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Abstract—Triangle counting is a foundational graph-analysis
kernel in network science. It has also been one of the challenge
problems for the “Static Graph Challenge”. In this work, we
propose a novel, hybrid, parallel triangle counting algorithm
based on its linear algebra formulation. Our framework uses
MPI and Cilk for exploiting the benefits of distributed-memory
and shared-memory parallelism. The problem is partitioned
among MPI processes using a two-dimensional (2D) cartesian
block partitioning. One-dimensional (1D) rowwise partitioning is
used within the cartesian blocks for shared-memory parallelism
using the Cilk programming model. Besides exhibiting very good
strong scaling behavior in almost all tested graphs, our algorithm
achieves the fastest time on the 1.4B edge real-world twitter
graph, which is 3.217 seconds, on 1,092 cores. In comparison to
past distributed-memory parallel winners of the graph challenge,
we demonstrate speed up of 2.7 on this twitter graph. This is
also the fastest time reported for parallel triangle counting on
the twitter graph when the graph is not replicated.

Index Terms—triangle counting, distributed-memory systems,
scale-free graphs, two-dimensional partitioning

I. INTRODUCTION

Given an undirected graph G, the triangle counting problem
is defined as finding the number of triangles, i.e., the edge
triplets ((4, ), (j, k), (k,4)) in G, where i@ # j # k. The
triangle counting problem is a canonical graph-analysis prob-
lem with applications in computing k-truss decomposition,
subgraph isomorphism and malware detection. It is one of the
IEEE HPEC Graph Challenge [1] problems and its popularity
has been growing in the last few years. Past work in 2017
and 2018 Graph Challenge improved the running times for
triangle counting on various architectures and programming
paradigms including shared-memory parallelism on CPUs [2]-
[5], GPUs [6]-[8] and distributed memory architectures [9].
Despite these improvements, times for some real world graphs
such as twitter are still high, especially on distributed-memory
architectures. The best reported time for twitter is 8.52 sec-
onds on a distributed-memory system, using 256x24=6,144
cores [9]. The best reported time for twitter on shared-memory
architectures is 28.36 seconds using Cilk [3] and 6.5 seconds
on eight GPUs with the graph replicated and without including
the copy times. This paper focuses on a scalable distributed-
memory algorithm to achieve the best times on real-world
graphs on distributed-memory architectures.

Traditionally, parallel algorithms for triangle counting have
used both graph based and linear-algebra based approaches.
Linear-algebra based approaches are becoming more popular

due to the improved performance and ability to reuse linear-
algebra based kernels. We consider the linear-algebra based
formulation (L x L). x L of the triangle counting problem. In
this formulation, L denotes the lower triangular portion of the
adjacency matrix A of the given graph G. As pointed out by
past work, (L x L).x L counts the triangles only once and is
usually faster than other formulations in practice [2], [3].

We propose a hybrid parallelization for the (L x L). * L
formulation that exploits both distributed- and shared-memory
parallelism benefits. We use MPI for inter-process communi-
cation. Matrix L is distributed among MPI processes using
the 2D block cartesian partitioning scheme [10], which is
commonly used for obtaining upper bounds on communication
overheads in different computational kernels [11]-[14]. For
P MPI processes, the number of processes with which each
process communicates is O(y/P). Within each MPI process,
we use Cilk [15], which is a work-stealing, multithreaded
runtime, for shared-memory parallelism. We chose Cilk as it
has shown to be more efficient than OpenMP in the triangle
counting context [3].

Our work differs substantially from the 2017 distributed-
memory triangle counting champion [9]. While they leveraged
a vertex-centric HavoqGT for their distributed memory coor-
dination, we use MPI-based message passing. Unlike [9], we
also use hybrid parallelism, using a MPI+Cilk programming
model. Our work also differs in terms of the distribution of
the graph. We focus on a 2D distribution of the problem for
better strong scaling whereas [9] uses a 1D graph distribution.
This previous work used a graph-based approach but we use a
linear-algebra based formulation. 2D distribution for triangle
counting was inspired by the success of this approach in the
shared-memory parallel context [16].

