
Semi-infinite Body
2.54 0.10 1.68 120 10 481E-10 1.86
1.27 0.10 1.68 120 0.99 4 45E-10 1.84
381 0,10 1.68 115 0.98 487E-10 1.89
Finite Body
254 0,05 279 156 098 823 E-09 387
2.54 0,025 233 156 097 791 E-09 355
2.54 0.0.75 279 156 098 395E-09 387
2.54 0.05 279 719 0.51 1.73 E-09 374
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# I Tutorial Overview

Inverse Heat Conduction
> Basic concepts

> Damping and lagging

> Solution methods and examples




s 1 |[nverse Heat Conduction Problem

« What is the Inverse Heat Conduction Problem
(IHCP)?

« Stolz Method

« Damping and Lagging — ill-posed

« Future Times (Function Specification) Method
« Tikhonov Regularization Method

 Singular Value Decomposition Method

¢ Summary



e I Dimensionless Variables

q(t)




7 1 What is the IHCP?

« “Usual’ or forward heat conduction problem:

" Given: \ [ Find: 2
o’T oT T(x,,1) »
ox’ ot "
0.2 ) ) / \
oT e
_ = alt
ol q(?)
or| _,
E @ _,
T(x0)=T,(x) | & ! x
- -
—




# I Nature of Boundary IHCP

* This is a function estimation problem

— Requires estimation of a “large” number of
unknown parameters q(t;)

 The problem is jll-posed in the sense of
Hadamard

— Solution may not exist or may not be unique

— Solution does not depend continuously on the
data (T(x; t))
* Noise in data is amplified in the solution



» I Pijecewise Constant Heat Flux

« Consider a piecewise-constant representation
of the boundary heat flux

— Note fluxes are “centered” at the “t-1/2” times

q(t)

qu

qs pd NG

\4



@ I Forward Problem Solution

* For the piece-wise constant heat flux
representation, the solution for the linear
forward heat conduction problem can be
written as

T=Xq
where

oT
X=|—— :[Xif]




* I Forward Problem — Property |

* Due to the parabolic nature of the heat conduction
process, the X matrix is lower triangular

X, 0 0 0 0
X, X, 0 0 0
: : ' 0 ;
XMI XMM—I XMM O O
_XNI XN2 XNN—Z XNN—I XNN_

— Physically, this means the current temperature only
depends on all the past and current heat flux
components



2 I Forward Problem — Property 2

« Afurther property of the X matrix is that each
column is the same — only shifted down one
position
This makes values along each band the same (this
is called a Toeplitz matrix)

)

N\
.

s




Stolz Method for IHCP (1960)

« Stolz realized, with the lower-
triangular form of the X matrix, that
the model values T = Xq can be
written sequentially:

Tl :quAl
T,=X,q, + Xq,
T, :Xs% +X,4, +X1qA3

* Then the heat fluxes can be found
sequentially by exactly matching the
model to the data, Y =T:




“ I Sensitivity Coefficients

* The first column of the X matrix is the solution of
the forward problem to a unit heat flux pulse of
width At

0.06

q(v A 0.05 |

0.04 -

0.03 |-

Sensitivity (Xj)

0.02 | %

0.01 |-

v

At t

time



= I Example

e Consider heat flux that is quartic in time:

lt4—4t3+4t2 I <t<t

q( t) — start stop
| 0 otherwise
14
121
1k
1L
0.8}
o 08f
X hust
S 06} %
TR S
—_ o 06
© o
@ IS
T 04 S o4l
Start of heat flux
e2r 1 0.2} !
0 . 0 |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 0 0.5 1 3.5 4 4.5

time ! time



“» I Damping and Lagging

« Temperature at an interior point are both
damped and lagged with respect to the
surface response

1.4

x=L
x=0

1.2 ©

damping

Temperature
o
(e -

o
)

o
~

| Start of heat flux lagging

o
N

o

o e e -

| | | 1 | | 7
1.5 2 2.5 3 3.5 4 4.5 5
time



7 1 Stoltz Method - At = 0.5

1.2

Heat Flux

¢ Stoltz

Exact




# | Stolz Method - At = 0.25

1.2

Heat Flux

-0.21

-04 \ \ \ ! !

