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Motivation: Specifications of Temporal Behavior

We want to build reactive systems from networks of devices
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• For systems of high consequence, we should prove such a

reactive system correct.
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• For systems of high consequence, we should prove such a

reactive system correct.
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Net
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• As these systems are reactive, we must mean, by correctness,

some specification of their allowed observable behaviors over

the course of time
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the course of time
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• For systems of high consequence, we should prove such a

reactive system correct.

Safe(

engine:Dev locks:Dev

I 
Net

security:Dev

• As these systems are reactive, we must mean, by correctness,

some specification of their allowed observable behaviors over

the course of time

• Such properties are conveniently stated as formulae in temporal

logic

• The devices in the network are independently clocked, so our

logic can't require synchrony.
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Actually, we don't know the list of devices ahead of time
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Motivation:Specifications of Temporal Behavior

Actually, we don't know the list of devices ahead of time
engine:Dev iPad:Dev locks:Dev security:Dev

I I I I 
gauge:Dev

Net(—) : LDev —> Net
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Motivation:Specifications of Temporal Behavior

So we actually need
engine:Dev

SafeDev(engine)

iPad:Dev

SafeDev(iPad)

I

locks:Dev

SafeDev(locks)

I 

gauge:Dev

SafeDev(gauge

security:Dev

SafeDev(security)

Net(—) : LDev Net

SafeNet(—) : L(Dev Prop) Net Prop
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Motivation:Specifications of Temporal Behavior

So we actually need
engine:Dev

SafeDev(engine)

iPad:Dev 

SafeDev(iPad)

I

locks:Dev

SafeDev(locks)

I

gauge:Dev

SafeDev(gauge

I

security: Dev

SafeDev(security

Net(—) : LDev —r Net

SafeNet(—) : L(Dev —r Prop) —r Net —r Prop

For this, we will need a higher-order temporal logic
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Towards HOTLA

Our project is to try to unforget the top of this diagram

FOTLA HOS4

FOS4

FOS4 = Temporal Logic

HOS4 = Higher-Order Logic

FOTLA = No Enforced Synchrony
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Which Temporal Logic? Tense Logic?

• Prior's tense logic

OS.

E E Expressions := x x fn(E1, ••• , Eri)

T E Predicates := Pn(Ei, ••• , En) ITAT1 ]x.T HT DT OT
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Which Temporal Logic? Tense Logic?

• Prior's tense logic

E E Expressions := x x fn(E1, ••• , Eri)

T E Predicates := Pn(Ei, ••• , En) ITAT1 ]x.T HT DT OT

• an S4 Modal logic ( Kripke models over total orders).
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Which Temporal Logic? Linear Temporal Logic?

• Pnuelli observed a shortcoming in Tense Logic- it has no way of

describing instaneous changes

NafiS'd'onal
Laboratones
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1:1) NatiS'W'onal

Laboratones

• Pnuelli observed a shortcoming in Tense Logic- it has no way of

describing instaneous changes

• So he introduced an additional modality, o, to be thought of as
"next". T1 oT2 then means, having observed T1 we will next
observe T2
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Which Temporal Logic? Linear Temporal Logic?
1:1) NatiS'W'onal

Laboratones

• Pnuelli observed a shortcoming in Tense Logic- it has no way of

describing instaneous changes

• So he introduced an additional modality, o, to be thought of as
"next". T1 0T2 then means, having observed T1 we will next
observe T2

• This logic also has a well understood Kripke model (over N).
Unfortunately, the o modality is fundamentally synchronous,
and, so, inappropriate for our application.
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The Temporal Logic of Actions

• Recalling our example, the devices on our network are all

independently clocked, so we can't capture the relevant
examples with the o modality

C) SandiaWtioml
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The Temporal Logic of Actions

• Recalling our example, the devices on our network are all

independently clocked, so we can't capture the relevant

examples with the o modality

• Lamport developed his Temporal Logic of Actions to solve this

problem

C) SandiaWtioml
Laboratonas
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The (First-Order) Temporal Logic of Actions

(FOTLA)
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The (First Order) Temporal Logic of Actions

• As before, there are "rigid" variables ( un-boldfaced) and

"flexible" variables ( boldfaced).

0 Sandia
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The (First Order) Temporal Logic of Actions

• As before, there are "rigid" variables ( un-boldfaced) and

"flexible" variables ( boldfaced).

