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We want to build reactive systems from networks of devices
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We want to build reactive systems from networks of devices

‘ engine:Dev ‘ | locks:Dev ] ‘ security:Dev ‘
! )
Net |
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m For systems of high consequence, we should prove such a
reactive system correct.
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reactive system correct.
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m For systems of high consequence, we should prove such a
reactive system correct.

|engine:Dev| ||ocks:Dev| |security:Dev‘

i 1 i
Safe <| Net | )
m As these systems are reactive, we must mean, by correctness,

some specification of their allowed observable behaviors over
the course of time
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m For systems of high consequence, we should prove such a
reactive system correct.

|engine:Dev| ||ocks:Dev| |security:Dev‘

Safe <| : NIet : | )

m As these systems are reactive, we must mean, by correctness,
some specification of their allowed observable behaviors over
the course of time

m Such properties are conveniently stated as formulae in temporal
logic
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m For systems of high consequence, we should prove such a
reactive system correct.

|engine:Dev| ||ocks:Dev| |security:Dev‘

Safe <| : NIet : | )

m As these systems are reactive, we must mean, by correctness,
some specification of their allowed observable behaviors over
the course of time

m Such properties are conveniently stated as formulae in temporal
logic

m The devices in the network are independently clocked, so our
logic can’t require synchrony.

7/12/19 4
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Motivation:Specifications of Temporal Behavior

Actually, we don’t know the list of devices ahead of time
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Motivation:Specifications of Temporal Behavior "
Actually, we don’t know the list of devices ahead of time
lengine:Dev‘ ‘iPad:Dev‘ ‘ Iocks:Dev| |gauge:Dev‘ ‘security:Dev‘
| Net(—) : LDev — Net
7/12/19 5
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Motivation:Specifications of Temporal Behavior o
So we actually need
engine:Dev iPad:Dev locks:Dev gauge:Dev security:Dev
SafeDev(engine) | |SafeDev(iPad) SafeDev(locks) | |SafeDev(gauge)| |SafeDev(security)
1 I I I 1

Net(—) : LDev — Net

SafeNet(—) : L(Dev — Prop) — Net — Prop
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Motivation:Specifications of Temporal Behavior

So we actually need

engine:Dev iPad:Dev locks:Dev gauge:Dev security:Dev
SafeDev(engine) SafeDev(iPad) SafeDev(locks) SafeDev(gauge) SafeDev(security)
I ) 1 1 1

Net(—) : LDev — Net

SafeNet(—) : L(Dev — Prop) — Net — Prop

For this, we will need a higher-order temporal logic
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Towards HOTLA i~

Our project is to try to unforget the top of this diagram

HOTLA

FOTLA / \
~

FOS4

HOS4

FOS4 = Temporal Logic
HOS4 = Higher-Order Logic
FOTLA = No Enforced Synchrony

7/12/19 7




Which Temporal Logic? Tense Logic?

m Prior’s tense logic

E € Expressions :=x | z | f"(E,,-,E,)
T € Predicates == P™(E,,,E,) | TAT | 3.7 | =T | OT | T
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Which Temporal Logic? Tense Logic?

m Prior’s tense logic

E € Expressions :=x | z | f"(E,,-,E,)
T € Predicates == P™(E,,,E,) | TAT | 3.7 | =T | OT | T

m an S4 Modal logic ( Kripke models over total orders).
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Which Temporal Logic? Linear Temporal Logic? "
m Pnuelli observed a shortcoming in Tense Logic- it has no way of
describing instaneous changes
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Which Temporal Logic? Linear Temporal Logic?

m Pnuelli observed a shortcoming in Tense Logic- it has no way of
describing instaneous changes

m So he introduced an additional modality, o, to be thought of as
“next”. T} = oT, then means, having observed T} we will next

observe T,
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Which Temporal Logic? Linear Temporal Logic? o

m Pnuelli observed a shortcoming in Tense Logic- it has no way of
describing instaneous changes

m So he introduced an additional modality, o, to be thought of as
“next”. T} = oT, then means, having observed T} we will next
observe T,

m This logic also has a well understood Kripke model (over N).

Unfortunately, the o modality is fundamentally synchronous,
and, so, inappropriate for our application.

