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Abstract—While social media enables users and organizations
to obtain useful information about technology like software and
security feature usage, it can also allow an adversary to exploit
users by obtaining information from them or influencing them
towards injurious decisions. Prior research indicates that security
technology choices are subject to social influence and that these
decisions are often influenced by the peer decisions and number
of peers in a user's network. In this study we investigated whether
peer influence dictates users' decisions by manipulating social
signals from peers in an online, controlled experiment. Human
participants recruited from Amazon Mechanical Turk played a
multi-round game in which they selected a security technology
from among six of differing utilities. We observe that at the end
of the game, a strategy to expose users to high quantity of peer
signals reflecting suboptimal choices, in the later stages of the
game successfully influences users to deviate from the optimal
security technology. This strategy influences almost 1.5 times the
number of users with respect to the strategy where users receive
constant low quantity of similar peer signals in all rounds of the
game.

I. INTRODUCTION

Social influence is key to technology adoption, and research
on the role of persuasion in security technology adoption
indicates that various social influence factors impact a user's
decision when making decisions to purchase or use a given
technology M. However, these studies have primarily inves-
tigated the role of benign social influence and not how it
can be harnessed to harm users, e.g. by cyber-adversaries.
Specifically, social influence has primarily been studied in
the context of it having a net positive impact on society [g],
especially when considering the utility of the decisions made
through influence.

Given the slew of recent events in which cyber warriors
exploit social media with malicious intent, researchers and
policy-makers are reconsidering the role of social influence
as a tool for change. Consider the example of the experi-
ment where an American security firm created fake Facebook
accounts of a fictitious user in order to entice users to
befriend her and inappropriately share information pi. The
study showed that transitive trust influenced users to make
connections with her and in some cases even share sensitive
geo-location information. It is especially alarming that users
did not verify the account. These studies prompt the questions:
do users place too much trust on peers and too little on their
own knowledge when adopting security technologies, and what
are the mechanisms that enable cyber-adversaries to influence

users into adopting technologies that might be less secure or
could be used for hacking into their systems?
To address these questions, we conducted an online, con-

trolled experiment in which human participants played a multi-
round game where they selected one security technology from
among six of differing utilities. We modulated the number and
temporal pattern of concurrent social signals that participants
received from others who were also ostensibly playing. An
example of the Linear Cascade, one of the six patterns of peer
influence, is shown in Figure 1. We investigate three main
questions: (1) Can social signals cause users to deviate from
the optimal security technology? (2) Does social influence
encourage option exploration when users are already aware
of the most optimal technology? (3) Does the role of social
influence factor more than other cognitive aspects that might
impact the choices made by the users?
We observe that while early exposure to higher social sig-

nals leads to suboptimal decision-making, the effect disappears
following the user's exploration period., and that delayed
exposure to more social signals leads to suboptimal decision-
making at the end of the game. Additionally, we find that
social signals are more predictive of adoption choices than
other factors such as the number of options explored by user or
the number of alternating switches made. Our research opens
new avenues for considering influence as a tool for exploiting
security technology usage among users in social media.

II. METHODS

We ran an online, controlled decision-making game hosted
by the Controlled Large Online Social Experimentation
(CLOSE) platform and developed at Sandia National Lab-
oratories [12,], in which participants took on the role of a
security officer at a bank. Participants were told that they
and several of their peers at different banks were being asked
to invest (or make a selection) in a cyber-defense provider
for 18 rounds, once for each round. All participants could
view brief descriptions of provider capabilities — e.g. one of
them being "Secure.com utilizes algorithmic computer threat
detection to keep systems safe. It prides itself on its efficiency
and success rate in warding against attacks?' Participants were
able to choose from 6 different providers - among which
only one was optimal. The optimal choice prevented 7 attacks
and the remaining 5 providers each prevented 6. Thus, all
suboptimal technologies had the same utility. This information
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Fig. 1: Illustration of the linear cascade diffusion. The sub-
optimal technology C chosen by us for influencing the user
(in dots) cascades through the peers of the user over the last
6 rounds. Colored nodes denote the activated peers w.r.t. C
(manually preprogrammed by us) at each round. Note that
although at Rounds starting at 13 and ending at 18, there
are subjects (uncolored) among peers who have not adopted
C, their decisions (technologies adopted which may not be
C) at those rounds are visible to the subject in consideration
(in dots). However, which users among the peers have been
preprogrammed manually is by default unknown to the target
subject. This linear cascade pattern is represented by V = {1,
2, 3, 4, 5, 6}, where the indices in the list denote the sequence
of 6 rounds in an ordered manner.

