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2 | Background: Random Well-spaced Point sets

Random Well-spaced Point sets are desired for a wide range of applications:

Meshing, Rendering, Motion planning, Uncertainty Quantification, Global Optimization, Al,
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3 | Background: Random Well-spaced Point sets

Well Spaced Point-Sets

Consider the Voronoi cell around any given point in the set:

Well-spaced means that Furthest Voronot vertex 1s not much farther
from closest neighbor.

r. . distance between a given Voronoi seed and its furthest
Voronoi corner

re: distance between a given Voronoi seed and its closest neighbor

Voronoi Tessellations

Voronoi partitions are uniquely defined by the seed location with a number
of cells that matches the number of seeds regardless of dimensions, each
cell is convex and bounded by planar convex facets.




4

Background: Random Well-spaced Point sets

Random Point-Sets

Random Point sets makes the exploration more efficient in higher dimensions (e.g. MC sampling).
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s | Background: Poisson-disk Sampling

Disk-free condition

VB, By & X, B 7 Ty Hmz —CCjH =

Bias-free condition

Bias-free: Ve, € X,VQ CD;_1:
Area(2)
Area(D;_1)

P (a5 € ) =

Maximal condition

Maximal: Yo €D, dn; € X || =m2| < 7

Simple Problem?!
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Background: Poisson-disk Sampling

First E(n log n) algorithm with provably correct output

o Efficient Maximal Poisson-Disk Sampling,
SIGGRAPH 2011

Simpler, less memory, , provably bias-free, faster in practice but no run-
time proof, maximal up to round-off error

> A Simple Algorithm for Maximal Poison-Disk Sampling in High Dimensions,
Eurographics 2012

Voronoi Meshes
> VoroCrust: First method to mesh a non-convex domains without clipping
SoCG 2018, TOG 2019 (Conditionally accepted), SIGGRAPH 2020!

o Uniform Random Voronoi Meshes
IMR 2011

Random Delaunay Meshes

o Efficient and Good Delaunay Meshes from Random Points
SIAM GD/SPM 2011 > Computer Aided Design

o Delaunay quadrangulation by two-coloring vertices
IMR 2014

MPS with varying radii

> Variable Radii Poisson-disk sampling
CCCG 2012
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Background: Poisson-disk Sampling

Simulation of Propagating fractures

> Mesh Generation for modeling and simulation of carbon sequestration processes
SciDAC 2011

Hyperplanes for integration, MPS and UQ
o K-d darts, TOG 2014 (SIGGRAPH 2014)
> Spoke Darts for high-dimensional blue noise sampling, TOG 2018 (SIGGRAPH 2018)

Rendering using line darts
> High quality parallel depth of field using line samples, HPG 2012

Reducing Sample size while respecting sizing function
o Sifted Disks, Eurographics 2013

> Disk density tuning of a maximal random packing, Eurographics 2016

MPS with improved Coverage

> Improving spatial coverage while preserving blue noise, Computer Aided Design 2014

Uncertainty Quantification
> VPS: Voronoi piecewise surrogate models for high-dimensional data fitting, IJ4UQ 2017

o Pof-darts: Geometric adaptive sampling for probability of failure, RESS 2016
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s | Background: kd-darts (SIGGRAPH 2014)

99 points 6 line darts 1 plane dart

Lines, hyperplanes, are more likely to intersect these regions, and they give
more information

But they are more expensive. Is it worth it?




Background: Spoke darts (SIGGRAPH 2018)
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(a) A spoke samples a (b) A spoke hitting same (c) Local MC line sampling  (d) Neighbors with rela-
point from a Voronoi facet.  facet again. to find Delaunay neighbors.  tively small angles missed.

Collecting Voronoi Neighbors from all directions

A direct application: Voronoi Piecewise Surrogates (VPS)
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11 I VoroSpokes: Approximation with Spokes

B Random unit-vectors ¢ ~ Unif (5% 1) can be used to identify the
boundaries of convex polytopes, e.g. Voronoi cells.

B The maximum radial distance Rp(¢) inside of P in the direction
of the unit-vector ¢ can be computed using trimming operations.



12 I VoroSpokes: Approximation with Spokes

\ , 4 _ ‘*(,ﬁ'n Tn(,ﬁn ‘_.an
= - 9

B By considering a sufficient number of random directions {¢, }_,,

the volume ot the polytope P (or integral of a function defined
therein) can be approximated to an arbitrary level of accuracy.

B To probe the interior of the polytope, radial distances {r,} in the
directions {¢, } can be randomly sampled from appropriate
distributions placed over the intervals {[0, Rp(®n, )]}, respectively.