7/12/19 9
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The Temporal Logic of Actions o

m Recalling our example, the devices on our network are all
independently clocked, so we can’t capture the relevant
examples with the o modality
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The Temporal Logic of Actions o

m Recalling our example, the devices on our network are all
independently clocked, so we can’t capture the relevant
examples with the o modality

m Lamport developed his Temporal Logic of Actions to solve this
problem

7/12/19 10
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The (First-Order) Temporal Logic of Actions
(FOTLA)
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The (First Order) Temporal Logic of Actions o

m As before, there are “rigid” variables ( un-boldfaced) and
“flexible” variables ( boldfaced).
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The (First Order) Temporal Logic of Actions o

m As before, there are “rigid” variables ( un-boldfaced) and
“flexible” variables ( boldfaced).

m As in Prior’s tense logic, one constructs from these the
expressions and predicates

EecTerms ==z | x| x| f(EYy,..., E,)
P € Propositions := [P | =P | P, A P, | Vz.P | O[4],

x17'“7x'n.>
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The (First Order) Temporal Logic of Actions o

m As before, there are “rigid” variables ( un-boldfaced) and
“flexible” variables ( boldfaced).

m As in Prior’s tense logic, one constructs from these the
expressions and predicates

EecTerms ==z | x| x| f(EYy,..., E,)
P € Propositions := [P | =P | P, A P, | Vz.P | O[4],

xlv'“7x'n.>

m To capture the idea of next, Actions, which classify changes

7/12/19 12
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The Temporal Logic of Actions "
m O[A], ..x, ) always, the action predicate A is true or the
flexible variables x;, ---, x,, remain unchanged
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The Temporal Logic of Actions o

m O[A], ..x, ) always, the action predicate A is true or the
flexible variables x;, ---, x,, remain unchanged

m This is the key feature which allows FOTLA to remedy tense

logic’s shortcomings without recourse to any notion of
synchrony

7/12/19 13
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Compositionality and the Syntax of the Temporal Logic@lE’""
Actions

In order to express the proof obligation that one FOTLA specification
be an abstraction of another, we need existential quantification over
flexible variables

Abstraction = Jx.Refinement

7/12/19 14
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The Syntax of the Temporal Logic of Actions

EcTerms:=z |x|x | f(Eq,...,E,)
A € Actions := R(E,,...,E,) | Ey = E, | Vz.A| A| AN Ay | A
P € Propositions ::= 0P | =P | P, A Py | O[A] o x> | V2.P [ VX.P
T € Formulae ::= A | P
d2.T 2 —Vx.-T
Ix.P = —Vx.—P
TN, =Ty N Ty = Ty

7/12/19 15
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Discrete-Time Semantics for the First-Order Temporal L@gf:"’
of Actions

The First-order Temporal Logic of Actions has a classical Discrete Time
Semantics in Set.

7/12/19 16
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Discrete-Time Semantics for the First-Order Temporal L@%E't’
of Actions

m Fix some set D : Set modeling the domain of discourse
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Discrete-Time Semantics for the First-Order Temporal L@gﬁr’%‘
of Actions

m Fix some set D : Set modeling the domain of discourse

m the environment 0 : Rigid — D , the state o : Flex — D, and
the next state ¢’ : Flex’ — D.

0,0,0" E A N A, iff (0,0,0" F Ay)and (,0,0" F A;)
0,0,0" F—A iff 0,0, 0'FA

0,0,0' EE, = E, iff [E1](0,0,0") = [E5](0,0,0")
0,0,0' EVx. A iff foreveryv € D (0 Wz +— v),0,0" F A

0,0,0' FER(E,,...,E,) iff R(R)([E,]0,0,0),...,[E,](0,0,0"))

7/12/19 17
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Discrete-Time Semantics for the FOTLA e
m The interpretation of Predicates require, more than states,
N-indexed families of states called behaviors, p = (D )N
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Discrete-Time Semantics for the FOTLA —_"

m The interpretation of Predicates require, more than states,
N-indexed families of states called behaviors, p = (Dl )N

m We can begin to give an interpretation of the FOTLA predicates

0,pEOP iff for everyn € N0, p[n,...] F P
0,pF D[A]<x1,...,xm>
iff for each n € N either 6, p[n], p[n + 1] F A
or Vi € [1,m].p[n](%) = p[n + 1](x)
0,pFVz.P iff foreveryv € D (0 Wz v),pkE P

7/12/19 18
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Discrete-Time Semantics for the FOTLA —_"

But we can’t give an interpretation for flexible quantification before
defining an equivalence relation on behaviors.
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Discrete-Time Semantics for the FOTLA —_"

But we can’t give an interpretation for flexible quantification before
defining an equivalence relation on behaviors.

