

Unmanned Aerial Systems for Safeguards Inspections of Uranium Mines

PRESENTED BY

Daniel Small, Steven Horowitz, Alexander Solodov, David Novick

UNCLASSIFIED UNLIMITED RELEASE

Legal Framework for Safeguarding Uranium Mining

Current UAS systems and their capabilities – Feasibility

Sensor Payloads

Concerns

Conclusions

Under INFCIRC/153 Uranium mining and concentration do not need to be reported

State must declare the quantity, composition, and destination of the uranium or thorium if it is exported for nuclear purposes to a non-nuclear weapons state

Additional Protocol (AP) warrants greater cooperation between the state and IAEA (INFCIRC/540 or the AP, Article 2.a.(v))

Legal Framework for Safeguarding Uranium Mining and Uranium/Thorium Concentration Activities

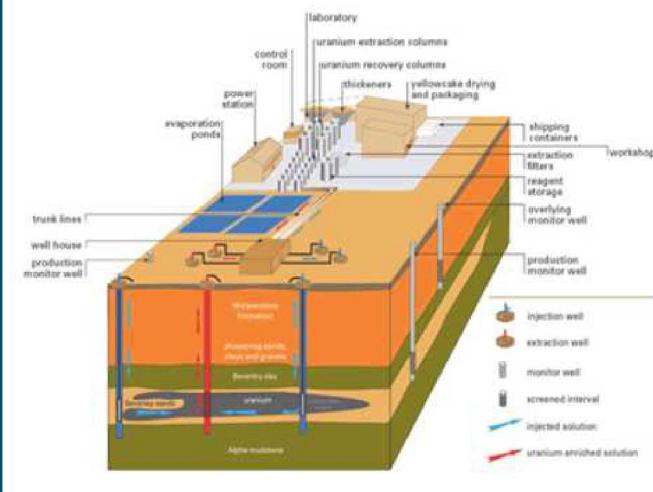
Requirements under AP

- Imports as well as composition, origin, destination, date of shipment, and receipt
- Imports of Uranium > 10 tons
- Imports of Thorium >20 tons
- Inspector access, location, status, and annual production capacity of its uranium mines and concentration plants

Not required under AP

- Detailed nuclear material accountancy
- Mechanistical or Systematical verification the activities and material at mining and milling facilities

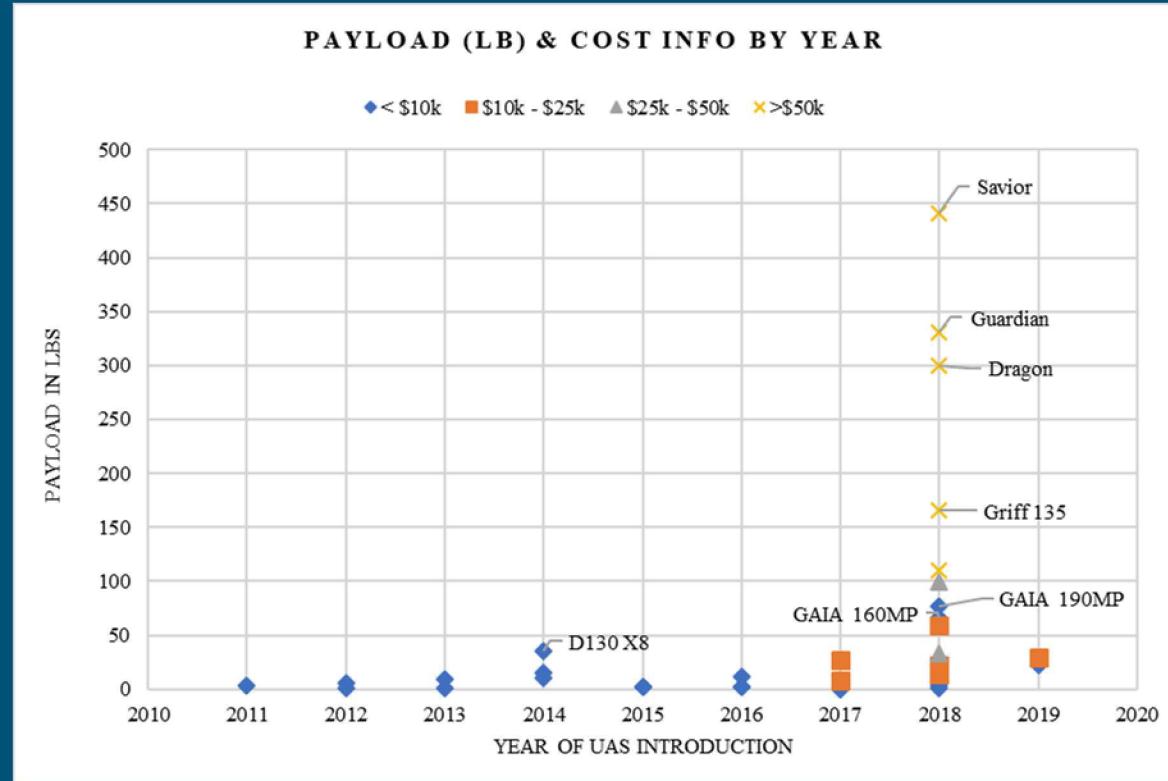
Safeguards reporting to the IAEA regarding a State's uranium mining and concentration activities contains limited but crucial information to enforce the nonproliferation regime


