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Abstract

Drinking water utilities use booster stations to maintain chlorine residuals throughout
water distribution systems. Booster stations could also be used as part of an emergency
response plan to minimize health risks in the event of an unintentional or malicious
contamination incident. The benefit of booster stations for emergency response depends
on several factors, including the reaction between chlorine and an unknown contaminant,
the fate and transport of the contaminant in the system, and the time delay between
detection and initiation of boosted levels of chlorine. This research takes these aspects
into account and proposes a mixed-integer linear programming formulation for optimizing
the placement of booster stations for emergency response. A case study is used to explore
the ability of optimally placed booster stations to reduce the impact of contamination in

water distribution systems.

Methods

This research compares two MILP formulations that place booster stations in a water
distribution system to minimize the expected population dosed given an ensemble of

contamination scenarios.

* The Neutralization method, described in [1], assumes that chlorine completely and
instantaneously inactivates all of the contaminant on contact.

* The Limiting Reagent method, developed as part of this
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Case Study

Two water distribution network models are used to evaluate the effectiveness of

chlorine injection at booster stations as a response to water contamination scenarios.

 Contamination scenarios are simulated from each non-zero demand node.

* Booster stations are activated after contaminant is detection by a network of 5
sensors. Other sensor layouts and delay times can be used.

* Booster stations inject chlorine at a concentration of 4 mg/L (the MCL for chlorine)
and continue for 8 hours.

* To calculate population dosed, it is assumed that each person ingested 2 liters of
water uniformly throughout the day. Two dosage thresholds are used to evaluate
the population dosed: 7 =0.0001 mg (high toxicity) and 0.1 mg (low toxicity).

* Four stoichiometric ratios are used to approximate chlorine reaction with the
contaminant: p = 0, 1, 10, and 100 mg CL/mg contaminant. When p = 0, the
Limiting Reagent method is equivalent to the Neutralization method.

instantaneous reaction of the contaminant and chlorine according to a stoichiometric \"‘
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Both methods are available in WST [2]. The Neutralization and Limiting Reagent methods
approximate the unknown reaction between a contaminant and chlorine, as shown

below.

J 100 mg CL, 0 mg Cont.
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Fig 1. Neutralization and Limiting Reagent method examples. Both examples
assume a stoichiometric ratio of 1 mg chlorine (CL) per mg contaminant (Cont)

Limiting Reagent method

min Z P(s) Z ZnsPOPn

Minimize population dosed. Binary variable z is 1 if
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Fig 2. Booster station placements with a high contaminant toxicity using the
Neutralization and Limiting Reagent methods.
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Big-M constraint is used to switch the binary variable z to
1 when the contaminant dose is above a threshold
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Fig 4. Reduction in expected population
dosed on Network 2.

Fig 3. Reduction in expected
population dosed on Network 1.
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S, N, Tand B represent the sets of contamination scenarios,
network nodes, time steps, and potential booster station
locations

* Zzindicates whether the total dose is above a threshold

* pop is the population

* P(s)is the scenario probability

* pisthe stoichiometric ratio

* m, ¢, and r are the mass of contaminant and chlorine,
concentration of contaminant and chlorine, and mass of
contaminant that has been removed

G and D map the contaminant and chlorine mass injected to
contaminant and chlorine concentration

y is a binary variable that is 1 if a node is selected as a

booster station location and 0 otherwise

L is the chlorine mass injection

v is the volume of water ingested by the population

d is the total dose

M is part of the Big-M constraint

tis the mass threshold

B,... IS maximum number of booster stations that can be placed

The effect of contaminant toxicity on the performance of booster stations can be very
significant for some networks.

Further evaluation shows that the optimal booster station placement obtained
assuming the worst case scenario (high contaminant toxicity and high chlorine to
contaminant stoichiometric ratio) resulted in the lowest overall expected population
dosed across all scenarios.
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