• As in Prior's tense logic, one constructs from these the

expressions and predicates

E E Terms ::= x x x' f (ED , En)

P E Propositions ::= EP P1 A P2 V x .P
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The (First Order) Temporal Logic of Actions

• As before, there are "rigid" variables ( un-boldfaced) and

"flexible" variables ( boldfaced).

• As in Prior's tense logic, one constructs from these the

expressions and predicates

C Sandia
Nabonal
Laboratones

E E Terms ::= x x I x' I f (ED , En)

P E Propositions ::= EP P1 A P2 V x.P 1E[A](xi,...,x„)

• To capture the idea of next, Actions, which classify changes

A E Actions ::= R(E1, , En) = E2 V .A A1 A A2

7/12/19 12



The Temporal Logic of Actions

• El [A] (x, ) always, the action predicate A is true or the
flexible variables xl, ••• , xn remain unchanged
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The Temporal Logic of Actions

• El [A] (x, ) always, the action predicate A is true or the

flexible variables xl, ••• , xn remain unchanged

• This is the key feature which allows FOTLA to remedy tense

logic's shortcomings without recourse to any notion of

synchrony
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Compositionality and the Syntax of the Temporal Logic

Actions

In order to express the proof obligation that one FOTLA specification

be an abstraction of another, we need existential quantification over

flexible variables

Abstraction ]x.Refinement

7/12/19 14



The Syntax of the Temporal Logic of Actions

E E Terms

A E Actions

P E Propositions

T E Formulae

Ax.P

T1 V T2

7/12/19

::= 1 1 xi 1

::= R(E1, ,

::= 1=1P 1 —111)

::= AI P

• —Vx.—T

• —Vx.—,P

• --,(7). A T2)

f (ED En)

En) 1 El = E2 Vx.A I A1 A A2 1

l P1 A P2 l 1=1[A]<„,,...,x.> 1 Vx.P I Vx.P

T2
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VNaLWe'lmi
Discrete-Time Semantics for the First-Order Temporal L

of Actions

The First-order Temporal Logic of Actions has a classical Discrete Time

Semantics in Set.
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VNaLWe'lmi
Discrete-Time Semantics for the First-Order Temporal L

of Actions

• Fix some set D : Set modeling the domain of discourse
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W"rimi
Discrete-Time Semantics for the First-Order Temporal L

of Actions

• Fix some set 1) : Set modeling the domain of discourse

• the environment 0 : Rigid , the state o- : Flex 1,, and
the next state o-' : Flex' ri) .

, , cr' k A1 A A2 iff (0, cr, k A1) and (0,a, o-' k A1)

0, cr, iff 0, a , a'VA

0, o o-' L''1 = E2 iff 11E11 (0, or, o-') = 11E21(0, cr , o-')

0, or' k V x.A iff for every v E (0 v), or, o-' k A

0, cr, o-' R(E1, , En) iff 1e(R)(1E11(9, cr, o-'), ,[[E,J1(0,cr,o-'))

7/12/19 17



Discrete-Time Semantics for the FOTLA

• The interpretation of Predicates require, more than states,

N-indexed families of states called behaviors, p = (DFlex)w

(1) Sandia
National
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Discrete-Time Semantics for the FOTLA
(1) Sandia

National
Laboratones

• The interpretation of Predicates require, more than states,

N-indexed families of states called behaviors, p = (DFlex)w

• We can begin to give an interpretation of the FOTLA predicates

0, p

0, p

0, p k Vx.P

iff for every n E N 9, p[n, ...] k P

iff for each n E N either 0, p[n], p[n + 1] k A

or Vi E [1, m].p[n](x1) = p[n + 1](x1)

iff for every V E D (0 -W x v), p P

7/12/19 18



Discrete-Time Semantics for the FOTLA

But we can't give an interpretation for flexible quantification before

defining an equivalence relation on behaviors.
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Nabonal
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Discrete-Time Semantics for the FOTLA

But we can't give an interpretation for flexible quantification before

defining an equivalence relation on behaviors.

