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Motivation

E3SM Land Model (ELM)

US Department of Energy (DOE) sponsored Earth system model

Land, atmosphere, ocean, ice, human system components

High-resolution, employ DOE leadership-class computing facilities

Some of the results are with ELM-LF: a lower-fidelity, python version
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Motivation

ELM-LF: Model Workflow
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Motivation

ELM-LF: Pushed-forward Prior Distributions

® Uniform priors for all model parameters

® bounds set based on physical constraints and/or information from subject

matter experts
Harvard Forest EMS Tower (42.5°N,75.2° W)
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Motivation

ELM-LF: Sample Spatial Patterns

Gross Primary Production (GPP)
® spatio-temporal patterns for one parameter sample
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Low-Rank

Surrogates via Low-Rank Tensor Train Models

Tackle high-dimensionality and computational expense in Earth System Models via
Global Sensitivity Analysis

® Explore Model Structure
® Seek efficient surrogate models for subsequent analysis of E3SM model
components.

The low-rank functional tensor-train representation employs a set of matrix-valued
functions in a tensor-train format to reveal couplings in high-dimensional models

® Subsequent Global Sensitivity Analysis results reveal that only a small number
of parameters are driving the variability in output Quantities of Interest (Qols).

® furthermore, spatial and temporal proximity results in correlated model
behaviors.
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Low-Rank

Low-Rank Tensor-Train

Employ an approach analoguous to low-rank tensor decompositions:

o N

f(X1, X2, ... Xq) = Z Z Z fliof) £(h ’2)(X i ee fé"dqfd)(xd)

ip=1i1=1 ig=1

A compact expression can be assembled using a set of products of matrix-valued
functions
f(x1, X2, ... Xg) = F1(x1) Fa(x2) - - Fo(Xa)

Each matrix-valued function Fx(xx) is a collection of univariate functions
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Low-Rank

Low-Rank Tensor-Train — Univariate Functlons

The univariate function f,f”)(xk) can be viewed as a random variable induced by the
uniform random input &,

Ek — Xk — f UEA))

and can written as a Polynomial Chaos Expansion with respect to standard
polynomials W (&k),

Pk
D (x(€6)) = Y 0™ (&),
=0
where py is the number of basis terms chosen to approximate f,ﬁi/)(xk(gk)).

® | egendre polynomials are orthogonal with respect to uniform measure of &,

m(&k) =1/2in [—1,1]

(V€)W / W (€)W o ()7 (E6) Ik = B (e (E6)%)

® Other polynomials are available depending on the expected behavior of the
Qols.
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Low-Rank

Low-Rank Tensor-Train — Optimization

® Consider a number of ELM-LF model results y corresponding to a set of choices
x for the model inputs.
argming ||y — f|13 + Q[f]

® A penalty term is added to minimize the norm of the functions in the
matrix-valued Fj (X)
d Tk—1 1k

Q=233 STIHIP

k=1 i=1 j=1
® Quasi-Newton method using L-BBFGS

C3: Compressed Continuous Computation library
https://github.com/goroda/Compressed-Continuous-Computation
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Earth System Model Results

Sequence of Tests

® Summary of Low-Rank Function Tensor Train (LRFTT) Approximation Model Fits

® select polynomial orders (same for all univariate functions), TT rank, and
regularization constant through cross-validation — explore a 3D grid of
choices

® Comparison with Polynomial Chaos Models (PCE) via Sparse Regression
® ... via Bayesian Compressive Sensing
® https://www.sandia.gov/UQToolkit

® 1000-2000 model simulations

® (Randomized) Partioned into training and testing sets
e K-fold cross-validation (4 folds)

® Global Sensitivity Sensitivity Analysis Results
® ELM-LF monthly averages for select Qols: LAl & GPP
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Earth System Model Results

LRFTT Cross-validation: Ranks and Polynomial

Orders

Leaf Area Index (LAI)

Polynomial Orders TT Ranks

I April
20 Il June
B August

Frequency
Frequency

2 3 4
Univariate Order
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Earth System Model Results

LRFTT Cross-validation: Ranks and Polynomial

Orders

Gross Primary Production (GPP)

Polynomial Orders TT Ranks

i I April
Il June
B August

Frequency
Frequency

2 3 4
Univariate Order
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Earth System Model Results

LRFTT vs Sparse Polynomial Chaos Expansions

LRFTT: parameter ordering matters — explore several permutations

Name | Sequence of processes

Irg: acm, ar, alloc, phen, litter, decomp
Irq: decomp, alloc, acm, ar, phen, litter
Iro: phen, decomp, ar, litter, alloc, acm
Irs: alloc, phen, ar, decomp, acm, litter
Irg: ar, alloc, decomp, litter, acm, phen

Sparse PCE results denoted as pce
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GPP Accuracy: LRFTT vs Sparse PCE
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Earth System Model Results

LAl Accuracy: LRFTT vs Sparse PCE
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Earth System Model Results

LAl Accuracy: LRFTT vs Sparse PCE
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Earth System Model Results

GSATotal Effect Sobol Indices

® Results corresponding to US-Ha1 site

® Sobol indices correspond to monthly Qol averages over 1980-2009

® Temporal trends match subject matter expert intuition for relevant processes
controling GPP and LAI.

GPP LAI




Earth System Model Results

Summary and Future Work

® Functional low-rank approximations proved efficient in capturing input-output
dependencies imposed by land model processes.

® [and Model is amenable to surrogate modeling via low-rank interactions.

® For this set of models the low-rank functional approximation performs
slightly better compared to a sparse regression polynomial chaos fit.

® |dentified a set of 10-12 parameters (out of 47) which are driving the
variance in the selected Qols.

® Exploring techniques for discovering and folding spatial dependencies

(space/time) into the low-rank approximation.
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