13 | Spoke Quadrature on Convex Polytopes

Given a bounded function defined inside of a convex polytope, we can express
the integral in terms of polar coordinates via:

/p f(z)de — /R 1p(e) - fle)da
_ /OOO /5.“ 1p(r- @) - f(r-¢) - r¥Ldo()dr

/ /DO 1p(r-¢) - f(r-¢) - r*"'drdo(¢)
si-1 Jo

/sm /ORP(@ fr-¢) - rdrdo(e)

I L | 5



14 | Spoke Quadrature on Convex Polytopes

1 R’P(qf’) d—1
/P f(x)dx - /5.;;1 /0 oq- f(r-¢) - r* " drdo(¢)
Rp(0)

0
= Epunit(sa-1) [Ud ‘ IP(G)]

Rp(0)
where we define Irp(@) — / f(‘r‘ . 9) . ’.""d_l dr -dimensional
0

“radial integral” inside of the polytope in the direction of theta.

I L | 5



Spoke Quadrature on Convex Polytopes

Applications of the strong law of large numbers and central limit theorem yield:

N
%Z ad*pr(ﬁ(”)) — flr)de as N — ¢
— P

N
( E o4 - Ip(ﬁ(”)) — N - f(zz:)dﬂc) distribution, » N(0,0°) where 0 = Var [0, - Ip(0)]
P

2

n=1

where 0™ correspond to independent identically distributed (i.i.d.) samples
drawn from the uniform distribution py(¢) = 1 gi—1(¢) on the sphere.



16 I Spoke Sampling on Convex Polytopes

We propose the following hierarchical sampling procedure on polytopes:

o1 Rp(¢) o 1 | L
po () —5/0 flr-¢)-r dr—afp(fﬁ) Vo S
po(r10=9) = Ipl(qs) f@r-¢)- 7t Ve [0,Rp(g)], ¢ € 5

where the normalization constants C' and Ip(¢) for the densities are given by:

C = /S /0 T e 9) 1 drdo(s) = /P f(z) da

Rp(¢)
Ip() = /D Fr-¢)- iV dr = C-py(¢) Ve S



17 1 Spoke Sampling on Convex Polytopes

The joint density for (p, ) is defined for each pair (r,¢) such that r» - ¢ € P as follows:

Ppo(r.®) = pa(d) - po(r |0 =9)

_ ' L A Po(9) o). pd—1
1 B
— af(’f"@)"-"d !



18 I Spoke Sampling on Convex Polytopes

The measure px induced by the random variable X = p- 6 is thus defined by:

nx(E) = P[X € E| = Plp-0 € E
_ / / - 1e(r-¢) - pyo(r, ¢) drdo(o)
Sd-1 Jo
_ f 15(r- ¢) - [% 1p(r-¢) - f(r-¢)-r* " drdo(¢)
Sd-1 Jo
1 o0



Spoke Sampling on Convex Polytopes

The main difficulty with this approach is samphng from the density:
1 rle d—1 d—1
pe(p) = —= Ip = C/ 7% dr for 9 € S

To avouid this issue, we introduce the following approximate sampling procedure which 1s shown to
converge in distribution to the target density on the sphere:

1. 6™ ~ Unif(S% 1Y for 1 <n<N

Rp(¢)
2. Ip(8\™) = / i Fr-0m) rt dr
0




20 I Spoke Sampling on Convex Polytopes

Empirical results show that this theta-sampling procedure converges quite quickly to the target density on
the sphere (e.g. using only 100 spokes/sample):

Target Density Empirical Density

[ 200M Samples w/ 100 Spokes ]

Morteover, the overall sampling procedure is shown to converge in distribution:

For all Borel measurable sets E € B(RY) we have: P}im P Xy € E] = - / f(z) dz
| Rl ENnPp




Spoke Quadrature and Sampling

The procedures outlined in the previous slides thus provide numerical methods for approximating
integrals and generating approximate samples in polytopes.

These generalize to global procedures in the context of Voronoi tessellations:

V(i) ={zeQ: |z—m| < ||z -7, VjeZ\{i}} with U V(i) =

Quadrature is extended via: / f(z)dx Z dr =~ Z (10
Q

ZEI V(Z

Sampling is extended by defining approximate/target cell weights:

T(V(i))

i R 1 '
Wi a(i) = = [ f@)dr VieT
€L

and using the resulting discrete p.d.f. on cells to select a single Voronoi cell.

Once the cell is selected, the local sampling procedure on polytopes is applied.



2 I VoroSpokes: Overview

The VoroSpokes framework consists of two fundamental phases:

Phase |: Adaptive VPS Approximation

B The posterior density is adaptively approximated by a VPS model.