Definition (Discrete Stuttering Equivalence)

Let (DFlex)E a collection of behaviors. Stuttering equivalence is the

least equivalence relation on behaviors such that,
vp c (DFlex)E rt E — p when p' is given by

(1) Sandia
Nabonal
Laboratones

p' (m) = p(m) when m < n (2.1)

p' (m) = p (m — 1) when m > n (2.2)
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Discrete-Time Semantics for the FOTLA

Only now can we give flexible quantification an interpretation

0, p Vx.P

if and only if for every d E .D4̀ 1 and p' p, 0, LF1 (x d) k P

1:1) NatiSan6aonal
Laboratories

Remark

to interpret quantification over flexible variables in the discrete time
semantics, we must quantify over a stuttering equivalence class's
worth of behaviors

7/12/19 20



Stuttering Invariance in the Discrete-Time Semantics fofte

FOTLA

Proposition (Stuttering Equivalence in FOTLA)

VP, 0, p,pi such that p

0, p k P if and only if 0, pi k P

7/12/19 21



Continuous Time Semantics for the FOTLA DS.

• The interpretation of rigid quantification was just quantification
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Continuous Time Semantics for the FOTLA

• The interpretation of rigid quantification was just quantification

• The interpretation of flexible quantification required us to

quantify over stuttering equivalent behaviors

LaborNa'San6a'nliesi
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Continuous Time Semantics for the FOTLA

• The interpretation of rigid quantification was just quantification

• The interpretation of flexible quantification required us to

quantify over stuttering equivalent behaviors

• A less ad hoc interpretation can be achieved in real time

(Kaminsky and Yariv)

LaborNa'San6a'nliesi
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Continuous Time Semantics for the FOTLA

• We take behaviors to be, rather than D4', some sort of functions
from EIR ° to the discrete set D
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Continuous Time Semantics for the FOTLA

• We take behaviors to be, rather than some sort of functions
from OR ° to the discrete set D

• What sort? Continuous?

LaborNa'San6a'nliesi
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Continuous Time Semantics for the FOTLA

• We take behaviors to be, rather than some sort of functions

from OR ° to the discrete set D

• What sort? Continuous?

• No, there aren't enough of those. At all.

LaborNa'San6a'nliesi
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Real-time Semantics for the FOTLA

Definition (Non-Zeno function)

A non-Zeno function over a set S is a function f from non-negative

real numbers to S such that

1. (Parmenedean) for every t c ER,0 there exists a positive c such
that for all t' where t < t' < t + c we have f (t) = f (t' ) and

2. (Philiponean) there is no bounded increasing sequence

to, t1, t2, ... such that forall i, f (ti) f (t,±1).

LaborNa'San6a'n'atodesi
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Continuous Time Semantics for the FOTLA

• Let us abuse the notation .7)1R 0 to refer to the set of non-Zeno

functions over D

C.)NAS"PnalLaboratones
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Continuous Time Semantics for the FOTLA

• Let us abuse the notation .7)1R 0 to refer to the set of non-Zeno

functions over D

• Pre-composition by time-dilation gives an action

Hommp(R,o, R,o) x E'R o DR>0. relating stuttering

equivalent behaviors.
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Continuous Time Semantics for the FOTLA

• Let us abuse the notation .7)1R 0 to refer to the set of non-Zeno

functions over D

• Pre-composition by time-dilation gives an action

Hommp(R,o, R,o) x DR>0 E'R o. relating stuttering

equivalent behaviors.

• This allows a semantics where flexible and rigid quantification

are just quantification over different sorts

C.)NAS"PnalLaboratones
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Continuous Time Semantics for the FOTLA

7/12/19

next( S) 0 when Vt E IR>0, Vx E S, (x) = r(t)(x)

next( S) sup-fr. VO < k<  r, Vx E S, (0)(x) = r(k)(x)} otherwise

0,7 kR ❑[A]Xl iff r = 0 or e, (0) ,r(r) k A

where r = next( r, {x,i10 < i < n})

0,T koR Vx.T iff for every v E D we have (0, x v),T koR T

T Vx.T iff for every v E DR+

we have 0, (x (TM , x H v(r))) T

0, T LT iff for every k E IR>0 such that 0, r[k..] T

26



Continuous Time Semantics for the FOTLA

• The uniform interpretation of quantification is suggestive of a

multi-sorted first order language with categorical semantics

interpreting the sorts Rigid and Flex as simply different objects

in a category.

NatiSan6aonal
Laboratooks
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Continuous Time Semantics for the FOTLA

• The uniform interpretation of quantification is suggestive of a

multi-sorted first order language with categorical semantics

interpreting the sorts Rigid and Flex as simply different objects

in a category.