Our main contributions in this paper are:

e A hybrid, parallel, triangle counting algorithm imple-
mented with MPI on distributed-memory compute nodes
and Cilk for shared-memory parallelism.

« Demonstration of good strong scaling properties achieved
by the 2D cartesian partitioning of the problem that
provides nice upper bounds on communication overheads.

o Demonstration of the fastest known time (at time of pub-
lication) for the real-world twitter graph (3.217 seconds)
on 1,092 cores with no replication of the graph.

o Demonstration of up to 2.7x speed up compared to the
best running time that was obtained on 6,144 cores by
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the state-of-the-art distributed-memory triangle counting
algorithm, which was the champion in past graph chal-
lenge [9].

II. APPROACH

We consider the (L x L). x L formulation [2], which repre-
sents triangle counting as a sparse matrix-matrix multiplication
followed by an element-wise multiplication. The sum of the
entries in the resulting matrix gives the number of triangles.
This formulation checks only one wedge of each triangle, that
is, only the i—j—k wedge is checked for i > j > k. Typically,
the element-wise multiplication “. x L” is fused in the matrix-
matrix multiply L X L as a mask in the implementation in
order to avoid forming the result of L x L.

As discussed in Wolf et al. [2], the performance of this
algorithm depends on the ordering of the rows in L, which
is also the ordering of the columns. It has been observed that
reordering the rows of A in decreasing order of the number
of nonzeros before obtaining L helps the execution time of
(Lx L).x L. Therefore, we use the L matrices that are obtained
as described above.

We partition the L matrix among MPI processes using 2D
cartesian partitioning, where L is written in ¢ X @ block-
structure form:

L Cy
Loyn  Loj Cy
L= |Ls1 Ls2 Lss |G| ()

La.q Ca

In this form, only the blocks L, , with ¢ > 7 may have
nonzero entries, so we omit those with ¢ < r from our
consideration. Here, C;; denotes the gth row chunk and can
be written as Cy = [Lg1 Lg2 ... Lggq). Note that Cy has
q blocks, for 1 < ¢ < @. The rows and columns of L are
partitioned conformally, that is, the indices of the rows in the
gth chunk C, correspond to the indices of the columns in the
gth column chunk for 1 < ¢ < Q. In our parallel algorithm,
each MPI process is assigned a single block L, . So, the
number of MPI processes, which we denote with P, should
be a number that can be written as

P=Q(Q+1)/2,

where () denotes the number of row chunks in the block-
structure form.

We divide the overall computation task of (L x L). x L
among MPI processes so that each process already has its
assigned block as the left operand of (L x L). Let p, , denote
the process to which block L, ;. is assigned. The computation
to be performed by p, - is then formulated as

Loy Lg2 Lggs

(Lq)r X [Lr,l LT72 i Lr,r])-* [Lq’l qug ¥ Lq,r],

which can also be written as

(Lgr X Cp) . * [Lg1 Lg2 ... Loyl

1 2 3 4 S

Fig. 1: A sample L matrix partitioned for (5 x 6)/2 = 15
MPI processes. Yellow blocks correspond to the processes
D42 receives its operands for the matrix multiplication (right
hand side matrix for the matrix-matrix multiplication or the
elementwise multiplication). Orange blocks correspond to the
processes to which ps o will send its nonzeros.