B Geometric properties of the posterior, such as multi-modality, are
identified and refined prior to sampling.

Phase Il: VoroSpokes Sampling Procedure

B A regional sampling procedure is used to select which Voronoi cell
a given sample will be drawn from.

B Once a cell is selected, a hierarchical sampling procedure is
employed within the cell to select a direction 6 and radial length p
specifying the final sample: 27, +p-0

B s s B



23 I VoroSpokes Phase |: Adaptive VPS

The VPS approximation to the posterior density is designed to
construct local surrogate models within each cell of an associated
Voronoi tessellation. A local surrogate can, for example, take the
form of a polynomial of a specified degree D:

f(il?) ~ fVPS(x) = Z Cq ° (3j — xseed)a Ve V(xseed)

|| <D

The adaptive component of the VPS approximation in Phase | is
derived from the local error estimates:

EVPS(x) — Z |Ca| . |I’ — xseed‘a Vaz e V(xs«eed)
la|=D

In particular, new Voronol seeds are added using a sampling procedure
which is designed to target regions with high uncertainty/error.

B s s B



Adaptive VPS

24 | VoroSpokes Phase |




25 I VoroSpokes Phase |: Adaptive VPS




Adaptive VPS

26 | VoroSpokes Phase |




27 I VoroSpokes Phase Il: Sampling Procedure

Once the VPS approximation from Phase | is complete, the cell
probability weights are re-computed using the approximate posterior
fvps(z) in place of the adaptive error estimates &y pg(z):

TV(i)) =~ 7(V(i)) = %/y(') fvps(x)dx Viel

The discrete probability weights are approximated via:

wy

V(i) =

where w; %/ fvps(z)dx
V(i)

W
jez
[Spoke Quadrature]

Note: The sum ) w; approximates the constant C' = [ fypg(z)dx
€L



28 I VoroSpokes Phase Il: Sampling Procedure
Once a cell has been selected, a unit-vector/direction € is sampled
from a carefully specified marginal density.

A radial length/distance p is then sampled from an associated
conditional density, and the end-point of the associated spoke is
returned as an approximate sample from the posterior.

Overview of Sampling Procedure

Select a Voronoi cell: V(i*)
Sample a direction: § € S¢1
Sample a distance: p € [0, Ry (0) ]

g Return the sample: X = a7, + p-0
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Sampli

29 | VoroSpokes Phase |l
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VoroSpokes Phase Il: Sampling




31 I Parameter Estimation for Normal Distribution

Y = {ym}%:1 ~ N (u, o) s

i.i.d. observations o ~ e 1]

M

f(,LL,O'|Y) X



32 I Parameter Estimation for Normal Distribution
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33 I Parameter Estimation for Multivariate Normal
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34 I Parameter Estimation for Mixture Model )

N(p® 2D) with p@ = [, 5] 20O = L)@ pl ] for i=1,2 ‘
. . 1 1 1 . U : _ . .
(D) (1 0@ — = — T (217 (0 (i) — [, ) |
Pl = 5o s e (=g = n TV =) where 60 = (19, 0]
M
FOW,02,wY) o TT [ pD @ [00) + (1= w) - p® (g [ 02) |
m=1
Parameter pf@l) ﬂél) p(l) uf) u;@ p(g) w I

True Value | 2.5000 | 0.7500 | 0.5000 | -2.5000 | 0.7500 | -0.5000 | 0.7500
FEstimate 2.4758 | 0.7824 | 0.4526 | -2.5276 | 0.7599 | -0.5356 | 0.7551 |




5 I Sampling from Multimodal Distributions

3
. , W, 1 2
fa) o 32 grg o (= o Ile =il
wp; = 0.2 y H1 = 15}05] ) oy = 0.0
woy = 0.0, Ho = j—][.25?0.75] y oo = 0.20
wy = 03, pu3 =[-0.6,—-1.5], o3 = 0.15




36 I Sampling from Multimodal Distributions

Multimodal Sampling with VoroSpokes
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7. 1 Summary

O Local calculations within polytopes can be performed using randomly directed spokes;
in particular, integral estimates and approximate samples can be generated.

O Voronoi tessellations provide a natural extension of the local polytope results to more
general domains (since Voronoi cells partition a domain into convex polytopes).

O The global sampling procedure can be used to adaptively place function evaluations in
regions with the largest estimated error; in particular, this can be used to adaptively
construct surrogate models with a limited budget of function evaluations.

O Adaptive VPS surrogates can be used to approximate unnormalized probability density
functions, and accurate samples can be generated independently and in parallel.



33 I Questions?




