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1 Motivation I /2

• Empirical models used in reactor
calculations are often based on data from
decades ago.

In many cases, these correlations are
constructed using disparate data sets.
• Different measurement devices/techniques

• Various working fluids

• Fluid property evaluations

• Untreated physics/insufficient scaling

• Human error

• The biases between these datasets are, in
general, not treated during the formulation
and calibration of the empirical model.

Phenomenon Model Year

Single phase Pressure drop Colebrook Equation 1938

Two-phase pressure drop Beattie 1982

Single phase wall heat transfer Dittus-Boelter (McAdams) 1985 (1954)

Nucleate boiling heat transfer Rohsenow 1951

Film boiling heat transfer Bromley 1948

Critical heat flux Zuber 1958

Film boilin Zuber/Berenson 1960

Interfacial heat transfer Lee & Ryley 1968

Terminal Taylor bubble velocity Griffith 1961
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2 Motivation 2/2

• Code uncertainty is underestimated when biases between datasets are not
considered.

• When uncertainties are untreated, it is equivalent to assuming they are zero; in
these cases, there is no motivation to reduce uncertainties.

• The purpose of this work is twofold:
O Quantify and understand these biases/uncertainties, and

o Motivate researchers to revisit some of these problems using modern hardware, techniques,
and data acquisition systems.
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Background and Theory
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3  Calibration: Bayesian Methods

• In general, calibration is a statistical method to infer unknown parameter values/distributions
by observing state variables and corresponding data (physical or computational experiments).

• Bayesian methods allow for the incorporation of prior information from previous
experiments or expert knowledge.

• Solves Bayes' formula, which formulates the desired posterior distribution in terms of the
prior distribution and likelihood function.

n- (61 ly) =
L(ylO)n-0(9)

fo L(ylO)n-0(9)dO

• We employ sampling methods because (1) the denominator is difficult or impossible to
integrate and (2) the product of the likelihood and prior cannot be easily sampled.

• Delayed Rejection Adaptive Metropolis (DRA_M) is one such sampling method.1,2

1. H. Haario, M. E. Saksman, and J. Tamminen, "An Adaptive Metropolis Algorithm," Bernoulli, 7(2), pp. 223-242 (2001) doi: 10.2307/3318737.

2. A. Mira, "On Metropolis-Hastings Algorithm with Delayed Rejection," Metron, 59(3), pp. 231-241 (2001).
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4 Statistical Model

• For calibration, fixed effects statistical models are generally used, where the experimental data
is equal to some model with zero-mean Gaussian measurement noise.

y = f (x, 0) + E

• This work employs mixed-effects statistical models, where each parameter is a combination of
global and random effects.

y = f (x, 0 + fl) + E

• Frequentist solution methods generally solve this problem through minimization of an
approximated likelihood function.1

• Bayesian Calibration can be used to obtain estimates of the desired posteriors, using
conditional probabilities and likelihood function from the literature.2

• Here, a hierarchical Metropolis-within-DRAM method is used.3,4

• The DRAM step estimates global parameters, and Metropolis estimates random parameters.

1. J. C. Pinheiro and D. M. Bates, "Approximations to the Log-Likelihood Function in Nonlinear Mixed-Effects Model," J Comp Graphical Stat, 4(1) (1995).

2. J. C. Wakefield, et al., "Bayesian Analysis of Linear and Nonlinear Populations Models Using the Gibbs Sampler:1 Royal Stat Soc, 43(1) (1994).

3. K. L. Schmidt, Uncertainty Quantification for Mixed-Effects Models with Applications in Nuclear Engineering, PhD thesis, North Carolina State University (2016).

4. M. Laine, MCMC Toolbox for Matlab (2017), helios.fmi.fi/—lainema/mcmc/.

•
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5  Methodology

Gather experimental data from the literature.

Some will be related to original dataset

• This set of data can be expanded in future work

2. Formulate the statistical model.

• Use initial frequentist optimization

• Determine which parameters are fixed/global/random via information criteria
minimization

3. Calibrate the statistical model to the experimental data.

• Use the hierarchical Metropolis-within-DRAM algorithm

• Burn-in deterrnined based on rule-of-thumb (1 0 5 iterations)1

4. Examine the results.

• Cornpare initial correlation, frequentist optimization, and Bayesian calibration.

• Propagate chain through original model and construct 95% predictive intervals

1. R. C. Smith. Uncertaino Quantification, Theog, Implementation, and Applications. SIAM (2014)
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Results

.
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6 Friction Factor 1/3

• Single phase friction in smooth tubes (Colebrook equation/Moody chart)

• Here, a new correlation is used which represents the transition region using a
logistic function.
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7 Friction Factor 2/3

• Through minimization of the information criteria,
only q1 and q2 require random effects.

f = [1
1 1 64 03 + 94Re-95

1+ e-(69-flu)[Re-(e2+)621)].1 Re + 1 + e-(191011)[Re-(92+fl21)]

Global Random AIC BIC

q1,q2,q3,q4,q5 -5297.7 -5302.0

qs q1,q2,q3,q4 -5299.7 -5303.6

q4, q5 Ch, q2, q3 -5301.7 -5305.2

I (13, q4, q5 q1, q2 -5303.7 -5306.8 I

Ch, q3, q4, q5 q1 -4770.1 -4772.8

Ch, Ch, Ch, q4, q5 -4515.4 -4517.8
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7 Friction Factor 2/3