about the optimal and suboptimal providers is not available to
the participants in every group at the start of the game. An
example of the screen is shown in Appendi,6 We separated
participants into 5 groups based on pattern of social signal
exposure which will be described in the Design subsection
following this. For each group, we controlled the number
of signals which were the technology purchase decisions of
others ostensibly playing the game at the same time.

The entire game was partitioned into two phases. For the
first 12 rounds, no other information but a short excerpt about
the six potential providers was given. After the participants
made one selection (among the 6 security technologies avail-
able) for a given month, they saw the number of attacks
their provider had prevented in the corresponding period. For
every attack they prevented, participants received $0.02. Thus,
they were incentivized to avoid more attacks and earn more
money. However, since the participants have to explore the
technologies to first acquire the knowledge of the technology
utilities, the first 12 rounds allow for individual decision mak-
ing and exploration in the absence of any external knowledge
about the technologies or peers. In the second phase of the
experiment which started at Round 13, we introduced social
influence by allowing participants to see their peers' decisions
after every round, and by varying the temporal pattern by
which concentric decisions among the peers. We attempt to
avoid network effects by using pre-programmed bots (these
are the peers that the users see in their screen) and holding the
network stmcture constant. All participants have 6 peers, and
participants can view their choices. An example of the network
structure is shown in Figure where a participant receives
social signals from its six neighbors about a technology,
C, among the 5 suboptimal security technology providers.
The concentric decision from peers is always a suboptimal

1Due to space limitation Appendix is uploaded online: Lin1C

technology provider. We call this C the influence decision
for the respective user. The motivation behind this deliberate
selection of suboptimal C as the peer choice is to investigate
whether participants would be tempted to select the suboptimal
choice in the presence of social signals and when they already
have acquired knowledge about the technologies from the first
12 rounds. We describe the signal patterns and conditions
unique to each study in the following Design section.
Design. We recruited a total of 357 participants to play the
cyber-defense provider game. Participants were paid $2 with
the opportunity to earn up to $4.52 because they received a
bonus of $0.02 for every attack prevented. Thus, the partic-
ipants have a motivation to prevent more attacks in order to
earn more money. In a between-subjects design, participants
were randomly assigned to five groups: No Message (NM),
Uniform Message (UM), Linear Cascade (LC), Early Cascade
(EC), or Delayed Cascade (DC). For all groups, decisions in
the first 12 rounds are made without any peer signals. Let
V (t) (t denotes a round among the last 6 rounds) denote the
number of peers of a user who at time t were programmed to
select a chosen suboptimal technology by us.

For the last six rounds participants in all groups except the
No Message group, receive signals in the following sequence
which we denote as the patterns of influence: (1) No Message
(NM): V = {0, 0, 0, 0, 0, 0}, (2) Uniform Message (UM) :
V = {1, 1, 1, 1, 1, 1}, (3) Linear Cascade (LC): V = {1, 2,
3, 4, 5, 6}, (4) Early Cascade (EC): V = {4, 5, 6, 6, 6} and,
(5) Delayed Cascade (DC): V = {1, 1, 1, 4, 5, 6}. Figure 1
shows the V(t) = {1, 2, 3, 4, 5, 6, } pattern of influence.
(Figure 2 in the Appendix shows the signal patterns for the
groups). In all conditions, users can switch back to any choice
in the next round after having selected an option in the current
round. The NM and UM groups are control groups where we
control the peer signals in a way such that they do not have any
variations in the pattern over the rounds and the suboptimal
security technology C chosen by us does not cascade through
majority (>= 4 out of 6) peers at any round. On the other
hand the LC, EC, DC groups are our treatments groups of
interest where the technology C cascades through majority
peers in at least one out of the 6 rounds. Note that while the
pattern remains the same, the suboptimal technology chosen
by peers is randomized between and within participants, which
allows us to eliminate effects of a specific technology or its
description. An example of the Linear Cascade (LC) pattern is
shown in Figure 1, where the subject (marked in dots) is able
to receive social signals from its 6 neighbors. We emphasize
that all the peers of the subjects are bots and do not share
any topology between themselves (the treatments are therefore
i.i.d., a treatment on one user does not produce rippling effect
on other users), thereby we prevent the effects of network on
the individual behavior changes.