We determine the block-structure form in (1) on the given
L matrix in such a way that the number of nonzeros in
blocks is balanced. Let nnz,,, denote the number of nonze-
ros in a block for a perfectly-balanced partition, that is,
NNZaqug = nnz(L)/P, where nnz(L) denotes the total number
of nonzeros in L. To determine the rows in C, we sum the
number of nonzeros in the rows of L starting from the top row
and include all the considered rows in C; until the running
sum exceeds nNNzq.q. For Ca, we start from the row where we
left and repeat the same process until the running sum exceeds
2 - MMZq0g since there are two blocks in Cy. This procedure
is repeated for each row chunk C; so that C; contains about
g - NMNZqyg Nonzeros. Determining row chunks Cq, Cy, ..., Co
automatically induces the ) x @ block-structure in (1) since
we use conformal row and column partitions of L.

In order for process p,., to perform (L,, x C,). *
[Lg1 Lg2 ... Lgy], it needs to receive some nonzeros of
C, and C, from their owners. Recall that C'. has r blocks
containing nonzeros, so, communication with » MPI processes
is needed for receiving those nonzeros. Hence, p,, may
receive nonzeros from r processes, namely p, 1,Dr2,...,Drr
to construct C, with the needed rows. Note that out of all
rows of C,., only the ones that correspond to the columns
of L, , with at least one nonzero are needed for (L, , x C.).
Similar to C,., [LqJ Lgo . Lg ] has also r blocks but L, .
is already assigned to pg -, so it will receive the respective
nonzeros of Lg1,Lg2,...,Lqr—1 from r — 1 processes,
namely pg.1,Pq,2,---,Pqr—1. Note that out of all rows in
blocks Ly 1,Lg2,...,Lqr—1, only the ones in which L, , has
nonzeros are needed. Hence, p,, receives nonzeros from a
total of 7 + (r — 1) = 2r — 1 = O(\/P) processes if ¢ # 7,
whereas it receives them from only 7 —1 = O(y/P) processors
ifg=r.

In a dual manner, p,, sends the nonzeros in L, , to each
process py.q With ¢ < k < @ in order for them to construct
C, as the right operand of their respective matrix-matrix



multiplication. For the element-wise multiplication, p, , sends
its nonzeros to each process p, ; with r < k < g. Hence, p
sends nonzeros to a total of (Q —¢q)+(¢—r)=Q —r =
O(\/F) processes if g # r, whereas it sends them to only
Q — q = O(\/P) processes if g = r.

Figure 1 illustrates a sample L matrix partitioned for
(5% 6)/2 = 15 MPI processes. Process py 2 owns Ly 2, which
is colored red in the figure. p4 o Teceives nonzeros from blocks
Ly and Lg 3, which are colored yellow, to form Cy as the
right operand of matrix-matrix multiplication. It also receives
nonzeros from L, ; for the element-wise multiplication. It
sends its nonzeros to p4 4 and ps 4, whose owned blocks are
colored orange, for them to construct Cy for their matrix-
matrix multiplication. It also sends its nonzeros to py 5, for
its element-wise multiplication.

We simultaneously perform both types of communication:
those for the right operand of the matrix multiplication and
those for the element-wise multiplication. We used non-
blocking receive and blocking send functions for communi-
cation.

After receiving the needed rows, each process
Dg,r performs its  overall computation  operation
(Lgr X [Lry Lra ... Lrg]) . * [Lga Lgaz ... Lgg]

in r small computation tasks, where the kth task is
formulated as

(Lq,r X Lr,k)~ * quk

for 1 < k < r. The resulting matrix of each such computation
task can be removed after the sum of its entries is accumu-
lated to the triangle count. This approach allows using dense
hashmaps since the column range of the right operand of the
matrix-matrix multiply is always limited to the block size.

We perform each computation task of (Lg, X Ly ). % Lg
using multiple Cilk threads. We use 1D block partitioning on
the rows of L, , and assign the computation operations on
different row blocks to different threads. If there are ¢ threads,
we divide L, , into ot row blocks in such a way that the
number of nonzeros in these blocks are balanced. Here, o
denotes the decomposition rate. It is emprically observed that
o = 4 yields the smallest running time.

