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Motivation 12

Empirical models used in reactor
calculations are often based on data from
decades ago.

In many cases, these correlations are

Phenomenon Model Year
Single phase Pressure drop Colebrook Equation 1938
Two-phase pressure drop Beattie 1982

constructed using disparate data sets.

o Different measurement devices/techniques Single phase wall heat transfer
> Various working fluids Nucleate boiling heat transfer
o Fluid property evaluations Film bOﬂiIlg heat transfer

Critical heat flux

o Untreated physics/insufficient scaling
Film boiling
°© Human etrror

Interfacial heat transfer

The biases between these datasets are, in Terminal Taylor bubble velocity

Dittus-Boelter (McAdams)
Rohsenow

Bromley

Zuber

Zuber/Berenson

Lee & Ryley

Griffith

1985 (1954)
1951
1948
1958
1960
1968
1961

general, not treated during the formulation
and calibration of the empirical model.
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2 Motivation 22

* Code uncertainty is underestimated when biases between datasets are not
considered.

* When uncertainties are untreated, it 1s equivalent to assuming they are zero; in
these cases, there 1s no motivation to reduce uncertainties.

* The purpose of this work is twofold:
° Quantify and understand these biases/uncertainties, and

> Motivate researchers to revisit some of these problems using modern hardware, techniques,
and data acquisition systems.
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Background and Theory
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31 Calibration: Bayesian Methods

* In general, calibration is a statistical method to infer unknown parameter values/distributions
by observing state variables and corresponding data (physical or computational experiments).

* Bayesian methods allow for the incorporation of prior information from previous
experiments or expert knowledge.

* Solves Bayes’ formula, which formulates the desired posterior distribution in terms of the
prior distribution and likelihood function.

L(y|0)m,(6)
Jo £LW10)m,(6)d6

* We employ sampling methods because (1) the denominator is difficult or impossible to
integrate and (2) the product of the likelihood and prior cannot be easily sampled.

n(0ly) =

* Delayed Rejection Adaptive Metropolis (DRAM) is one such sampling method.!?

1. H. Haario, M. E. Saksman, and J. Tamminen, “An Adaptive Metropolis Algotithm,” Bernoulli, 7(2), pp. 223-242 (2001) doi: 10.2307/3318737.
2. A. Mira, “On Metropolis-Hastings Algorithm with Delayed Rejection,” Metron, 59(3), pp. 231-241 (2001).
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4 | Statistical Model

* For calibration, fixed effects statistical models are generally used, where the experimental data
is equal to some model with zero-mean Gaussian measurement noise.

y=f(x0)+e

* This work employs mixed-effects statistical models, where each parameter is a combination of
global and random effects.

y=f(x0+pB)+c¢

* Frequentist solution methods generally solve this problem through minimization of an
approximated likelihood function.!

* Bayesian Calibration can be used to obtain estimates of the desired posteriors, using
conditional probabilities and likelihood function from the literature.?

* Here, a hierarchical Metropolis-within-DRAM method is used.>*

* The DRAM step estimates global parameters, and Metropolis estimates random parameters.

1. J. C. Pinheiro and D. M. Bates, “Approximations to the Log-Likelihood Function in Nonlinear Mixed-Effects Model,” | Comp Graphical Stat, 4(1) (1995).

2.]. C. Wakefield, et al., “Bayesian Analysis of Linear and Nonlinear Populations Models Using the Gibbs Sampler,” | Royal Stat Soc, 43(1) (1994).

3. K. L. Schmidt, Uncertainty Quantification for Mixed-Effects Models with Applications in Nuclear Engineering, PhD thesis, North Carolina State University (2016).
4. M. Laine, MCMC Toolbox for Matlab (2017), helios.fmi.fi/~lainema/mcmc/.
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s | Methodology

1. Gather experimental data from the literature.
> Some will be related to original dataset

o 'This set of data can be expanded in future work

2. Formulate the statistical model.
> Use initial frequentist optimization

°  Determine which parameters ate fixed/global/random via information criteria
minimization

9

5. Calibrate the statistical model to the experimental data.
Use the hierarchical Metropolis-within-DRAM algorithm

Burn-in determined based on rule-of-thumb (10° iterations)!

[e]

[e]

4. Examine the results.
> Compare initial correlation, frequentist optimization, and Bayesian calibration.

> Propagate chain through original model and construct 95% predictive intervals

1. R. C. Smith. Uncertainty Quantification, Theory, Inmplementation, and Applications. SIAM (2014)
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6 I Friction Factor ;3

* Single phase friction in smooth tubes (Colebrook equation/Moody chart)

* Here, a new correlation is used which represents the transition region using a
logistic function.

f= (1- S)flaminar + Sfeurbutent
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7

Friction Factor 2

* Through minimization of the information critetia,
only q; and g, require random effects.