III. ANALYSIS

A. Distribution of attacks prevented

For all the research questions we investigate, the outcomes
of interest are the decisions made by participants in the last



six rounds, in the presence of social signals from peers.
Table shows the distribution of attacks prevented by subjects
in each group. We observe that, on average subjects in the
EC and LC groups prevent fewer attacks compared to others.
Based on a survey analysis, we found that none of the traits
like computer anxiety, computer confidence, computer liking,
intuition or neuroticism were correlated to the number of
attacks prevented [4]—[§1.

Group # participants
Average number of attacks
prevented

No Message 55 105.2
Uniform Message 71 106.28
Linear Cascade 79 103.81
Delayed Cascade 81 104.8
Early Cascade 71 103.83

TABLE I: Average number of attacks prevented by subjects
in each group. The lower attacks suggest participants deviated
more from the optimal decision responding to social influence.

RQ1. Will participants deviate from the optimal security tech-
nology and move towards their peer suboptimal choice in the
presence of social signals?
Under this research question, we investigate two components.
First, we measure the proportional of individuals in the last
round (Round 18) who do not opt for the optimal decision and
the proportion who settle on their respective influence decision.
Next, we obtain these metrics for each subject in each group
at the round when the influence is reflected in majority of the
peers of that user. That is to say, the first round when 4 out of
6 peers of a user adopt the influence decision (> 50% peers)
- this happens at round 13 for EC and at round 16 for LC and
DC groups.

At the last round
(Round 18)

NM UM LC DC EC

Proportional of individuals
not on optimal

45.61 30.55 48.10 49.41 43.83

Proportional of individuals
on influence decision

8.77 18.05 20.25 22.5 19.17

TABLE II: Comparison of the five groups w.r.t. the decisions
made in the last round.

For the first component, Table g shows the proportion of
users in each group for the two metrics discussed above -
the results show that the DC group participants deviated most
from the optimal with 49.41% of users settling on suboptimal
choices in the last round. Among these, around 22.5% of
DC participants switched to their influence decision (which
is different for each participant) which is also the maximum
among all the groups. In fact, while these results shed light
on the retention power of the influence patterns - while the
DC group's power of retention could be attributed to late
exposure to larger quantity of peer signals, the EC group fails
to retain many of the users after the initial rounds. In fact when
compared to the UM group users (30.55%, the DC pattern of

influence successfully influence almost 1.5 times the number
of users to deviate from optimal decision (49.41%).

First round where majority
peers reflect influence
decision

LC
(Round 16)

DC
(Round 16)

EC
(Round 13)

Proportional of individuals
not on optimal

46.83 54.11 57.49

Proportional of individuals
on influence decision

16.45 24.70 30.13

TABLE III: Comparison of the decisions made by the 3 treat-
ment groups when majority peers reflect influence decision.

For the second component, Table PI shows that on
the contrary, the EC pattern of influence is able to draw
more participants at the round where the participant clearly
observes its influence decision as the one that majority of
its peers (geq4 out of 6) choose. This suggests that while
early subjugation to exposures demonstrates a better proxy
for social influence, the exploration time following this early
exposures motivates users to move away from this decision
and so we see a substantial drop in the values for the last
round for EC (compared to DC and LC) from table P.