Definition (Discrete Stuttering Equivalence)

Let (DFe)N 3 collection of behaviors. Stuttering equivalence is the

least equivalence relation on behaviors such that,
Vp € (DN i € N p’ =~ pwhen p’ is given by

p'(m) = p(m)whenm <n (2.1)
p'(m)=p(m—1)whenm >n (2.2)

7/12/19 19
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Only now can we give flexible quantification an interpretation

0, pk Vx.P
if and only if foreveryd € DN and p’ ~ p,0,p' W (x> d) F P

Remark

to interpret quantification over flexible variables in the discrete time
semantics, we must quantify over a stuttering equivalence class’s
worth of behaviors

7/12/19 20




Stuttering Invariance in the Discrete-Time Semantics fo%
FOTLA

Proposition (Stuttering Equivalence in FOTLA)
YP,0,p,p’ suchthatp =~ p’

0,pE Pifandonly if0,p’ £ P

7/12/19 21
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m The interpretation of rigid quantification was just quantification
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Continuous Time Semantics for the FOTLA s
m The interpretation of rigid quantification was just quantification
m The interpretation of flexible quantification required us to
guantify over stuttering equivalent behaviors
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Continuous Time Semantics for the FOTLA —_"

m The interpretation of rigid quantification was just quantification
m The interpretation of flexible quantification required us to
guantify over stuttering equivalent behaviors

m Aless ad hoc interpretation can be achieved in real time
(Kaminsky and Yariv)

7/12/19 22



Continuous Time Semantics for the FOTLA .

m We take behaviors to be, rather than D, some sort of functions
from R=Y to the discrete set D

7/12/19 23
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Continuous Time Semantics for the FOTLA e
m We take behaviors to be, rather than DN, some sort of functions
from R=9 to the discrete set D
m What sort? Continuous?
7/12/19 23
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Continuous Time Semantics for the FOTLA e
m We take behaviors to be, rather than DN, some sort of functions
from R=9 to the discrete set D
m What sort? Continuous?
m No, there aren’t enough of those. At all.
7/12/19 23
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Real-time Semantics for the FOTLA

Definition (Non-Zeno function)
A non-Zeno function over a set S'is a function f from non-negative
real numbers to .S such that
1. (Parmenedean) for every ¢ € R there exists a positive € such
that for all t" where t <’ <t 4 e we have f(t) = f(t’) and

2. (Philiponean) there is no bounded increasing sequence
to,t1,ts, ... such that forall 4, f(t;) # f(t;1)-

7/12/19
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Continuous Time Semantics for the FOTLA —_"

m Let us abuse the notation D=0 to refer to the set of non-Zeno
functions over D
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Continuous Time Semantics for the FOTLA —_"

m Let us abuse the notation DF>o to refer to the set of non-Zeno
functions over D

m Pre-composition by time-dilation gives an action
Homy,o(Rog, Rog) X DR=0 — D=0, relating stuttering
equivalent behaviors.

7/12/19
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Continuous Time Semantics for the FOTLA

m Let us abuse the notation D=0 to refer to the set of non-Zeno
functions over D

m Pre-composition by time-dilation gives an action
Homy,o(Rog, Rog) X DR=0 — D=0, relating stuttering
equivalent behaviors.

m This allows a semantics where flexible and rigid quantification
are just quantification over different sorts

7/12/19
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next(r,S) =0 when Vt € Ry, Vo € S,7(0)(x) = 7(t)(x)
next(r,S) = sup{r | VO< k <r,Vz € S,7(0)(z) =
0,7k D[A]xl,.-.,xn iffr=00r6,7(0),7(r) F A
where r = next(r, {x;|0 <i < n})