• What we really want is higher-order.

C.)NatiSan6aonal
Laboratooks
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Higer-Order Modal Logics (HOML)

• We're interested in higher-order modal logics
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Higer-Order Modal Logics (HOML)

• We're interested in higher-order modal logics

• What are those? What are their categorical semantics?

7/12/19 28



Language of a HOML

• By higher-order logic, we mean a logic with the type and terms

of the simply typed lambda calculus, a sort of Prop, and

quantification over any type.

• The modal version adds a modality

❑ : Prop —> Prop

7/12/19 29



Algebraic Models of S4 (3 Sandia
National
Laboratones

Each fiber of our model will be a Heyting algebra, so, staring at the

S4's wikipedia page , squinting to read H as the axioms of S4

suggest an algebraic model

Definition

A modal algebra is a pair (A, 0) : Obj(MAIg) where A is a Heyting

algebra and El is a left exact comonad on A.

A modal algebra morphism f : (A, 0) (B, ) is a morphism of

the underlying Heyting algebras which commutes with the modalities

in the sense that f • 0 = 0' • f.

7/12/19 30



Models of HOS4

lf we ask that our indexing category has enough stuff (cartesian

closedness, a generic predicate) then we will be able to do the
higher-order things

C) SandiaNational
Laboratones
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Models of HOL
l) Sandia
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Definition (Higher-order Hyperdoctrine)

A pair (C, P), where P : Cop —> HeyAlg be a functor from a cartesion

closed C into the category of Heyting algebras such that:

1. ex, Y : ObjC there are monotone ]-,c , bY : P(X x Y) P(Y)

such that for 7/ : X x Y Ythe projection H P(7) H bY

and satisfying the Beck-Chevalley condition V f : Y 171

P(X x YI) 
Pod), x 

>
f)
 P(X x Y)

 > PY
P f

commutes as does the similar 3,-( diagram;

2. (Forget • P) : Cop —> Set is representable.

7/12/19 32



Models of HOS4

Definition (Modal Hyperdoctrine)

Let P : Cop MAIg be a functor from a small cartesian closed

category C into the category of Modal algbras MAIg otherwise

satisfying the axioms of a hyperdoctrine. Then (C, P) is a Modal

Hyperdoctrine.

C) SandiaNabonal
Laboratones
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Higher-order Hyperdoctrines and Where to Find Them fflEt—'1

Fact

Let be an elementary topos. Then (3.- , Q)) is a

Higher-order Hyperdoctrine
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Higher-order Hyperdoctrines and Where to Find Them fflEt—'1

Fact

Let be an elementary topos. Then (3.- , Q)) is a

Higher-order Hyperdoctrine

Fact

Let e be a topos, and H be a Heyting Algebra internal to e. Then
(e, Home(—, H)) is a Higher-order Hyperdoctrine

7/12/19 34



Higher-order Modal Hyperdoctrines and Where to Fin

Them

cij Sada
Wool
Labcatories

Definition
Let e, be topoi. A geometric morphism f : e is an adjunction

f„

e T 3- such that the left adjoint f*, known as the inverse

f*

image, preserves finite limits. If every object X : Obj(e) is a
subquotient of an object of the inverse image f*, so that there exists

Y : Obj(.T) and diagram f*(Y) S X, then f is localic.

7/12/19 35



Higher-order Modal Hyperdoctrines and Where to Fincff'

Them

Proposition

Let f : e —> 3- a geometric morphism. Then f,(Qe) is a complete

Heyting algebra internal to

7/12/19 36



[3 Sandia
Nabonal
Laboratones

Lemma (johnstone, sketches C1.3)

In any topos 8, the subobject classifier Qe is the initial complete
Heyting algebra object. That is, for all complete Heyting algebras H

internal to 8, there is a unique map of complete Heyting algebras
i : Qe —> H. Moreover, the right adjoint of T is the classifying map of

the top element TH:1 H.

7/12/19 37



Higher-order Modal Hyperdoctrines and Where to Fin

Them

cij Sada
Wool
Labcatories

Lemma (Awodey, Kishida, Kotzsch)

Given a complete Heyting algebra H internal to topos e, let i T the

canonical adjunction i : Qe H : T. The composite i o T is an S4
modality on H.