Types of Uranium Mining Activities

5

The Canadian McClean Lake open-pit mine

The Canadian McArthur River underground mining facility


In situ leach mining process

Heap leaching of uranium ore.

FEASIBILITY ANALYSIS

Technical feasibility is an assessment of a technology's readiness to be deployed for the specific safeguards application

Evolution of UAS payload capability differentiated by the year they were introduced on the market and their cost

- The Foxtech Gaia MP line of UASs (\$3,600 to \$9,700) with significant payload capabilities from 35 to 60lb
- Hybrid energy gas/electric UAS are available in the \$25k-\$45k range with flight times in the 4 to 5-hour range with up to 30lb payloads

Gas/Electric

- Combination of an electric motor and an internal combustion engine Hybrid
- A heavy-lift payload is required, usually in the 10-15kg

Hydrogen Fuel Cells

- Hydrogen fuel cell converts chemical energy stored by hydrogen fuel into electricity
- Hydrogen fuel cells have a higher energy density over batteries, refuel quickly and function in low temperatures.
- The first hydrogen-fueled small UAS entered the market on April 2016

SENSOR PAYLOADS

Light detection and ranging (LiDAR) sensors on UAS can create three-dimensional maps of mines:

3-D imaging and Unmanned ground vehicles (UGVs) can be used for determining the site layout, roads, and major equipment of the following applications