Processes store their corresponding blocks in compressed
row storage (CRS) format and the Cilk threads perform their
respective computations accordingly. Communication is also
performed using the same format, that is, the nonzeros sent in
the last communication step are packed in the CRS format.

III. EXPERIMENTS

We considered 10 test graphs whose basic properties can
be seen in the first four columns of Table I. The column
headers |V, |E|, and |T| denote the numbers of vertices,
edges, and triangles, respectively. scale23-25 are synthetic
graph500 networks and were obtained from the Graph Chal-
lenge website [17]. uk-2005, it-2005, twitter, friendster are
real-world graphs and were obtained from SuiteSparse matrix
collection [18]. uk-2007 is also a real-world graph and was
obtained from [19]. twitter2 and friendster2 were generated

using Adapted Block Two-Level Erdos Renyi (A-BTER) scal-
ing and generation methods [20], [21]. Scaling of the degree
and clustering coefficient distributions was done such that the
generated graphs had 2x the number of vertices and edges
while holding fixed the average degree and ‘Native Mu’.
Native Mu is the ratio of generated edges external to BTER
blocks to total generated edges, which are 0.66 and 0.67 for
twitter and friendster, respectively.

Our test graphs are undirected graphs and the vertices are
in decreasing order of their degrees. The number of edges
reported in the third column of Table I corresponds to the
number of edges in the undirected graph, which is also equal
to the number of nonzeros in matrix L in our linear-algebra-
based algorithm.

Our code is implemented in C++ and compiled using Intel
compiler (version 19.0.3.199) with optimization flag “-O3”
and OpenMPI (version 2.1). We performed our experiments
on two different clusters with Skylake and Broadwell archi-
tectures. In Skylake cluster, each node has two Intel Xeon Plat-
inum 8160 CPUs with clock frequency 2.10GHz and 196GB
memory. In Broadwell cluster, each node has two Intel Xeon
E5-2695 CPUs with clock frequency 2.10GHz and 128GB
memory. Both clusters have Intel OmniPath interconnect.

We tested our code using P = 28, 36, 45, 55, 66, 78,
91, 105, 120, 136, 153, 171, and 190 MPI processes. On
Skylake cluster, which is small, the maximum number of MPI
processes tested is 91 and each node was assigned 4 MPI
processes, i.e., two per socket. Each node of this cluster has
48 physical cores, so each MPI process effectively uses 12
Cilk threads. On Broadwell cluster, each node was assigned 2
MPI processes, i.e., one per socket. Each node of this cluster
has 36 physical cores, so each MPI process effectively uses
18 Cilk threads. In Table I and Figure 2, labels Skylake and
Broadwell are followed by (4x12) and (2x18) to indicate the
number of MPI processes per node times the number of Cilk
threads per MPI process, respectively.

We evaluate the performance of the proposed algorithm by
the overall running time as well as two different rate metrics:
edges per second (EPS) and triangles per second (TPS). Table I
displays the best running times achieved by our code and the
corresponding rates in columns 5-6 and 9-10, respectively.
The EPS rate can simply be computed as the number of
edges divided by the minimum of the best running times on
Skylake and Broadwell. Similarly, the TPS rate can simply be
computed as the number triangles divided by the minimum of
the best running times on Skylake and Broadwell. The reported
running times include both communication and computation
times. On Skylake, best running times are achieved using 91
MPI processes except for scale23 and uk-2007, for which
using 66 MPI processes results in the best running time.
On Broadwell, best running times are achieved using 190
MPI processes except for uk-2005, for which using 120 MPI
processes results in the best running time. For the sake of
completeness, we also present the computation time for the
corresponding best running time in columns 7-8.

Table I displays the most important results highlighted. On



TABLE I: Properties of the test graphs and best running times and rates achieved.

