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Robin Tu (Org. 09365), rtu@sandia.gov (Below) Weather data

. Time Temp Dew Pt. Humidity Wind Dir Wind Spd Wind Gust Pressure Precip. Precip Accum Condition
Alexander FOSS (Org' 09136)’ afOSS@Sandla.gOV 6:52PM 80F 51F 36% S 13mph  O0mph 24.8in  0.0in 0.0in Cloudy
. 7:52PM 79F 50F 36% S 10 mph 0 mph 24.8 in 0.0in 0.0in Cloudy
Introduction: B
Dimensionality reduction involves constructing a parsimonious set of . o

variables that explain a large multivariate data set. Current dimensionality
reduction techniques mostly focus on continuous data types and do not
allow for mixed-type data beyond elliptically symmetric family of
distributions (Normal, t, Laplace, etc.).

Tallis Goals:

 Dimension Reduction of mixed-type data: Ingesting multiple
heterogeneous data streams simultaneously— Variables are allowed to
be skewed, count, categorical, multi-outcome data (multinomial and
simplex).

 Anomaly Detection: Build a flexible interpretable model for “normal”
behavior and flag “abnormal” behavior with some form of uncertainty
guantification.

* Discriminant Analysis: Build a separate model for each of k classes, and
assign observations to the most likely class.

Method:

 Factor model with k latent components
 Modelis fit with the EM algorithm
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(Above) ML algorithm applied to NMDOT camera’s of the 1-40, 7/14/19
at 7:20pm (top left) at University, (top right) at Carlisle, (middle left) at

 E step: Estimate latent factors via Monte Carlo integration. San Mateo, (middle right) at Louisiana, (bottom left) at Pennsylvania
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(Above) Example of Tallis applied to the Iris data set to for (Above) using the output of a ML algorithm, probability of at least one of an object existing at a time point, plotted over
dimension reduction. time. Row one is vehicle, row 2 is people, row 3 is all other objects, row 4 is the result of our analysis. Colors denote
different camera feeds.
S
Department of Energy’s National Nuclear Security Admini.sltration ur{d-er Nauml .

contract DE-NAOO0O3525.




