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Length scale

Motivation

Manufacturing Battery Performance

Www.targray.com

esostructure

Hutzenlaub (2012)
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Processing

Lithiation-Induced Fracture

LiCoO2 STXM, Farid El Gabaly Marquez (Sandia)

Mechanical Abuse = Electrochemistry / Mesostructure

NMC/graphite pouch, H. Wang (ORNL)

Cannarella/Arnold (2015)

Coupled electrochemical-mechanical effects at mesoscale connect battery manufacturing and performance
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3 1 Outline

Computational representation of Discrete element method Electrochemical-mechanical
imaged electrode mesostructures mesostructure generation discharge of NMC half-cells
with conductive binder addition including conductive binder
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Electrochemical-mechanical
{:Hschmgc of NMC half-cells

Discrete element method

Computational representation of
imaged electrode mesostructures
with conductive binder addition

mesostructure generation
including conductive binder
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5 I Mesoscale geometry from CT data using CDFEM

Detailed 3D reconstruction and image processing necessary to get usable mesostructure data

7/22/2019 Robetts JES 2014, Roberts JEECS 2016, Trembacki JES 2017, Robetts JCP 2018, Trembacki JES 2018




6 | Effective electrode property calculation results — Transport
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Bruggeman relationships must be re-calibrated to fit simulated data
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Binder weight | Dense volume | Porous volume BB
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Resolving conductive binder in 3D 1maging difficult

° Binder often neglected, assuming non-active void space 0.08 — —
is electrolyte 0.10 0.28 0.40

° Limited imaging results can hint at binder location
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Amorphous binder is significantly nanoporous
© 47% Zielke (2015); 45% Grillet (2016)

> 5% 1onic conductivity of pure electrolyte
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Phase Fraction / norm.

Graphite; Jaiser et al. (2017) LCO; Komini Babu et al (2015)

How are electrode-scale properties affected by the inclusion of binder? How does the morphology matter?
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8 I Why does the conductive binder domain (CBD) morphology matter?
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dependent properties
CBD morphology is critical for determining transport and can fill up to 40% of pore space

Uniform Coating

Binder Bridge
Electrolyte NMC
Particles

vd

Conductive'§
Binder

Binder morphology controls
electrical transport pathways




9 | Binder bridge morphology approaches

Level-set methods
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Stochastic method

Two level-set morphologies visually bracket the range of stochastic morphologies

Trembacki JES 2018



10 I Porous binder and morphology considerations
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Dense CBD Nanoporous CBD

More particle surface area available with
non-uniform morphologies

Nanoporous binder decreases bare particle
surface area, but binder area is porous
Surface are much less than theoretical

Nanoporosity:
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Limiting cases of both morphology methods show similar (but not identical) behavior; nanoporosity is important!

Trembacki JES 2018




11 I Outline

Com putat 1onal r tation of DiSCfCtC element method Electrochemical-mechanical
imaged electrode mesostructures mesostructure generation discharge of NMC half-cells

binder addition including conductive binder
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12 I Discrete Element Method

Inter-particle interactions

Fiotal = F]KR + Fyisc + Fbrown

__— AE§3 L sz |4VE
KR =\ T35~ “"% s

Active Material: Coarse-grained CBD gel:
* Elastic * Brownian FViS c = 67'[770,17
* Frictional * Frictional
* Cohestve * Cohestve Fbrown = \/kaB T775(t)
* Polydisperse * Monodisperse
(2-20 microns) (500 nm)

from experiments!
"Ebner et al., Adv. En. Mat., 3 (2013)

Combined Granular and Brownian Dynamics are simulated in LAMMPS

7/22/2019 Srivastava, in preparation




13 I Drying and calendaring

initial microstructure:
* porosity: 90% rapid initial compression
* height: 700 um

e width: 100 um slurry deposition + drying

constant strain-
rate compression
(calendaring)

microstructure:
porosity: 50%

fixed dimension

periodic boundary  Pesign Space (960 sims, 50M core-hrs)

