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2 | Need to Update Deployed Models
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Training
data is
taken from
a specific
location at
a specific
day and
time.

Algorithm Ship/No Ship

Current
data may
differ from
the
training
data.
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Labelling all new data is infeasible in many cases:
« Lack of analyst time

 Inability to transfer all new data back

* May not have targets of interest




Traditional Method for Deployed Machine Learning

1. Induce model from an existing, labeled
dataset.

2. Deploy model operationally to categorize
data stream for analysts.

3. Human analyst verifies model and labels
new data points.

° Time intensive

° Prone to human error

4. Determine if the model’s performance has
dropped below an acceptable level.

5. Repeat steps 1 - 4.
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4+ I Self-Updating Models with Error Remediation (SUMER)
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Induce model from an existing, labeled
dataset.

Deploy model operationally to categorize data
stream for analysts.

Perform error remediation as necessary using
one or more methods:

Augment feature space.
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Use auxiliary model(s) to detect/correct
extrapolation.
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Use algorithm that is robust to label noise.
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Analyst

Add samples to retraining dataset that error
remediation algorithms predict will most
improve the performance of the learned
model.

Label
Correction

manual, expensive

Determine if the model’s performance has
dropped below an acceptable level.

Repeat steps 1 - 5. sl SUMER
== = Traditional ML




5 | Remediation Methods

Semi-supervised learning
Model output calibration
Uncertainty quantification

Noise filtering

Discriminator between yellow and blue

Red are unlabeled data points.




s | Remediation Methods

Semi-supervised learning

Use the label from the model for
subsequent training.

° Pseudo-labelling
° Self-training
° Co-training

° Active learning
Model output calibration

Uncertainty quantification

Noise filtering

Discriminator between yellow and blue

Red are unlabeled data points.




7 | Remediation Methods

Semi-supervised learning
Model output calibration

The confidence from a model can be
highly uninformative (e.g., distance from
the classification boundary).

o Trust

Uncertainty quantification

° For example, evaluate predictions from various
models in an ensemble.

Noise filtering

Discriminator between yellow and blue

Red are unlabeled data points.




s | Remediation Methods

Semi-supervised learning
Model output calibration
Uncertainty quantification
Noise filtering

Remove confusing data points and clean
up the classification boundary.

> Rank Pruning

Discriminator between yellow and blue

Red are unlabeled data points.
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Data

Synthetic data set

> Allows for systematic experimentation and has
mechanisms to introduce label errors and concept

drift.
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Kaggle “Ships in Satellite Imagery” dataset:

o Features — 19,200 integers representing pixel
intensities in red, green, and blue channels (6,400
values for each)

° Ships — 1,000 images (25% of data)
> Non-ships — 3,000 images (75% of data)




0 | Results: Synthetic Data with 20% Label Noise

Accuracy results:
o Baseline model: 86.62%

° Self-updating (no error remediation):

85.50%
o SUMER: 90.25%

Error remediation improves the decision
boundary.

Baseline classifier and the base algorithm in
SUMER is a Random Forest.
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Results: Synthetic Data over Time

All models initially-trained on 200 data points with 25% label noise.
o Upper Bound Performance assumes no label noise.
> Hach subsequent point represents an additional 200 unlabeled data points.

° Original model predicts on the new data points with no update to the model.

SUMER provides the highest PP S
classification accuracy. 96
The self-updating model without
error remediation shows modest 94
performance increases. -
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12 | Results: Kaggle Ships Dataset (SUM, not SUMER)

Model performance converges with more labeled data Not A Ship
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13 I Conclusions and Future Work

SUMER is a framework for updating models utilizing techniques from, e.g., semi-supervised
learning, model output calibration, uncertainty quantification, and noise filtering,

Self-updating models help to alleviate the human burden of obtaining labelled data and addressing
concept drift.

Self-updating models improve performance over static models when unlabeled data is available.

Self-updating models with error remediation further improve the performance.

FUTURE WORK

Apply SUMER to a relevant, real dataset.

Add concepts from detecting and handling concept drift and novel class detection.
Add concepts from life-long and on-line learning,

Develop strategy to integrate analysts into the SUMER framework, similar to active learning, to
leverage what humans are good at while still leveraging the benefits of SUMER.
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