7(k)(z)} otherwise

0, 7Eg V. T iff for every v € D we have (0,2 - v), 7 Fg T
0,7k YX.T iff for every v € DX

we have 0, (z = (7(r),x = v(r))) kg
0, 7kg OT iff for every k € R such that 0, 7[k..] kg

7/12/19 26
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Continuous Time Semantics for the FOTLA s

m The uniform interpretation of quantification is suggestive of a
multi-sorted first order language with categorical semantics

interpreting the sorts Rigid and Flex as simply different objects
in a category.
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Continuous Time Semantics for the FOTLA s

m The uniform interpretation of quantification is suggestive of a
multi-sorted first order language with categorical semantics
interpreting the sorts Rigid and Flex as simply different objects
in a category.

m What we really want is higher-order.

7/12/19
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Higer-Order Modal Logics (HOML) @

m We're interested in higher-order modal logics
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Higer-Order Modal Logics (HOML) o

m We're interested in higher-order modal logics

m What are those? What are their categorical semantics?

7/12/19 28
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Language of a HOML

m By higher-order logic, we mean a logic with the type and terms
of the simply typed lambda calculus, a sort of Prop, and
quantification over any type.

m The modal version adds a modality

[1: Prop — Prop

7/12/19
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Algebraic Models of S4 e

Each fiber of our model will be a Heyting algebra, so, staring at the
S4’s wikipedia page , squinting to read I as =<, the axioms of $4
suggest an algebraic model

Definition

A modal algebra is a pair (A, J) : Obj(MAIlg) where A is a Heyting
algebra and [ is a left exact comonad on A.

A modal algebra morphism f : (A,0J) — (B,J’) is a morphism of
the underlying Heyting algebras which commutes with the modalities
inthesensethat f-O0=01"- f.

7/12/19
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Models of HOS4 s
If we ask that our indexing category has enough stuff (cartesian
closedness, a generic predicate) then we will be able to do the
higher-order things

7/12/19 31
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Models of HOL —_"

Definition (Higher-order Hyperdoctrine)
A pair (C,P), where P : C°? — HeyAlg be a functor from a cartesion
closed Cinto the category of Heyting algebras such that:
1. VX,Y : ObjC there are monotone 3%, Vs : P(X x Y) — P(Y)
such that for 7 : X x Y — Y'the projection 35 - P(r) - V<
and satisfying the Beck-Chevalley condition Vf : Y — Y’

(X x V') p(x )

V)y‘,l v{;l
/
_—
PY T PY
commutes as does the similar EI{S diagram;
2. (Forget - P) : C°? — Set is representable.

7/12/19 32
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Models of HOS4 —_"

Definition (Modal Hyperdoctrine)

Let P : C°? — MAIg be a functor from a small cartesian closed
category C into the category of Modal algbras MAIlg otherwise
satisfying the axioms of a hyperdoctrine. Then (C, P) is a Modal
Hyperdoctrine.

7/12/19



Higher-order Hyperdoctrines and Where to Find Them@:ﬁ"‘

Fact
Let T be an elementary topos. Then (T ,Hom,(—,)) is a
Higher-order Hyperdoctrine

7/12/19 34
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Higher-order Hyperdoctrines and Where to Find Them@ﬁ"

Fact
Let T be an elementary topos. Then (T ,Hom,(—,)) is a
Higher-order Hyperdoctrine

Fact
Let & be a topos, and H be a Heyting Algebra internal to £. Then
(6,Homg(—, H)) is a Higher-order Hyperdoctrine

7/12/19
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Higher-order Modal Hyperdoctrines and Where to Fino@“’“"“‘
Them

Definition
Let £, F be topoi. A geometric morphism f : £ — F is an adjunction
f*

—

& T F suchthatthe left adjoint f*, known as the inverse
*

image, preserves finite limits. If every object X : Obj(&) is a
subquotient of an object of the inverse image f*, so that there exists

Y : Obj(#) and diagram f*(Y') << S — X, then fis localic.

7/12/19 35




Higher-order Modal Hyperdoctrines and Where to Fino[@:ﬁ"‘
Them

Proposition
Letf: & — F a geometric morphism. Then f,(§)¢) is a complete
Heyting algebra internal to .

