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Abstract—Plane electromagnetic waves can interact strongly
with a spatially confined degenerate plasma in a thin layer of
transparent conductive oxide at its epsilon-near-zero
wavelength. Using high mobility CdO:In conductive oxide, up
to 9th harmonic of the fundamental pump wave was observed.
This approach offers great flexibility for input laser
wavelengths.
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INTRODUCTION
High harmonic generation has been used to generate extreme

ultra-violet light sources to probe fast electron dynamics in the
attosecond time scale[1]. Harmonic orders as high as thousands
have been demonstrated in high pressure gas based on the
mechanism that electrons produced by tunnel ionizations are driven
more strongly by the external electromagnetic field than the
coulomb field of its parent ion[2]. Similarly, electrons in doped
semiconductors or transparent conductive oxides can be driven by
laser field and may interact or scatter from the ionic fields in the
crystal to create highly nonlinear electronic motions and hence
producing harmonic fields efficiently. Because of high electron and
ion densities in solid, and the ions are essentially locked in a lattice
space, the interaction dynamics can be quite different from gaseous
media. Indeed, high harmonic generation from graphene[3],
Zn0[4], MoS2[5] was observed. In this paper, we explore high doped
semiconductor materials where the ionic fields are screened, and
electrons are largely free. The intensity required to produce
significant nonlinear response is lower. For the CdO:In, 9111
harmonic was observed using intensities of 10GW/cm2 rather than
TW/cm2.

RESULTS
The sample under studied is a 75nm thick In doped Cd0 film

on Mg0 crystal substrate with a carrier density of 2.8x102° cm-3 and
an electron mobility of 200 cm2V-V. The sample is coated with
200nm thick Au and the laser field is coupled to the sample from the
substrate side to achieve the maximum field enhancement. This
structure possesses a mode which can be excited with a p-polarized
2.08µm femtosecond laser pulse with near zero reflectivity as shown
in Figure 1.
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Figure 1. Schematic illustration of the excitation geometry of the
sample.

The pump and generated harmonic radiations in the specular
reflection direction of the pump radiation. The harmonic radiation
are separated and filtered before being dispersed by a spectrometer
to produce a spectrum shown in Figure 2.
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Figure 2. The harmonic spectrum from the CdO:In structure excited
by 2.08,um at an intensity of 11.3 GW/cm2.
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Figure 2 shows the 3rd harmonic wave generated from p-
polarized pump is two orders of magnitude stronger than S-
polarized, indicating that the free electrons dominates the nonlinear
response. Furthermore, the harmonic fields frequencies are red
shifted and broadened compared to S-polarized exciting field.
Using a simple two electron model[6] to account for the laser
heating effects of the electrons which causes an increase in the
averaged effective mass can qualitatively explain the red shift
behavior. A more sophisticated dynamical model is needed for
quantitative agreement.
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