8/22/2019

f=|1-

1

64

93 + 64Re_65

1T o-@rt B [Re=6:F:01 | Re | 1+ o—(@1+Br0) [Re— @3+ Ba)]
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Global Random AIC BIC
41,92, 93,94, 95 -5297.7  -5302.0
qs q1,92,93,94 -5299.7  -5303.6
44,95 q1,92,93 -5301.7  -5305.2
43, 94,95 41,92 -5303.7  -5306.8
q2,93,94,9s q1 -4770.1  -4772.8
q1,92,93,94,9s -4515.4  -4517.8
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Friction Factor 2

* Through minimization of the information critetia,
only q; and g, require random effects.
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f=|1-

1 64 05 + 6,Re™ %

1T o-@rt B [Re=6:F:01 | Re | 1+ o—(@1+Br0) [Re— @3+ Ba)]

ANS NURETH-18

Global Random AIC BIC
41,92, 93,94, 95 -5297.7  -5302.0
ds q1,92,93,94 -5299.7  -5303.6
44,95 q1,92,93 -5301.7  -5305.2
43, 94,95 41,92 -5303.7 -5306.8
q2,93,94,9s q1 -4770.1  -4772.8
q1,92,93,94,9s -4515.4  -4517.8
43,qs 41,92, 94 -5301.7 -5305.2
43,94, q1,92,9s -5301.7  -5305.2




71 Friction Factor 23

Global Random AIC BIC
q1,92,93,94,95 -5297.7  -5302.0
qs q1,92,93,94 -5299.7  -5303.6
* Through minimization of the information criteria, e St 53017  -5305.2
only g, and q, require random effects. Hrlc oils 53037  .5306.8
1 64 05 + 94Re_95 q2,93,94,95 q1 -4770.1 -4772.8
1- 1 + e-01+B1) [Re=(62+B201| Re + 1 + e-(O1+B11) [Re=(62+520)] 41,9293, 94, qs -4515.4  -4517.8
q3,qs q1,92,94 -5301.7  -5305.2
43,94, 41, 92,95 -5301.7 -5305.2
Frequentist Optimization Bayesian Calibration (mean results)
Stanton Nikuradse Patel Swanson Everts Stanton Nikuradse Patel Swanson Everts
6, 0.01 0.01022 0.01042
Bt -0.00269 -0.00667 -0.00289 0.00480 0.00745 -0.00285 -0.00685 -0.00299 0.00472 0.00776
6, | 2500 2582 2584
Boi -331.5 272.4 -124.3 325.8 -142.4 -334.7 270.7 -126.1 324.3 -143.9
65 0.005 0.005169 0.005156
6, 0.5 0.4354 0.4336
65 0.32 0.3054 0.3048
o? 5.996e-7 5.940e-7
2 [2.84%6 - 6 5g2e4] [4.6632)6 - 1 0;)794]
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8 | Friction Factor 31

* Through propagation of the Bayesian chains through the original model,
uncertainty bounds can be found for each individual experiment.

* Here, the 95% prediction intervals are shown, and they capture the appropriate
percentage of the data.

* Only the parameters which determine the transition region have random effects, so
the laminar and turbulent regions do not have laboratory-dependent uncertainty.
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9 I Heat Transfer Coefficient 113

* Single phase forced convection heat transfer in smooth tubes

* Represented by the Dittus-Bolter equation, which was created for analysis of
automobile radiators

Nu = q;Re%2Pr

* Data is shown in both two and three dimensions

Morris & Whitman
O Lawrence & Sherwood
> Deissler & Eian
Kays & Leung
— Dittus-Boelter

103 -

10!

108 Pr 10°
Re08 pp04

He
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10 I Heat Transfer Coefficient 23

* Through minimizing AIC and BIC, all three parameters require random effects to
fit the data.

Nu = (91 + Bll)Re(92+ﬁzl)Pr(63+.831)

Frequentist Optimization Bayesian Calibration (mean results)
Morris Lawrence Deissler Kays Morris Lawrence Deissler Kays
6, | 0.023 0.0285 0.03234
Bi1 -0.0244 0.0211 8.58e-4 0.00247 | -0.0277 0.0203 -7.89e-4 | 0.00770
0, 0.8 0.8064 0.7978
B 0.176 -0.0877 -0.0470 -0.0410 0.176 -0.0842 -0.0428 -0.0524
05 0.4 0.4431 0.4433
Ba1 -0.0326 0.0327 -3.07e-5 | -1.06e-3 | -0.0379 0.0315 0.0191 -0.0128
a° 183.3 184.07
3.065e — 4 0 0 5.570e — 4 0 0
b2 0 1.105¢ — 2 0 ] l 0 1.827e -2 0
0 0 1.187e — 3 0 0 3.469e — 3
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11 I Heat Transfer Coefficient s

* Again, the chains are propagated through the original model.

* It is difficult to plot three dimensional prediction intervals, so they are plotted for
fixed Prandtl number.