7/12/19 38



Higher-order Modal Hyperdoctrines and Where to Find—

Them

Example

Let K be a preorder, interpreted as a collection of "possible worlds,"

together with an accessibility relation. By 11(1 we mean the discrete

category with the same underlying objects as K. The inclusion

K induces a geometric morphism f : Psh( K1) Psh(K).

7/12/19 39



Higher-order Modal Hyperdoctrines and Where to Fin

Them

cij Sada
Wool
Labcatories

Example

Let K be a preorder, interpreted as a collection of "possible worlds,"

together with an accessibility relation. By we mean the discrete

category with the same underlying objects as K. The inclusion

K induces a geometric morphism f : Psh(lKl) Psh(K).

Lemma (johnstone, 1981, prop. 3.1)

Let f : D C be a functor of small categories. If f is faithful, then the

induced geometric morphism Psh(D) Psh(C) is localic.

7/12/19 39
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Continuous-Time Semantics, Categorically
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A Model for HOTLA

Definition (Stutter)

A stutter is a continuous function ER>0 EIR>0 with continuous

inverse.

By 8 we denote the group of stutters

= ({f : P>0 ER,0 f is a stutter}, •,

C.) Sandia
National
Laboratones
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A Model for HOTLA

Definition (Stutter)

A stutter is a continuous function ER>0 EIR>0 with continuous

inverse.

By 8 we denote the group of stutters

= ({f : P>0 [R,o f is a stutter}, •,

C.) Sandia
National
Laboratones

Remark

continuous semantics, stuttering invariance is precisely closure under

the action the group of stutters.
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A Model for HOTLA

7/12/19

Definition (Stutter)

A stutter is a continuous function ER>0 [IR>0 with continuous
inverse.

By 8 we denote the group of stutters

= ({f : P>0 [R,o f is a stutter}, •,

C.) Sandia
National
Laboratones

Remark
continuous semantics, stuttering invariance is precisely closure under
the action the group of stutters.

Remark
Fixing a domain of discourse, the collection of all stuttering invariant
behaviors is an S-set, and stuttering invariant sub-sets are S-subsets. 41



A Model for HOTLA

This suggests interpreting HOTLNs sorts as objects in Psh(BS). Are

these our temporal types?

CI Sandia
National
Labor.lies
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A Model for HOTLA CI Sandia
National
Labor.lies

This suggests interpreting HOTLNs sorts as objects in Psh(BS). Are

these our temporal types?

Remark
A behavior (viewed as a non-Zeno function) is always a member of
some set of behaviors if, given any initial delay in which the behavior

is not observed, the remainder is in that set.
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A Model for HOTLA CI Sandia
National
Labor.lies

This suggests interpreting HOTLNs sorts as objects in Psh(BS). Are

these our temporal types?

Remark

A behavior (viewed as a non-Zeno function) is always a member of

some set of behaviors if, given any initial delay in which the behavior

is not observed, the remainder is in that set.

Thus, while stuttering invariance has to do with closure under

dilation of time by bi-continuous functions, 0 has to do with the

translation of time.

7/12/19 42



A Model for HOTLA

Definition
A falter is a monotone function f : OR,0 ER,0 such that the
function f (x) — f (0) is a stutter.

By 5- we denote the monoid of falters (under function composition).

7/12/19 43



A Model for HOTLA C Sandia
Nabonal
Laboratones

Remark
The inclusion : 8 5- induces a faithful functor : B8 B3. Such
a faithful functor induces a localic geometric morphism on the

associated presheaf categories c* H Psh(B8) Psh(B5-).

7/12/19 44



A Model for HOTLA

So our temporal types are objects in Psh(B.T)
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A Model for HOTLA

So our temporal types are objects in Psh(B.T)

Flex : Set Psh(I3,T)

Flex(D) = ({f : OR>0 I f non zeno},

7/12/19
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A Model for HOTLA

So our temporal types are objects in Psh(B.T)

Flex : Set Psh(B,T)

Flex(D) = ({f : OR>0 I f non zeno},

Rigid : Set —> Psh(BY)

Rigid(1)) = ((_, x) H x))

7/12/19
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A Model for HOTLA

7/12/19

C.) SandiaNational
Laboratones

• As S is a group, it has only two ideals, and S. Thus, Si- - Psh(BS) is
the set 2 with the trivial S-action. So t,C2- - Psh(BS) is a complete

Boolean algebra internal to Psh(B.T)

46



A Model for HOTLA

7/12/19

C.) SandiaNational
Laboratones

• As S is a group, it has only two ideals, and S. Thus, Si- - Psh(BS) is
the set 2 with the trivial S-action. So t„.0- - Psh(BS) is a complete

Boolean algebra internal to Psh(B.T)

• As the geometric morphism t* H c, : Psh(BS) Psh(B.T) is

localic, we should be able to compute a non-trivial modality.