o Stoltz

Exact ||




» | Stolz Method - At = 0.20

T T Q
o3 ¢ Stoltz 15
Exact o Stoltz
1t | Exact
o 10 o
o/ ¢
0.8 - 4 5
6
x E o o
= T 0 /A W
L 06 i L Sanan e A B o
w5 ] - y
£
° ¢
04 .
10 |
0.2+ i
15 L 1 L 1 1 1 L
0 0.5 1 1.5 2 2.5 3 3.5
time
0 I 1 |
0 0.5 1 1.5 2 2.5 3

time




© I [ll-posed problem

« As time steps get smaller, the inverse
solution becomes more unstable

— This is apparent from the Stolz algorithm
and consideration of the X, term

0.06

0.05 +

B
)

VoY N \>§/_‘
YM - XM—j+lqj +X1qj i

Sensitivity

At=0.05

.- Il I Il I Il Il 1 Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time



I Function Specification Method

« To combat ill-posedness resulting from exact
matching while retaining a sequential method,
Beck developed the Function Specification
Method

— Assume a defining form for the unknown heat flux
(piece-wise constant, piece-wise linear, etc)

— Minimize sum of squared error between model-
computed temperature and measurement

— Consider limited subset of available data (say r time
steps) beginning at current time ¢,

— Invoke temporary assumption that current variation of
heat flux does not change



2 I Function Specification Method(2)

« Assume simplest (piece-wise constant) q(t)

« Partition T(q) assuming qy, ..., qQu.1 are known
L | [x, o0 o0 0 0] ¢ |
1) Ay 1 0 i 0O O q,
5 o 0
d——=——— e I it e e
T X, X, X, 0 O q.
gy Xy Xy Xy Xy A A rv4r-1 )




» I Function Specification Method (3)

, . - - e . s Known

L, Xy Xy X, 9 / components
TM+1 XM+1 X4 XS q2 “
s N7 b= , : 1 -
Lvrira ) L& 0 X XV"‘l_rx(M—l) (Dnter-1) ey
— = e A A
X 0 0 0
1 v Unknown
~ components
X, 0 0 9 / P
+| . )
0 :
_X}" Tt X2 Xl _rxr kQM+r—l J rxl
TM—>M+r—1 = erqu—>M+r—l + T(}I...C}M_l



» | Function Specification (4)

* Final assumption is the temporary assumption that
the assumed heat flux variation is unchanged over
the next r time steps

* For the piece-wise constant assumption:
qAM = qAM+1 == éM+r—1
(,iM—>M+r—1 =1 1 - I]le éM
« So the model equation becomes

T =X, [1 1 - 10,4, +T, .

M—>M+r-1 rxr -1



» I Function Specification (5)

* Note
s Xl
X1+X2
X, [ 1 - 1], =1 : =X,
>

 Now minimize the sum of squared errors:

él"'éM—l )

T
S = (Yr -Xq,,+T| ) (Yr -X g, +T
qpm

a4
dS N ):O
49—

—=2X (Yr - X, 4y +7
dQM




& | Function Specification (6)
* Finally, the estimation equation is obtained

Xf(Yr—ch}M+TA A ):0
4 "9m-1




7 I Example — Function Specification

 With r=1, this is the same as Stolz method:

(t) T T T T
¢ ¢ Function Specification
Exact

r=1,At= 0.20

Heat Flux

| | | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
time



» I Example — Function Specification

o With r=3, dt can be much smaller:

1.2 ‘ : ,
¢ Function Specification
Exact
1L

08} r=3, At= 0.05
ER
L
©
()
T 04

0.2




» I Example — Function Specification

« With noisy data and r=06:

1.2 . ‘ ‘ ‘ !
¢ Function Specification
Exact
1+ B
r==6, At= 0.05
0.8 ]

0.6

Heat Flux

0.4

gaussian noise sigma = 0.010




o I Tikhonov Regularization (1)

* |s a “batch processing” or whole time
domain method

— Contrasted with the sequential nature of Stolz
or Function Specification Method

« Stabilizes the solution by penalizing unwanted
variations in the solution for g

— Zeroth order — penalizes function value
— First order — penalizes function time derivative
— Etc.



Tikhonov Regularization (2)

« Zeroth order (TR0) S=(Y-T) (Y-T)+a,q'q
« Firstorder (TR1) S=(Y-T) (Y-T)+«q H Hq

where H is a matrix operator the
approximates the first time derivative, e.g.