7/12/19 36
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Lemma (johnstone, sketches C1.3)

In any topos &, the subobject classifier (). is the initial complete
Heyting algebra object. That is, for all complete Heyting algebras H
internal to &, there is a unique map of complete Heyting algebras

1: Qe — H. Moreover, the right adjoint of T is the classifying map of
the top element T : 1 — H.

7/12/19
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Higher-order Modal Hyperdoctrines and Where to Fino[@“’"“'"
Them

Lemma (Awodey, Kishida, Kotzsch)

Given a complete Heyting algebra H internal to topos &, let i - T the
canonical adjunction i : Q¢ CH:7 The composite i o Tis an $4
modality on H.

7/12/19
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Higher-order Modal Hyperdoctrines and Where to Fino@“’“’“"‘
Them

Example

Let K be a preorder, interpreted as a collection of “possible worlds,”
together with an accessibility relation. By | K| we mean the discrete
category with the same underlying objects as K. The inclusion

| K| — K induces a geometric morphism f : Psh(|K|) — Psh(K).

7/12/19



Sandia
National

Higher-order Modal Hyperdoctrines and Where to Fino@“’“"“
Them

Example

Let K be a preorder, interpreted as a collection of “possible worlds,”
together with an accessibility relation. By | K| we mean the discrete
category with the same underlying objects as K. The inclusion

| K| — K induces a geometric morphism f : Psh(|K|) — Psh(K).

Lemma (johnstone, 1981, prop. 3.1)

Let f : D — C be a functor of small categories. If f is faithful, then the
induced geometric morphism Psh(D) — Psh(C) is localic.

7/12/19 39




Continuous-Time Semantics, Categorically
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A Model for HOTLA —
Definition (Stutter)
A stutter is a continuous function R., — R, with continuous
inverse.
By S we denote the group of stutters
S = ({f:Rso = Ryg | fisastutter}, -, idy )
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A Model for HOTLA —_"

Definition (Stutter)

A stutter is a continuous function R., — R- with continuous
inverse. - -

By S we denote the group of stutters

8= ({f:Rsg = Ry | fisastutter}, 'aidue>0>

Remark
continuous semantics, stuttering invariance is precisely closure under
the action the group of stutters.
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A Model for HOTLA —_"

Definition (Stutter)

A stutter is a continuous function R., — R- with continuous
inverse. - -

By S we denote the group of stutters

8= ({f:Rsg = Ry | fisastutter}, -,ilem)

Remark
continuous semantics, stuttering invariance is precisely closure under
the action the group of stutters.

Remark
Fixing a domain of discourse, the collection of all stuttering invariant
212110 behaviors is an S-set, and stuttering invariant sub-sets are S-subsets. 4
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A Model for HOTLA —
This suggests interpreting HOTLA's sorts as objects in Psh(BS). Are
these our temporal types?
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A Model for HOTLA —_"

This suggests interpreting HOTLA's sorts as objects in Psh(BS). Are
these our temporal types?

Remark

A behavior (viewed as a non-Zeno function) is always a member of
some set of behaviors if, given any initial delay in which the behavior
is not observed, the remainder is in that set.

7/12/19 42
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A Model for HOTLA —_"

This suggests interpreting HOTLA's sorts as objects in Psh(BS). Are
these our temporal types?

Remark

A behavior (viewed as a non-Zeno function) is always a member of
some set of behaviors if, given any initial delay in which the behavior
is not observed, the remainder is in that set.

Thus, while stuttering invariance has to do with closure under
dilation of time by bi-continuous functions, [J has to do with the
translation of time.

7/12/19 42
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A Model for HOTLA

Definition
A falter is a monotone function f : R, — R such that the

function z = f(z) — f(0) is a stutter.
By & we denote the monoid of falters (under function composition).

7/12/19
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A Model for HOTLA —_"

Remark
The inclusion . : § — 5 induces a faithful functor . : BS — B . Such
a faithful functor induces a localic geometric morphism on the

associated presheaf categories * 4 ¢, : Psh(BS) pd Psh(BF).