AM weight percentage [%] 90 - 96

CBD-CBD cohesion ratio 101 - 102
AM-CBD adhesion ratio 101 - 102
Porosity 0.5-0.3 final

uniaxial compression ) ) i microstructur:
pesiodic hapndiry Stochastic realizations 3 porosity: 30% -

Simulate electrode fabrication using physical models

7/22/2019 Srivastava, in preparation




14 I Mesostructure phase distribution

Low AM-CBD adhesion; High CBD-CBD cohesion; High AM-CBD adhesion; Low CBD-CBD cohesion;
High 50% porosity Low 30% porosity

Adhesion and cohesion between CBD and AM significantly changes electrode morphology

7/22/2019 Srivastava, in preparation



15 | Electrode properties from DEM
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CBD chemistry strongly influences electrode effective properties
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C()mpumtional representation of
imagcd electrode mesostructures

with conductive binder addition
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Discrete element method
mesostructure generation

including conductive binder

Electrochemical-mechanical

discharge of NMC half-cells




17 I Coupled electrochemical-mechanical half-cell discharge simulations -

Current collector: 1(t

/ Electrolyte:

Species — Li* transport
* Nernst-Planck fluxes
* Electroneutrality for PF,
* (Current conservation

I

|

I

Particle Interface: |
1

* Butler-Volmer reaction j

* OCV from Smekens (2015)

Particles:
* Species — Li transport |
* Chemical potential |
* Stress potential i
* FElectrical — Ohm’s law E

Conductive binder:
* Species — Porous Li" transport
* Electrical

e Solid: Porous Ohm’s law

. . * Strain-dependent
e Mechanics - Elastic

. . electrical conductivity
* Li-induced swelling

* Liquid: Ionic conservation
& electroneutrality
Separator: V; = ( * Mechanics — Elastic
Mathematical formulation builds off of Mendoza (2016) LCO studies

Predictions of discharge curves, effects of mechanics, rate effects, and spatial variations in performance

7/22/2019 Ferraro, in preparation



18 | Demonstration of NMC half-cell discharge simulation at C/2
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Coupled electrochemical-mechanical simulation yields detailed insight, predicts electrode-scale response

7/22/2019 Ferraro, in preparation
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20 I Cell-scale behavior
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Predicting expected voltage
polarization loss at high rates

Mesoscale model predicts cell-scale performance
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Particle-scale: Connectivity

Average x in Li:

Average x in Li:

Connected particle volume/capacity to surface area governs overall state of charge distribution

of the mesostructure
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22 I Particle-scale: Loss mechanisms
45.0% Discharge
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When particles become electrically resistive, reactions preferred under the binder
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23 I Summary

We have developed a unique image-to-mesh capability to enable rapid analysis of
as-manufactured parts

We can augment imaging with physics-based mesostructure generation

We have applied this technique to lithium-ion battery cathode mesostructures and have:
° Created and characterized the impact of conductive binder morphology

° Calculated and correlated effective properties
> Predicted coupled electrochemical-mechanicals effects during charge/discharge

Publications available upon request

Data
> V. Wood Group — ETH Zurich
° S. Thiele Group — U. Freiburg
° L. Zhu Group — IUPUI

Funding
° Sandia’s Laboratory Directed Research and Development (LDRD) program — 2013-2016, 2018-2021
> Computer Aided Engineering for Batteries (CAEBAT) program, DOE/EERE/VTO - 2015-2019

Mesoscale modeling is a powertul tool for predicting electrode behavior under extreme environments
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24 1 A look forward

Slice from CT image of graphite electrode Human label (orange) overlaid on CT scan Deep learning label (orange) overlaid on CT scan Deep learning uncertainty estimate
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Questions?
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Thermal/Fluid Component Sciences Department
Sandia National Laboratories, Albuquerque, NM
http://www.sandia.gov/~sarober/
sarober@sandia.gov
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