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2 Motivation

Manufacturing

www.targray.com

esostructure

Hutzenlaub (2012)

Battery Performance

stackexchange.co

Processing
 ►

Lithiation-Induced Fracture

LiCo02 STXM, Farid El Gabaly Marquez (Sandia)

Mechanical Abuse Electrochemistry / Mesostructure

NMC/graphite pouch, H. Wang (ORNL) Cannarella/Arnold (2015)

Coupled electrochemical-mechanical effects at mesoscale connect battery manufacturing and performance
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5 Mesoscale geometry from CT data using CDFEM
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CDFEM

CBD addition
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Detailed 3D reconstruction and image processing necessary to get usable mesostructure data
7/22/2019 Roberts JES 2014, Roberts JEECS 2016, Trembacki JES 2017, Roberts JCP 2018, Trembacki JES 2018



6 I Effective electrode property calculation results —Transport
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7 I What about the conductive binder?

Resolving conductive binder in 3D imaging difficult
Binder often neglected, assuming non-active void space
is electrolyte

0 Limited imaging results can hint at binder location

Amorphous binder is significantly nanoporous

47% Zielke (2015); 45% Grillet (2016)

5% ionic conductivity of pure electrolyte

Graphite; Jaiser et al. (2017) LCO; Komini Babu et al (2015)
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8 Why does the conductive binder domain (CBD) morphology matter?
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9 1 Binder bridge morphology approaches

Level-set methods
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10 I Porous binder and morphology considerations
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12 I Discrete Element Method

Active Material:

• Elastic

• Frictional

• Cohesive

• Polydisperse

(2-20 microns)

from experiments1
1Ebner et al., Adv. En. Mat., 3 (2013)

Coarse-grained CBD gel:
• Brownian

• Frictional

• Cohesive

• Monodisperse

(500 nm)

Inter-particle interactions 

Ftotal = FJKR + Fvisc + Fbrown

74E63 2 4y,E
FJKR =   2 6

\ 3a 78 ,
/

Fvisc = 6n-rjav

Fbrown = V2mkBTri6(t)

\

Combined Granular and Brownian Dynamics are simulated in LAMMPS
7/22/2019 Srivastava, in preparation



13 Drying and calendaring

initial microstructure:
• porosity: 90%
• height: 700 um

• width: 100 um

I fixed dimension

periodic boundary

uniaxial compression

periodic boundary

rapid initial compression

slurry deposition + drying

Design Space (960 sims, 50M core-hrs)

Parameters

AM weight percentage [%] 90 - 96

CBD-CBD cohesion ratio 10-1 - 102

AM-CBD adhesion ratio 10-1 - 102

Porosity 0.5 - 0.3

Stochastic realizations 3

constant strain-

rate compression

(calendaring)

final

microstructure:
porosity: 30%

intermediate

microstructure:

porosity: 50%

imulate electrode fabrication using physical models
7/22/2019 Srivastava, in preparation



14 I Mesostructure phase distribution

Low AM-CBD adhesion; High CBD-CBD cohesion; High AM-CBD adhesion; Low CBD-CBD cohesion;

High 50% porosity Low 30% porosity

VIM Adhesion and cohesion between CBD and AM significantly changes electrode morphology
7/22/2019 Srivastava, in preparation



1 5 Electrode properties from DEM
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17 I Coupled electrochemical-mechanical half-cell discharge simulations

Current collector: I

Particle Interface:
• Butler-Volmer reaction

• OCV from Smekens (2015)

Particles:

• Species — Li transport

• Chemical potential

• Stress potential

• Electrical — Ohm's law
• Mechanics - Elastic

• Li-induced swelling

Separator: V1 = 0

Mathematical formulation builds off of Mendoza (2016) LCO studies

Electrolyte:
• Species — Li+ transport

• Nernst-Planck fluxes

• Electroneutrality for PF6-
• Current conservation

Conductive binder:

• Species — Porous Li' transport

• Electrical

• Solid: Porous Ohm's law

• Strain-dependent

electrical conductivity
• Liquid: Ionic conservation

& electroneutrality

• Mechanics — Elastic

Predictions of discharge curves, effects of mechanics, rate effects, and spatial variations in performance
7/22/2019 Ferraro, in preparation



18 Demonstration of NMC half-cell discharge simulation at C/2
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oupled electrochemical-meTanical simulation yields detailed insight, predicts electrode-scale response
7/22/2019 Ferraro, in preparation



1 9 Overview of electrochemica mechanical behaviors
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20 Cell-scale behavior
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21 Particle-scale: Connectivity of the mesostructure
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22 I Particle-scale: Loss mechanisms
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23 Summary

We have developed a unique image-to-mesh capability to enable rapid analysis of
as-manufactured parts

We can augment imaging with physics-based mesostructure generation

We have applied this technique to lithium-ion battery cathode mesostructures and have:
Created and characterized the impact of conductive binder morphology

Calculated and correlated effective properties

Predicted coupled electrochemical-mechanicals effects during charge/discharge

Publications available upon request
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Funding
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Mesoscale modeling is a powerful tool for predicting electrode behavior under extreme environments
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24 A look forward

Slice from CT image of graphite electrode Human label (orange) overlaid on CT scan Deep learning label (orange) overlaid on CT scan Deep learning uncertainty estimate

Machine learning for image segmentation improves accuracy and provides in-situ uncertainty estimates

7/22/2019
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