- Open-Pit Mine
- Underground Mine
- In Situ Leach (ISL) Mine
- Heap Leach Mine

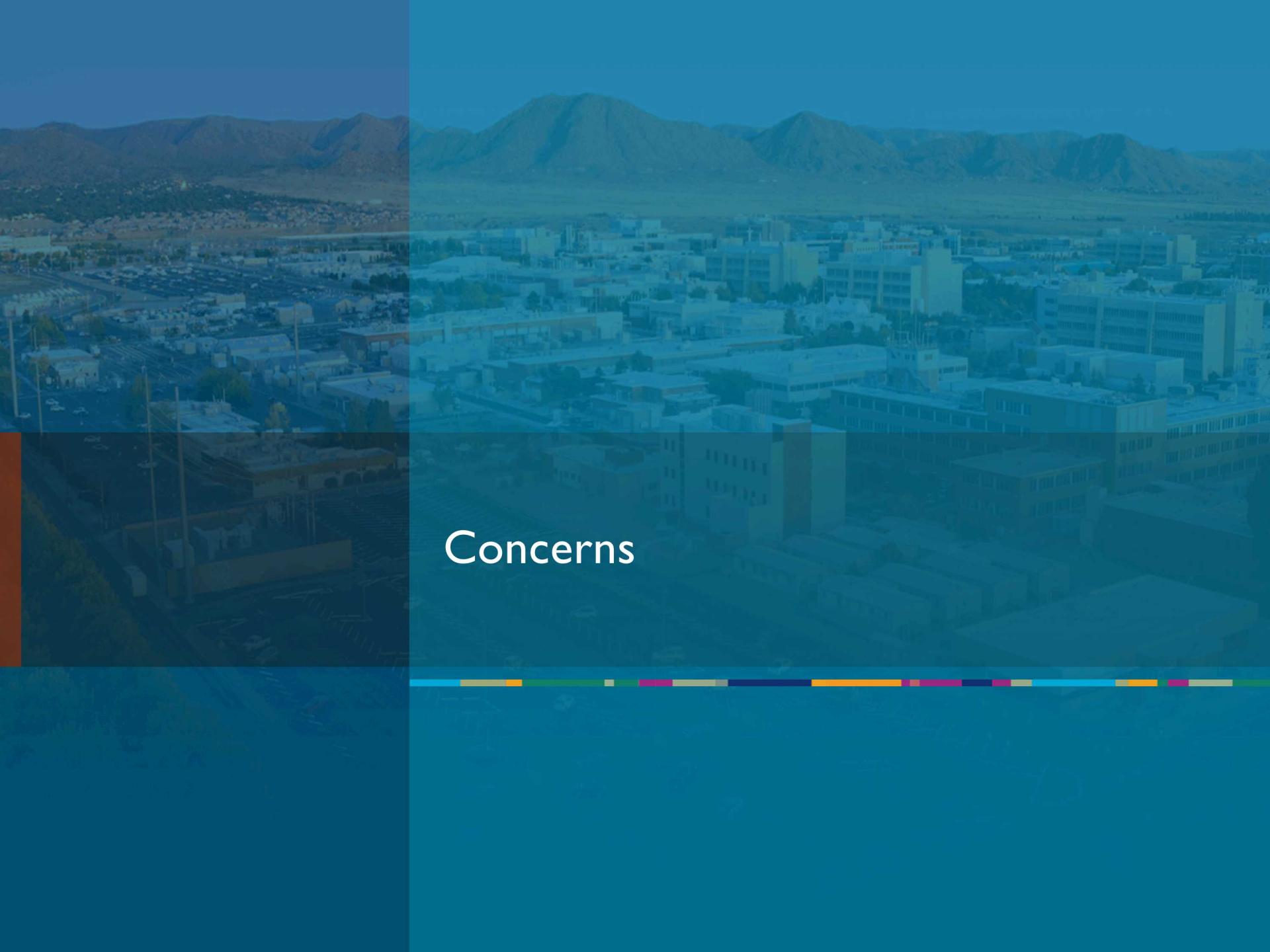
Commercially-available 3-D imaging and volumetric sensing technologies exist which are capable of conducting 3-D surveys of sites with great speed and precision

RiCOPTER,
fully integrated RIEGL VUX LiDAR sensor IMU/ GNSS unit with antenna
up to 4 optional cameras providing 330deg Field of View, 500,000
measurements/sec @ 10mm accuracy

Topographic Mapping of Radiation Dose On Site

- UAS with dosimetry equipment
- Dose rate
- ID marking and sampling by IAEA

Real-Time On-Board Gamma Spectroscopic Measurements


- Verify the absence of undeclared nuclear material or activities
- Verify the absence of highly-radioactive material

Kromek can now offer an out of the box solutions for radiation mapping and detection using unmanned ground and aerial vehicles. The solution includes the vehicles, detectors, controls and mapping software you need.