7/12/19
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So our temporal types are objects in Psh(BJF)
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A Model for HOTLA e
So our temporal types are objects in Psh(BJF)
Flex : Set — Psh(BF)
Flex(D) = ({f : Ryg — D | fnon zeno}, ")
7/12/19 45
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A Model for HOTLA s

So our temporal types are objects in Psh(BJF)

Flex : Set — Psh(BF)
Flex(D) = ({f : Ryg — D | fnon zeno}, ")

Rigid : Set — Psh(BF)
Rigid(D) = (D, ((L,z) = 2))

7/12/19 45




Sandia

A Model for HOTLA "

m As §is a group, it has only two ideals, } and 8. Thus, Qp,gs) is
the set 2 with the trivial S-action. So ¢,{2pss) is @ complete
Boolean algebra internal to Psh(BSF)

7/12/19 46
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A Model for HOTLA 185

m As §is a group, it has only two ideals, } and 8. Thus, Qp,gs) is
the set 2 with the trivial S-action. So ¢,{2pss) is @ complete
Boolean algebra internal to Psh(BSF)

m As the geometric morphism t* ¢, : Psh(BS) pad Psh(BF)is
localic, we should be able to compute a non-trivial modality.

7/12/19 46
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A Model for HOTLA i
m As presheaf categories have all (co)limits, the inverse image part
of the geometric morphism may be computed as a right Kan
extension.
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A Model for HOTLA s

m As presheaf categories have all (co)limits, the inverse image part
of the geometric morphism may be computed as a right Kan
extension.

m BS and B have singleton objects, so we can compute
pointwise
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A Model for HOTLA —

m As presheaf categories have all (co)limits, the inverse image part
of the geometric morphism may be computed as a right Kan
extension.

m BS and B have singleton objects, so we can compute
pointwise

.s ;
m Given F : Set®$, we compute lim (og e il BS — Set)
7/12/19 47
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A Model for HOTLA —_"

this amounts to equalizing away the stutter action

[T, , Flos) — T1, Flos) — Il Flos) -

7/12/19 48
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A Model for HOTLA —_"

On Psh(BS)’s subobject classifier, this is

Prop = 1, (Qpspes))
={p:F —=>2|YmeS,neF,pn)=phm)}
, (n,p) = (r = p(n-n')))
= (P(Rxg); (n, 0) = im~(n)(0))

7/12/19 49
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A Model for HOTLA —_"

On Psh(BS)'’s subobject classifier, this is

Prop = 1, (Qpspes))
={p: F—>2|VmeS,neF, pn)=pnm)}
, (n,p) = (r = p(n-n')))
= (P(Rxg); (n, 0) = im~(n)(0))

Consequently (and pleasingly), in our model, a proposition
corresponds to the set of times when that proposition is true.

7/12/19 49
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A Model for HOTLA A

m The subobject classifier in Psh(BF) is the collection of falter
ideals

QPSh(Bf):{I§?|W61Vf€?.i-f€]},

7/12/19 50
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A Model for HOTLA 185

m The subobject classifier in Psh(BF) is the collection of falter
ideals

QPSh(Bf):{IQ.?|WEIVf€5’.i-fEI},

m but these are just all upward-closed subsets of R, so
QPSh(Bf) = <?T(|R20)7 (n7 O) = im_l (n)(0>>
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A Model for HOTLA —_"

m As subobject classifier in Psh(BF), Qpgy sy is initial in
complete Heyting algebras internal to &

7/12/19 51
—



Sandia

A Model for HOTLA s

m As subobject classifier in Psh(BF), Qpgy sy is initial in
complete Heyting algebras internal to &

m so the obvious equivariant inclusion
io  Qpsner) < L(Qpgsns)) is essentially unique.
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A Model for HOTLA —_"

m As subobject classifier in Psh(BF), Qpgy sy is initial in
complete Heyting algebras internal to &

m so the obvious equivariant inclusion
io  Qpsner) < L(Qpgsns)) is essentially unique.

m The right adjoint is the 7, is a pullback. which is, then, the
upward closure 1 (—) : P(R) — P4(R).
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m The adjunction U := i o 7 : End(¢,Qpgyss)) provides a left
exact comonad on the complete internal Heyting algebra
L*(QPsh(BS))'
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m The adjunction U := i o 7 : End(¢,Qpgyss)) provides a left
exact comonad on the complete internal Heyting algebra
L*(QPsh(BS))'

m The resulting modal structure is quite natural — it reduces to
ensuring that a proposition holds at all future times