RQ2. Does the presence of social signals influence users to
explore and revisit different security technologies?
To further measure variations in decisions, we try to analyze
the effect of the pattern of influence on decision explorations
by users. The goal is to understand whether the introduction
of peer signals prompts users to explore more options
even in the presence of already acquired knowledge of the
security technologies. We measure this through entropy as a
means to analyze tendency towards fluctuations in decision
making by users 171. Formally, given a list of decisions
X made by each subject over the last 6 rounds, we define
entropy as H (X) =—En 1 P (Xi) logb P (Xi) where b
is the base of the logarithm and n denotes the number of
possible decisions, which is 6 in our case. We use b = 6
to normalize the entropy values to be between 0 and 1 —
we note that this is an artifact of the experiment design as
there are 6 decisions types. Intuitively, given decisions made
by two subjects, the participant with higher entropy value
has changed its decisions more frequently compared to a
participant with lower entropy value. Fig. g shows the entropy
of the decisions for the second phase of the experiment.
We performed the Kolmogorov-Smirnov (KS) tests between
pairwise distributions and we found that with respect to the
UM and NM participants (control), the distributions showed
statistically significant differences with the LC, EC and DC
participants (p < 0.05 for all these pairwise tests) considering
the different technologies that were explored. Particularly, we
find that for the groups NM and UM, the entropy distributions
peak near 0, which explains the fact that users do not explore
much under the control setup whereas the peak for EC
group is evident at around 0.3 suggesting that more users
explore options in this group. We conclude from this basic
analysis that the introduction of peer influence in the form of
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to 18).

treatment patterns of influence does indeed prompt users to
explore more, but the more subtle question here is whether
the exploration differs among the LC, EC and DC groups.
To this end, we find that from the same pairwise KS tests,
there is no statistically significant difference between these
3 groups when considered in pairs. However, while most of
these distributions are multi-modal (having multiple peaks),
the LC group tends to have more users having higher entropy
shown by the observation that one of its modes lie near
entropy value of 0.6.

RQ3. Do peer signals factor more than other cognitive aspects
that might impact users like the number of switches made by
the user so far?
We use Cox proportional hazards model, which is the standard
technique for assessing contagion in economics, marketing,
and sociology [111 This tool measures the hazard or like-
lihood of adoption of an individual at time t as a function
of individual characteristics and social influence: A(t, Xtz)
= Aotexp(Xtii3) where represents the hazard of adoption
for a subject after the tth round (t E Rounds[13,18]), Aot
represents the baseline hazard of adoption and Xti represents
the static set of covariates for subject i after round t - namely
the number of signals reflecting influence decision, the number
of decision switches made by the participant at t (we define
switch at round t as being made by a user if decision at t differs
from t -1) and the number of technology options (among the
6 possible) explored by the participant at t. Figure 5 displays
the results for the DC and EC group participants and it shows
that when the 3 factors are considered together for the hazard
of adoption, the number of signals is the only significant factor
playing into the adoption of the security features - the 95%
CI lies above 1 (which denotes significance) for both the DC
and EC participants. However, we find that none of the factors
were significant for the LC group participants - these together
suggest that the pattern of influence in the EC and DC groups
were more effective than the implicit aspects like the number
of decisions the user explored or the number of switches it
made.

IV. RELATED WORK AND CONCLUSIONS

The literature documents several experimental results on the
adoption of behaviors including network structure - such as
the study conducted in [M, and decision making WM
Under these studies, it is observed that individual adoption
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Fig. 3: The hazard ratio of adoption considering the 3 covari-
ates on the X axis - the number of switches (when user makes
different decisions on successive rounds) made, the number
of peer signals, the number of options explored. Shown are
the 95% confidence intervals from the time varying Cox
proportional hazards model. The effect of the covariates on
the likelihood of adoption is significant if the 95% confidence
interval does not contain 1. (a) Delayed cascade (b) Early
cascade.

is much more likely when participants received social rein-
forcement from multiple neighbors in the social network as
opposed to a single exposure. These studies focus on the effect
of network structure on the dynamics of behavioral diffusion.
Contrary to this, we quantify influence using only the number
of signals temporally sent to a user irrespective of how the
signals diffused to its neighbors prior to its own adoption. Our
focus here is on using social influence as a strategic tool for
exploitation and from our experiments, one of the conclusions
that emerges is that the pattern of influence can indeed be
manipulated to steer users towards suboptimal technologies.
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