* The appropriate fraction of data is within the prediction intervals.

* The global effect, which only uses the fixed parameters, is significantly different
than any of the laboratory results.
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12 I Mass Transfer Coefficient 1

* Mass or heat transfer from a solid sphere to the surrounding medium.
* Used to approximate interfacial transfer for bubbles/droplets.
Nu = 2.0 + 8,Re?%2pPrb:

* Originally proposed by Froessling (1938), but 8; has been adjusted by various
authors; most recently, Ranz & Marshall (1952) and Lee & Ryley (1968).

O Froessling

1021 °© Powell

Ranz & Marshall
Yuge

Froessling Correlation

Nu

10

10 102 Pr Re
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13 I Mass Transfer Coefficient 23

* The statistical model is formulated such that gq; and g, have random effects.

Nu = 2 + (04 + B1;)ReB21F21) py0s

Frequentist Optimization Bayesian Calibration (mean results)
Froessling Powell Ranz Yuge Froessling Powell Ranz Yuge
0, 0.55 0.2920 0.2957
Bu -0.0275 -0.0625 0.0442 0.0458 -0.0310 -0.0653 0.0510 0.0439
0, 0.5 0.6080 0.6066
B 0.00853 0.0176 | 0.00930 | -0.0355 0.0101 0.0189 | 0.00659 | -0.0344
04 0.33 0.4414 0.4436
a? 4.621 4.672
2 [2-70508 - 6.OOZOe =i 4] [5.97206 - 1.246Oe = 3]

8/22/2019
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14 I Mass Transfer Coefficient 33

* Bayesian chains are propagated through the original model.

* Observational error should be laboratory-dependent, &;.
> For Froessling and Ranz, all data is captured in the interval (error overestimated)

> For Powell, half the data is captured (error underestimated)
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15 1 Conclusion

* Some simple empirical relations have been examined using the legacy data from
which they were derived (in some cases, this data is supplemented with other
sources).

* Many possible sources of experimental bias, some hypotheses are supported by
mixed effects results.

> Transition to turbulence can be impacted by entry geometry, development, pump vibrations,
and even working fluid.

o Variety of working fluids in heat transfer experiments.
g p

> Choice of diffusion coefficients in the mass transfer experiments, which were very uncertain
at the time.

* Biases between experiments have been quantified, which allows an accurate
. . p . . q ,
quantification of experimental uncertainty.

* Through reexamination and repeated experiments, it may be possible to reduce
these uncertainties.
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16 I Future Work

* There are some possible improvements to the calibration method.
> Random effects drawn from a non-normal distribution (e.g., Johnson distribution)
> Dependent hyperparameters (2 is currently diagonal).!
> Nonlinear or laboratory-dependent observational error, €.
o Incorporation of more sophisticated parameter-selection algorithm.!

> Use of empirical convergence criterion. 2

* Incorporation of more recent data, which often includes more physics (pipe
roughness, natural circulation, geometry, etc.).

* Application to other nuclear correlations used in nuclear codes, with specific focus
on severe accident analysis.

* Use of results to quantify and exclude “poor” data.

1. K. L. Schmidt, Uncertainty Quantification for Mixed-Effects Models with Applications in Nuclear Engineering, PhD thesis, North Carolina State University (2016).
2. S. Brooks and A. Gelman, “General Methods for Monitoring Convergence of Iterative Simulations,” | Comput Graph Stat, 7 (1998).
3.]. C. Wakefield, et al., “Bayesian Analysis of Linear and Nonlinear Populations Models Using the Gibbs Sampler,” | Royal Stat Soc, 43(1) (1994).
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North Carolina State University Paul R. Miles, Kathleen L. Schmidt, Ralph Smith
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AlIC and BIC

* Penalized-likelihood criteria that are often used to
choose best predictor during regression analysis.
Model with minimized value represents the best fit.

* Measure of fit + penalty for complexity

* Akaike information criterion (AIC)

AIC =-2InL+ 2p

* Bayesian information criterion (BIC)

BIC =—-2InL+pInN

L: Likelihood
p: number of parameters
N: number of data points
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Metropolis-within-DRAM Algorithm

Design Parameters

2 .
N, 05, jo, M

Experimental Data

A 4

qo = arg min[SSy]

Initial Optimization

Vi, Xi

53,559, V
A 4
Ry = cholV
z ~ N(0,1p) Construct Candidate
0* = gk—l + Rka

_ ( (6%]y)
a =min|( 1

8/22/2019

R CLa))

)

Second-stage candidate (DR)
q? = q" " +y2 Rz

No

\YGS

a>zk

Construct Parameter
Distribution

No/

A

Metropolis
Algorithm to

estimate mixed
effects parameters

Yes

Samples = M

&

Update covariance (AM)
Vi = spcov(8°, ..., 0% 1)

Accept Candidate

A
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Friction Factor Chains
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‘ Heat Transfer Coefficient Chains d
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