-1 1 0 0
" | o -1 1 - 0 |
Hi-—| ¢ - e tlg=—Hq
ot) At At

o o - -1 1

0 - 0 0 0

— Note the 1/At is generally absorbed into the o,



> I Tikhonov Regularization (3)

« Now minimizing the sum of squares with
respect to the unknown vector q.

e For TR1:

a5 _ oxr (Y-Xq) +20H"Hq=0

dq
2X' (Xq-Y)+20H' Hq =0

(X' X+ HH)q-X"Y=0
4=(X"X+oH'H) XY
* For TRO:
a=(X"X+al) XY



5 I Tikhonov Regularization (4)

« Example — TRO with no noise in data

Heat Flux

0.8+

0.6 -

0.4~

021

.....................

¢  Zeroth Order Tikhonov
Exact

a= 0.0, At= 0.05
std(noise) = 0.0

D e



+ I Tikhonov Regularization (5)

 Example — TRO WITH noise in data

1 2 T T T T T
¢  Zeroth Order Tikhonov
Exact
1L
oy =5.00e-003, At= 0.05
0.8

gaussian noise sigma=0.010 |

0.6

Heat Flux

0.4

0.2

o
o
1)
—
—
1)
N4
N
o
w
w
1)
N
N
1)
o

time



Tikhonov Regularization (6)

 Example — TR1 WITH noise in data

1.2 . | ! ! ‘ ‘
¢  First Order Tikhonov
Exact
11
ay = 1.00e-002, At= 0.05
0.8

gaussian noise sigma=0.010

0.6

Heat Flux

0.4




< ! Singular Value Decomposition (SVD)

* Method is ostensibly a batch or whole time
domain method

« Based on numerical decomposition of the
coefficient matrix by standard techniques

« Regularization afforded by discarding near-
zero entries in the coefficient matrix that
causes the near singularity



21 SVD Method (1)

« Based on direct matching of the model
equation to the data:
Y = Xq
* This is inverted directly to yield the estimates:
¢=X'Y
 However, the entries of X can be small,
leading to a near-singular matrix, which is a

manifestation of the ill-posed nature of the
Inverse problem



s | SVD Method (2)

 To address the instability, the matrix X is first
decomposed (or factored) using the singular
value decomposition method into

X =UWV’

— U is a column orthogonal matrix

— W is a diagonal matrix of the singular values
— V is another orthogonal matrix

* This decomposition is a built-in function call in
MatLab:

[ U, W, V]|=svd(X)



21 SVD Method (3)

 One benefit of SVD is that the inverse of
the matrix is easily computed:

X'=VW'U’'

— Note that W-1is easily computed since W
IS a diagonal matrix

1/w, -0
wio|




o I SVD Method (4)

« Regularization in the SVD method is
Introduced by simply eliminating the near-
zero (singular) values of the W matrix.

— The singular values are ordered, largest to
smallest, along the diagonal of W as a result
of the SVD operation

* The corresponding columns of the U and V
matrices are also discarded



1 1 SVD Method (5)

* If the first ng,e, values are retained

-1 -1 T
X'~ (V). (W), . (U7)
N: XMNeigen Neigen*Meigen Meigen xN

 Then the heat fluxes are estimated as

-1 T
q ~ (Vaneigen ) (Wneigen‘xneigen ) (Uneige"xN )



11 SVD Method (6)

« SVD with no noise in data

Heat Flux

1.2

Exact

o SVDL

neigen = 98 (1.0e-004), At= 0.05
0.8 - b p std(noise) = 0.0000

0.6 -

0.4 -

021

B S



I
3

SVD Method (7)

 SVD with noise in data

Heat Flux

1.2

0.8

0.6}

0.4r

021

O SVD
Exact

% neigen = 12 (1.06-001), At= 0.05
\ gaussian noise sigma=0.010 _

e



41 Summary of Inverse Heat Conduction

* Inverse heat conduction is ill-posed
« Solution is not unique (or may not exist)

* Noise in data is amplified in solution
« Exact matching (Stolz) goes unstable for small time steps

« All IHCP methods have an adjustable parameter to

tame the instability:
« Specify the functional form of q with future times (Beck)

 Limit variation in g or dg/dt (Tikhonov)
« Throw out eigenvalues that allow rapid variation in g-values
(singular value decomposition)
« Parameter estimation perspective on IHCP:
« Seek many parameters q; -- tends to make Xdependent
« Thus XTX (or X) has a badly behaved inverse
* |HCP methods improve (XTX)-1 (or X-1) in someway
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7 I Back-ups




Thermal Conductivity (W/mC)
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5 | Temperature Dependent Properties
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o | Sensitivity Coefficients for the one-dimensional

Sensitivity Coefficients (C)
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