46



A Model for HOTLA C) SandiaNabonal
Laboratones

• As presheaf categories have all (co)limits, the inverse image part

of the geometric morphism may be computed as a right Kan

extension.

7/12/19 47



A Model for HOTLA C Sandia
Nabonal
Laboratones

• As presheaf categories have all (co)limits, the inverse image part

of the geometric morphism may be computed as a right Kan

extension.

• BS and B.T have singleton objects, so we can compute

pointwise
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A Model for HOTLA C Sandia
Nabonal
Laboratones

• As presheaf categories have all (co)limits, the inverse image part

of the geometric morphism may be computed as a right Kan

extension.

• BS and B.T have singleton objects, so we can compute

pointwise
7rs

• Given F : SetBS, we compute lim (.8 BS Set)

7/12/19 47



A Model for HOTLA

this amounts to equalizing away the stutter action

S\, F(•s) >  F(•s)   fis.5 F(.8) .

C Sandia
Nabonal
Laboratones
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A Model for HOTLA

On P sh(B8)'s subobject classifier, this is

Prop = L-*(--0Psh(B8))

= (fp : —> 2 I bmE ,nE.F,p(n)=p(nm)}

, (n, p) (r' H p(n • n')))

(.9 (IR>o) (n, inn-1 (n) (0))
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A Model for HOTLA

On Psh(BS)'s subobject classifier, this is

Prop '4 c(C2Psh(B8))

= (fp : 2 Vm E S,n E F, p(n) = p (nm)}

, (n, p) (r' p(n • n' )))

(Y(ER>o), (n, 0) 1--> im-1(n)(0))

Consequently (and pleasingly), in our model, a proposition

corresponds to the set of times when that proposition is true.

C.) Sandia
National
Laboratories
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A Model for HOTLA

• The subobject classifier in Psh(BF) is the collection of falter
ideals

Qp.sh(B.F) = C g- Vi E rdf g-.i•f

0 NE
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A Model for HOTLA

• The subobject classifier in Psh(BI) is the collection of falter

ideals

C2Psh(BF) — g IVie/Vfe.T.i•fe/l,

• but these are just all upward-closed subsets of R>o, so

Psh(BF) .P.r(R,o),(n, O) 1--> (n)(0)).
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A Model for HOTLA

• As subobject classifier in Psh(13,3"), QP.sh(B5") is initial in
complete Heyting algebras internal to .T
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A Model for HOTLA

• As subobject classifier in Psh(133"), Q--.p.sh(BF) is initial in

complete Heyting algebras internal to .T

• so the obvious equivariant inclusion

iS2 : QP.sh(BF) y c(Qp,h(Bs)) is essentially unique.
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A Model for HOTLA

• As subobject classifier in Psh(133"), Q--.p.sh(BF) is initial in

complete Heyting algebras internal to .T

• so the obvious equivariant inclusion

iS2 : QP.sh(BF) y c(Qp,h(Bs)) is essentially unique.

• The right adjoint is the TQ is a pullback. which is, then, the

upward closure 1- (—) : .P(R) TT(E).
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A Model for HOTLA

• The adjunction ❑:= TQ : End(\t*Qpsh(Bs)) provides a left

exact comonad on the complete internal Heyting algebra

t*(C2psh(Bs))•

7/12/19
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A Model for HOTLA

• The adjunction ❑:= TQ End(t*Qpsh(Bs)) provides a left

exact comonad on the complete internal Heyting algebra

t*Opsh(Bs))•

• The resulting modal structure is quite natural — it reduces to

ensuring that a proposition holds at all future times

111(—) : Prop iz,.sh(B.T.) Prop

111(S) = fr E Ex) dr'>r,r'ES}.

C Sandia
Nabonal
Laboratones
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A Model for HOTLA

Theorem

The modal hyperdoctrine (Psh(13,T), Hom(—, t,(QBs))) admits a

sound interpretation of higher-order classical .54. Moreover,

restricting to the first-order fragment corresponds to the existing

semantics of TLA.