UASs can be equipped with cameras for real-time transmission of photographic or video data to the IAEA for verification of new buildings or equipment

- Hyperspectral imaging can verify material composition at the site and help inspectors determine where to samples and verify exposed ore
 - *The concentration of uranium in deposit samples at mines may not meet the minimum detectable quantity for hyperspectral imaging*

Concerns

The implementation of UAS technology presents a number of significant safety, security concerns:

- Safety

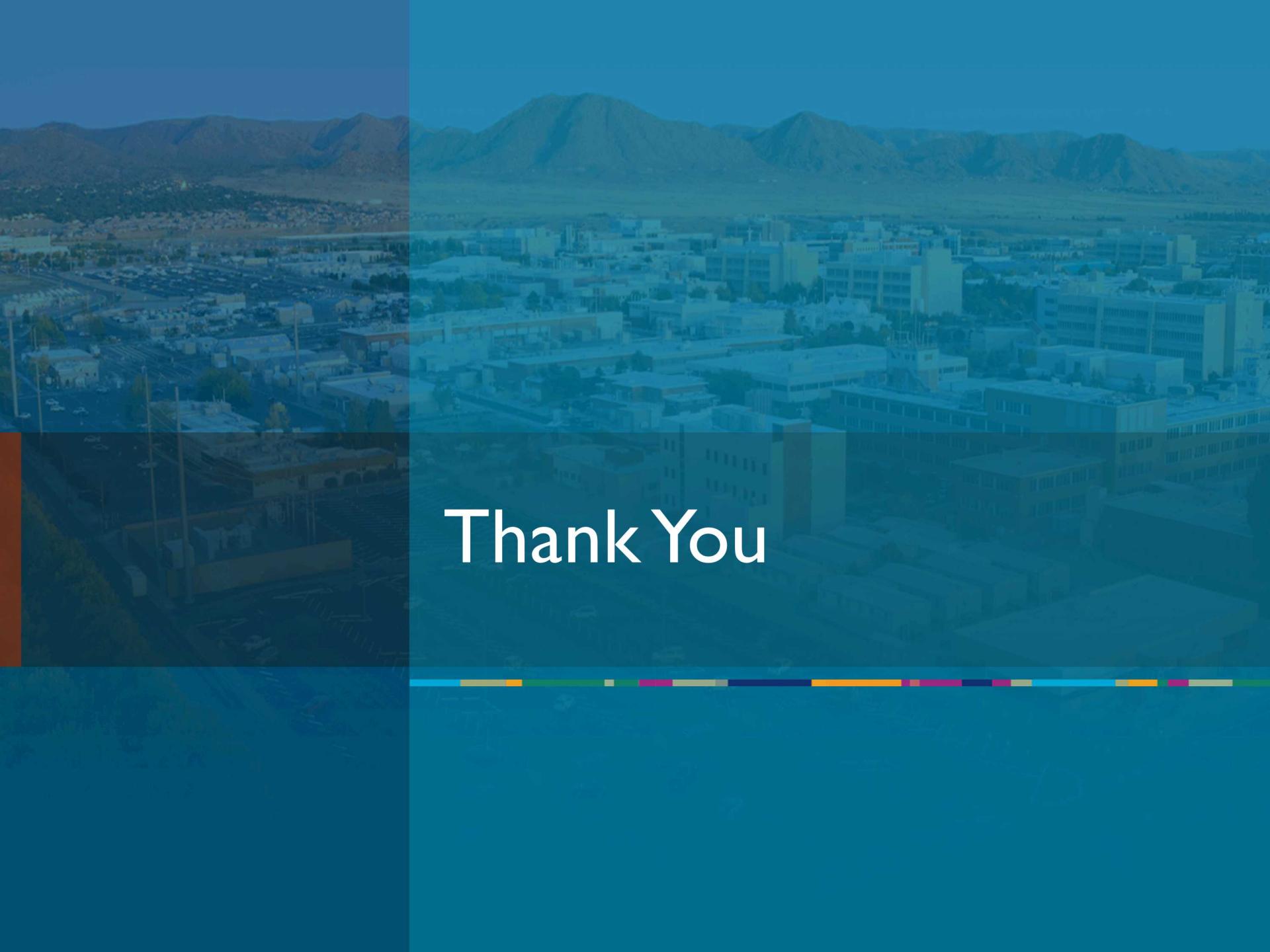
- Concern: navigation challenges when attempting to operate in an enclosed environment with radioactive dust (underground mines)
- Mitigation: most uranium mines and concentration facilities are outdoors

- Security

- Concern: Hacking, Data Security
- Mitigation: Uranium mining and uranium/thorium concentration activities do not carry significant sensitive information which would be a security or proliferation concern

- Regulatory/Political

- Concern: There exists no comprehensive international framework for UAS regulations
- Mitigation: UAS Regulations & Policies from the Federal Aviation Administration (FAA) could provide initial framework


Mining and concentration activities present a unique opportunity for the integration of UASs, mainly volumetric assessments with 3-D LiDAR and 2-D imaging.