• Through minimization of the information criteria,
only q1 and q2 require random effects.

f = [1
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•
Global Random AIC BIC

q1,q2,q3,q4,q5 -5297.7 -5302.0

qs q1,q2,q3,q4 -5299.7 -5303.6

q4, q5 Ch, q2, q3 -5301.7 -5305.2

I (13, q4, q5 q1, q2 -5303.7 -5306.8 I

Ch, q3, q4, q5 q1 -4770.1 -4772.8

q1, Ch, Ch, q4, CIS -4515.4 -4517.8

q3, q5 ql, q2, q4 -5301.7 -5305.2 '

q3, q4, al, q2, q5 -5301.7 -5305.2

8/22/2019 ANS NURETH-18



7 Friction Factor 2/3

Through minimization of the information criteria,
only q1 and q2 require random effects.

f = [1
1 1 64 03 + 19 4Re-95
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8  Friction Factor 3/3

• Through propagation of the Bayesian chains through the original model,
uncertainty bounds can be found for each individual experiment.

• Here, the 95% prediction intervals are shown, and they capture the appropriate
percentage of the data.

Only the parameters which determine the transition region have random effects, so
the laminar and turbulent regions do not have laboratory-dependent uncertainty.
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9 Heat Transfer Coefficient I /3

• Single phase forced convection heat transfer in smooth tubes

• Represented by the Dittus-Bolter equation, which was created for analysis of
automobile radiators

Nu = chReq2Prq3

• Data is shown in both two and three dimensions
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10 Heat Transfer Coefficient 2/3

• Through minimizing AIC and BIC, all three parameters require random effects to
fit the data.

Nu = (01 + ,811)Re(92+fl21)pr(93+fl31)
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11  Heat Transfer Coefficient 3/3

• Again, the chains are propagated through the original model.

• It is difficult to plot three dimensional prediction intervals, so they are plotted for
fixed Prandtl number.

• The appropriate fraction of data is within the prediction intervals.

The global effect, which only uses the fixed parameters, is significantly different
than any of the laboratory results.
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12 Mass Transfer Coefficient I /3

• Mass or heat transfer from a solid sphere to the surrounding medium.

• Used to approximate interfacial transfer for bubbles/droplets.

Nu = 2.0 + 01Re192Pr°3

• Originally proposed by Froessling (1938), but 91 has been adjusted by various
authors; most recently, Ranz & Marshall (1952) and Lee & Ryley (1968).
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13 Mass Transfer Coefficient 2/3

• The statistical model is formulated such that q1 and q2 have random effects.

Nu = 2 + (91 + fl11)Re(92+1621)Pr93
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Bayesian Calibration (mean results)
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1
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14  Mass Transfer Coefficient 3/3

• Bayesian chains are propagated through the original model.

• Observational error should be laboratory-dependent, Ei.
• For Froessling and Ranz, all data is captured in the interval (error overestimated)

• For Powell, half the data is captured (error underestimated)
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15  Conclusion

• Some simple empirical relations have been examined using the legacy data from
which they were derived (in some cases, this data is supplemented with other
sources).

• Many possible sources of experimental bias, some hypotheses are supported by
mixed effects results.
. Transition to turbulence can be impacted by entry geometry, development, pump vibrations,

and even working fluid.

o Variety of working fluids in heat transfer experiments.

o Choice of diffusion coefficients in the mass transfer experiments, which were very uncertain
at the time.

• Biases between experiments have been quantified, which allows an accurate
quantification of experimental uncertainty.

Through reexamination and repeated experiments, it may be possible to reduce
these uncertainties.
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16  Future Work

There are some possible improvements to the calibration method.

Random effects drawn from a non-normal distribution (e.g., Johnson distribution)

• Dependent hyperparameters (E is currently diagonal).1

• Nonlinear or laboratory-dependent observational error, E.

o Incorporation of more sophisticated parameter-selection algorithm.1

o Use of empirical convergence criterion. 2

• Incorporation of more recent data, which often includes more physics (pipe
roughness, natural circulation, geometry, etc.).

Application to other nuclear correlations used in nuclear codes, with specific focus
on severe accident analysis.

Use of results to quantify and exclude "poor" data.

1. K. L. Schmidt, Uncertainty Quantification for Mixed-Effects Models with Applications in Nuclear Engineering, PhD thesis, North Carolina State University (2016).

2. S. Brooks and A. Gelman, "General Methods for Monitoring Convergence of Iterative Simulations,7 Comput Graph Stat, 7 (1998).

3. J. C. Wakefield, et al., "Bayesian Analysis of Linear and Nonlinear Populations Models Using the Gibbs Sampler:1 Royal Stat Soc, 43(1) (1994).
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AIC and BIC

• Penalized-likelihood criteria that are often used to
choose best predictor during regression analysis.
Model with minimized value represents the best fit.

• Measure of fit + penalty for complexity

• Akaike information criterion (AIC)

AIC = —2 ln L + 2p

• Bayesian information criterion (BIC)

BIC = —2 ln L + p ln N

£: Likelihood
p: number of parameters
N: number of data points
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Metropolis-within-DRAM Algorithm

Design Parameters

n 2
s) 6 s
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Friction Factor Chains
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Heat Transfer Coefficient Chains
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Mass Transfer
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