C Sandia
Nabonal
Laboratones
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Towards HOTLA

In a sense, our project is to try to unforget the top of this diagram

H OTLA

FOTLA HOS4

FOS4
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Towards HOTLA
C.) Sandia

Nabonal
Laboratones

In a sense, our project is to try to unforget the top of this diagram

H OTLA

FOTLA HOS4

FOS4

As a first step, inspired by the Continuous Time semantics of FOTLA,

we've begun to sketch, in this work, what will surely prove to be

HOTLNs model once someone gets around to writing down HOTLA's

syntax.
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E.) Sandia
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Bonus Slides
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Outlook (3 Sandia
Nabonal
Laboratones

• There is an equivalence Logy(elf, (e, H)) ̂  Mod7(e, H)
between a suitable category of logical functors from the

syntactic category of a theory into and models of the theory in

the modal hyperdoctrine (8, H). So, given a candidate syntax
for HOTLA, we should be able to test for the existence of such a
functor into our model.
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Outlook E) SandiaNabonal
Laboratones

• There is an equivalence Logy(elf, (e, H)) ̂  Mod7(e, H)
between a suitable category of logical functors from the

syntactic category of a theory into and models of the theory in

the modal hyperdoctrine (8, H). So, given a candidate syntax
for HOTLA, we should be able to test for the existence of such a

functor into our model.

• Model in hand, we can, given a syntax for HOTLA, check the

validity of proposed proof rules
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Outlook E) SandiaNabonal
Laboratones

• There is an equivalence Logy(elf, (e, H)) ̂  Mod7(e, H)
between a suitable category of logical functors from the

syntactic category of a theory into and models of the theory in

the modal hyperdoctrine (8, H). So, given a candidate syntax
for HOTLA, we should be able to test for the existence of such a

functor into our model.

• Model in hand, we can, given a syntax for HOTLA, check the

validity of proposed proof rules

• Topoi have all finite limits, so we should be able to form

compositions over shared interfaces via pullback

7/12/19 57



On Compositionality

Composition: A Way to Make Proofs Harder

Leslie Lamport

24 December 1997

Appeared in Compositionality: The Significant Difference
(Pmceedings of the COMPOSV7 Symposium), Willem-
Paul de Roever, Hans Langmaack, and Amir Pnueli edi-
tors. Lecture Notes in Computer Science, number 1536,
(1998), 402-423.

3 Sandia
Natioml
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Higher-order Modal Hyperdoctrines and Where to Fincff'

Them

Thus we obtain a modal hyperdoctrine on
(P sh(K),Hom psh(K)(— f (CZk pshoco)))• In particular, as is a

groupoid, e = Psh(IKI) is a Boolean topos, so f*(Qe) is not only a
complete Heyting algebra internal to .7" = P sh(K), it is an internal

Boolean algebra! The resulting logic is classical, even though
P sh(K) is very much not a boolean topos in general (it is, instead, a
Kripke model of an intuitionistic logic). The
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Deductive System on Type Prop in a HOML Language

• A relation H between terms of type Prop characterized by the

rules of intuitionist higher-order logic with two new rules for the

modality

• modal function extensionality
f , g : S —> T

ElVx : A. f (x) =T g(x) H f = ,, 5 , 7-, g

• modal propositional extensionality
0 (73 <=> q ) H P =Prop q

p, q : Prop
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Higher-order Modal Theories (HOMT)

Definition
A theory in a HOML Language is a collection of axioms of the form
F H T a, where F are contexts and a are terms, in the empty

context, well-typed of type Prop

C.) LaborNa'San6a'n'atodesi
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Categorical Semantics of Multi-Sorted First-Order Logi

Definition (First-Order Hyperdoctrine Cont'd)

(equality) For all Ax = (lx, lx) : X X x X, P(Ax) has a left

adjoint satisfying the Beck-Chevalley condition
Ax

X 

Axt

X x X
Axxlx

(Forget P) : Cop —> Set. Then (C, P) is a First-Order Hyperdoctrine

X X X

11><Ax and (generic predicate)
X xXxX
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S4 Theories

Recall, any S4 Theory (be it HOS4 or FOS4) must include the axioms

F 1 co H 0 •
r I Dp 00

•

•

F T LIT

F DY A DO H 111(Y A 0
.  

F ❑cpHcp
.

F
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