0(—) : Prop — pgp(s) Prop
O@S) ={r e Ryg | Vr' >r,1" € S}.
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Theorem

The modal hyperdoctrine (Psh(BF ), Hom(—,,(Qg5))) admits a
sound interpretation of higher-order classical S4. Moreover,
restricting to the first-order fragment corresponds to the existing
semantics of TLA.
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In a sense, our project is to try to unforget the top of this diagram

HOTLA

FOTLA / \
~

FOS4

HOS4
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In a sense, our project is to try to unforget the top of this diagram

HOTLA

FOTLA / \
~

FOS4

HOS4

As a first step, inspired by the Continuous Time semantics of FOTLA,
we’ve begun to sketch, in this work, what will surely prove to be
HOTLA’s model once someone gets around to writing down HOTLA’s
syntax.
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m There is an equivalence Log (&, (£, H)) =~ Mod (&, H)
between a suitable category of logical functors from the
syntactic category of a theory into and models of the theory in
the modal hyperdoctrine (£, H). So, given a candidate syntax
for HOTLA, we should be able to test for the existence of such a
functor into our model.

7/12/19 57



Sandia

Outlook —_"

m There is an equivalence Log (&, (£, H)) =~ Mod (&, H)
between a suitable category of logical functors from the
syntactic category of a theory into and models of the theory in
the modal hyperdoctrine (£, H). So, given a candidate syntax
for HOTLA, we should be able to test for the existence of such a
functor into our model.

m Model in hand, we can, given a syntax for HOTLA, check the
validity of proposed proof rules
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m There is an equivalence Log (&, (£, H)) =~ Mod (&, H)
between a suitable category of logical functors from the
syntactic category of a theory into and models of the theory in
the modal hyperdoctrine (£, H). So, given a candidate syntax
for HOTLA, we should be able to test for the existence of such a
functor into our model.

m Model in hand, we can, given a syntax for HOTLA, check the
validity of proposed proof rules

m Topoi have all finite limits, so we should be able to form
compositions over shared interfaces via pullback
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On Compositionality [ ..

Composition: A Way to Make Proofs Harder
Leslie Lamport

24 December 1997

Appeared in C i lity: The Signifi Difference
(Proceedings of the COMPOS’97 Symposium), Willem-
Paul de Roever, Hans Langmaack, and Amir Pnueli edi-
tors. Lecture Notes in Computer Science, number 1536,
(1998), 402-423.
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Higher-order Modal Hyperdoctrines and Where to Fino@sﬁ"“
Them

Thus we obtain a modal hyperdoctrine on
(Psh(K),Homp, ) (= F,.(Qpgnk)))))- In particular, as [K| is a
groupoid, £ = Psh(|K]|) is a Boolean topos, so f, (€2¢) is not only a
complete Heyting algebra internal to & = Psh(K), itis an internal
Boolean algebra! The resulting logic is classical, even though
Psh(K) is very much not a boolean topos in general (it is, instead, a
Kripke model of an intuitionistic logic). The
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Deductive System on Type Prop in a HOML Language ) .

m Arelation F between terms of type Prop characterized by the
rules of intuitionist higher-order logic with two new rules for the
modality

m modal function extensionality
f,g:S—>T

OVz: A.f(z) =rg(z) - f =519

p,q : Prop

m modal propositional extensionality
D(p <qkp “prop 4
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Higher-order Modal Theories (HOMT) o

Definition
A theory in a HOML Language is a collection of axioms of the form
I' = T F «, where I'" are contexts and « are terms, in the empty

context, well-typed of type Prop
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Categorical Semantics of Multi-Sorted First-Order Logic@

Definition (First-Order Hyperdoctrine Cont’d)
(equality) Forall Ay = (1x,1x) : X — X x X, P(Ax) has a left
adjoint satisfying the Beck-Chevalley condition
X —2% L xxX
AX\L llXAX and (generic predicate)

XxX — XxXxX

Axxly

(Forget o P) : C°? — Set. Then (C, P) is a First-Order Hyperdoctrine
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S4 Theories W

Recall, any S4 Theory (be it HOS4 or FOS4) must include the axioms
. Llpky
[ OptF Oy

..—
©|T+OT

" T OpADeFO(pAy)
.Flﬂwa

" T OpF O0p
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