Hyperspectral imaging with UASs, while promising, faces several technical limitations.

Radiation detection with UASs does not appear to be particularly useful for mining applications due to the low radioactivity of material present at mines

UAS technology continues to proliferate and the individual systems will become more advanced

Alternative technologies, including hand-held sensors and satellite imaging, must be constantly compared with UASs to assess the benefits and risks of each.

Thank You

References

International Atomic Energy Agency, “The Structure and Content of Agreements Between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons,” Austria (1972), para. 34 (a)

International Atomic Energy Agency, “IAEA Safeguards Glossary,” 2001 Edition, Vienna (2002), p. 40.

Akos Petoe, “Safeguards Obligations related to Uranium/Thorium Mining and Processing,” International Atomic Energy Agency, Vienna, URAM 2009, http://www-pub.iaea.org/mtcd/meetings/PDFplus/2009/cn175/URAM2009/Session%201/4_114_Petoe_IAEA.pdf.

“IAEA Safeguards Glossary,” p. 91.

Johnson Michael Richard, Paquette Jean-Pierre, and Elbez Julien, “New And Emerging Trends In Satellite Imagery,” 2014 Safeguards Symposium,

International Atomic Energy Agency, “Safeguards Techniques and Equipment: 2011 Edition,” 2011 Edition, Vienna (2011), p. 122.

R. Scott Kemp, “On the Feasibility of Safeguarding Uranium Mines,” The Nonproliferation Review vol. 13, no. 2 (2006), pp. 417-425.

Akos Petoe, “Safeguards Obligations related to Uranium/Thorium Mining and Processing,” International Atomic Energy Agency, Vienna, URAM 2009.

“Comparison of Conventional Mill, Heap Leach, and In Situ Recovery Facilities,” Nuclear Regulatory Commission, accessed July 20, 2017, <https://www.nrc.gov/materials/uranium-recovery/extraction-methods/comparison.html>.

“Conventional Mining and Milling of Uranium Ore,” Uranium Producers of America, accessed July 18, 2017, http://theupa.org/uranium_technology/conventional_mining/.

Ibid.

<https://www.skydio.com/technology/>

“Comparison of Conventional Mill, Heap Leach, and In Situ Recovery Facilities,” Nuclear Regulatory Commission, accessed July 20, 2017, <https://www.nrc.gov/materials/uranium-recovery/extraction-methods/comparison.html>.

Canadian Nuclear Association, “Uranium Mining,” <https://cna.ca/technology/energy/uranium-mining/>.

Canadian Nuclear Association, “Uranium Mining,” <https://cna.ca/technology/energy/uranium-mining/>.

“In Situ Leach Mining of Uranium,” *World Nuclear Association*, June 2017, <http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/in-situ-leach-mining-of-uranium.aspx>.

Jacques Thiry and Sergio Bustos, “Heap Leaching Technology: Moving the frontier for treatment. Applications in Niger and Namibia,” IAEA, Vienna, June 2014.

Heavy Lift UAS from FoxTechFPV, accessed June 21, 2019 <https://www.foxtchfpv.com/gaia-160-mp-heavy-lift-drone-arf-combo.html>

Hybrid Power UAS, accessed June 21, 2019, <https://www.foxtchfpv.com/gaia-160-hybrid-hexacopter-arf-combo.html>, <https://www.harriserial.com/carrier-h6-hybrid-drone/>

“First Ever Hour-long Flight for Hydrogen Multi-Rotor UAV”, accessed Jun 20, 2019, <https://www.intelligent-energy.com/news-and-events/company-news/2019/01/08/first-ever-hour-long-flight-for-hydrogen-multi-rotor-uav-with-5kg-payload/>

“Metavista Breaks Guinness World Record of Multi-rotor UAV Flight” <https://www.intelligent-energy.com/news-and-events/company-news/2019/04/16/metavista-breaks-guinness-world-record-of-multi-rotor-uav-flight-time-using-intelligent-energy-fuel-cell-power-module/>

References

“What is LIDAR?” *National Ocean Service*, accessed August 2, 2017, <https://oceanservice.noaa.gov/facts/lidar.html>.