Total time (s) Computation time (s) Rate
Skylake  Broadwell | Skylake  Broadwell | Edges per Triangles per
Graph V] |E| |T| (4x12) (2x18) (4x12) (2x18) sec. (EPS) sec. (TPS)
scale23 4,606,314 129,250,705 4,549,133,002 0.440 0.339 0.165 0.123 3.81E+08 1.34E+10
scale24 8,860,450 260,261,843 9,936,161,560 0.845 0.712 0.312 0.242 | 3.66E+08 1.40E+10
scale25 17,043,780 523,467,448 21,575,375,802 1.678 1.551 0.725 0.666 | 3.38E+08 1.39E+10
uk-2005 39,459,925 783,027,125 21,779,366,056 1.255 2.019 0.568 1.186 | 6.24E+08 1.74E+10
it-2004 41,291,594  1,027,474,947 48,374,551,054 1.654 2.374 0.615 1.413 6.21E+08 2.92E+10
twitter 61,578,414  1,202,513,046 34,824,916,864 |IINS2170 3.728 1.361 1.695 3.74E+08 1.08E+10
twitter2 103,809,266  3,107,433,379  151,582,758,659 14.630 9.883 10.030 5.286 | 3.14E+08 1.53E+10
friendster 65,608,366  1,806,067,135 4,173,724,142 6.997 4.959 4.344 2.326 | 3.64E+08 8.42E+08
friendster2 131,216,732  3,604,811,068 16,803,555,478 19.710 11.540 14.640 7.282 | 3.12E+08 1.46E+09
uk-2007 105,896,555  3,301,876,564  286,701,284,103 5.316 6.042 2.871 3.760 | 6.21E+08 5.39E+10
twitter twitter2 friendster
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Fig. 2: Strong scaling plots on two different architectures. (a x b) denotes using a MPI processes per node and b Cilk threads

per MPI process.

twitter, our triangle counting algorithm runs in 3.217 seconds
on Skylake and in 3.728 seconds on Broadwell. The running
time of 3.217 seconds is 2.7x better than 8.52 seconds obtained
by the last distributed-memory-parallel champion [9]. On this
graph, the best running times reported by the champions
of 2018 were 6.5 seconds using GPUs excluding the copy
time during data replication [6] and 28.36 seconds using
Cilk [3]. Note that our implementation does not involve any
replication and the running time that we report includes the
communication time as well as the computation time.

The best EPS rates achieved by the proposed algorithm on
our test graphs are between 3.12E+08 and 6.24E+08, which
is obtained on uk-2005 and followed by 6.21E+08 on it-2004
and uk-2007. The best TPS rates achieved by the proposed
algorithm are between 8.42E+08 and 5.39E+10, which is
obtained on uk-2007.

Figure 2 displays the strong scaling plots on both archi-
tectures for the six largest test graphs. The x-axis denotes
the number of MPI processes, whereas y-axis denotes the
running time, best of which is given under columns 5 and



6 in Table I. As seen in the plots, the proposed algorithm
scales very well in terms of the running time except for uk-
2007 on Skylake. Note that the running times on Skylake
are generally better than those on Broadwell when the same
number of MPI processes are used. However, on friendster
and friendster2 graphs, running times on Broadwell are better
than those on Skylake.

Good strong scaling property of the proposed parallel al-
gorithm can be attributed to its hybrid nature and using 2D
cartesian partitioning scheme. In the distributed-memory level,
2D cartesian partitioning proves to be the best option for
reducing communication overheads and in the shared-memory
level, Cilk provides the fastest computation.

IV. CONCLUSION

We proposed a hybrid parallel triangle counting algorithm
which uses MPI on distributed-memory compute nodes and
Cilk for shared-memory parallelism. Besides exhibiting very
good strong scaling behavior in almost all tested graphs, our
algorithm achieved the fastest time on the real-world twitter
graph, which is 3.217 seconds, on 1,092 cores including both
communication and computation times. This runtime is 2.7 x
smaller than that obtained by the state-of-the-art distributed-
memory triangle counting algorithm, which was the champion
in the past graph challenge and used 6,144 cores.
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