“Brashtech UAS with integrated Flash LIDAR”, access June 20, 2019, <https://brashtech.com/overview>

“A Workflow to Estimate Topographic and Volumetric Changes and Errors in Channel Sedimentation after Disturbance”, accessed June 21, 2019, <https://www.mdpi.com/2072-4292/11/5/586/pdf>

uGPS-RapidMapper, accessed June 21 2019, <https://ugpsrapidmapper.com>

“Drone-based Volume Measurement Delivers Big Time-Savings to Mining,” *DroneDeploy*, March 3, 2016, accessed July 31, 2017, <https://blog.dronedeploy.com/drone-based-volume-measurement-delivers-big-time-savings-to-mining-elb684c748819>.

“Think 3D First to Commercialize 3D Drone Scanning,” FARO, accessed June 18, 2019, <https://www.faro.com/en-gb/case-studies/think-3d-first-to-commercialize-3d-drone-scanning/>.

“Uranium in Niger,” *World Nuclear Association*, May 2017, accessed July 18, 2017, <http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/niger.aspx#.UUnKyFeMKcU>.

“eBee,” *senseFly*, accessed July 12, 2017, <https://www.sensefly.com/drones/ebee.html>.

“Pix4Dmapper Pro,” *senseFly*, accessed June 18, 2019, <https://www.sensefly.com/software/pix4d/>.

P.G. Martin et al., “3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility,” *International Journal of Applied Earth Observation and Geoinformation* vol. 52 (2016), pp. 12-19.

“Uranium in Niger,” *World Nuclear Association*, May 2017, accessed July 18, 2017, <http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/niger.aspx#.UUnKyFeMKcU>.

Michael East, “Safeguards Reporting and Verification for Uranium Mines,” IAEA Training Meeting on Effective Regulatory and Environmental Management of Uranium Production, Darwin, August 13-17, 2012.

J.W. MacFarlane et al., “Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies,” *Journal of Environmental Radioactivity* vol. 136 (2014), pp. 127-130.

Roy Pöllänen et al., “Performance of an air sampler and a gamma-ray detector in a small unmanned aerial vehicle,” *Journal of Radioanalytical and Nuclear Chemistry* vol. 282, no. 2 (2009), pp. 433-437.

Rishikesh Bharti, R. Kalimuthu, and D. Ramakrishnan, “Spectral pathways for exploration of secondary uranium: An investigation in the desertic tracts of Rajasthan and Gujarat, India,” *Advances in Space Research* vol. 56 (2015), p. 1614.

Rishikesh Bharti, R. Kalimuthu, and D. Ramakrishnan, “Spectral pathways for exploration of secondary uranium: An investigation in the desertic tracts of Rajasthan and Gujarat, India,” *Advances in Space Research* vol. 56 (2015), pp. 1613-1626.

Alexander Solodov, Adam Williams, Sara Al Hanaci, and Braden Goddard, “Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities,” SAND2017-4308J, 2017.

Geoffrey Shaw, “Uranium Mining: Safeguards and Physical Protection, Australian Experiences,” IAEA General Conference: Uranium AEA Production: Prospects and Challenges, Vienna, September 15, 2009.

Francesco Nex and Fabio Remondino, “UAV for 3D mapping applications: a review,” *Applied Geomatics* vol. 6 (2014), pp. 1-15.

“Unmanned Aircraft Systems (UAS),” *Federal Aviation Administration*, accessed June 18, 2019, <https://www.faa.gov/uas/>.