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Light emission in gas discharges

Light emission is a defining characteristic
of plasma discharges

In spectroscopy, used to determine
discharge gas participants, species
densities, and charged particle densities

Some discharges, such as positive
streamers in air, are influenced by
energetic photons in the plasma.

M. Hopkins, et aL, Th Annual Plasma Science CenterAnnual Meeting, 2016.
J. Stephens, et al., Plasma Sources Sci. Technol., 25, 025024, 2016.
A. Fierro, et aL, J. Phys. D: Appl. Phys., 45, 495202, 2012.

High speed imaging of
streamer formation

LowM=. High

: (b)

E

-___.—.A/L. A _...
_ . 

130 135 140 143

Wavekngth (nm)

150 -100-50 0 SO

T1me Ins)

I

Four channel microdischarge
array

Vacuum ultraviolet
emission spectra in
a nitrogen discharge



iVA ALEPH
Advanced Plasma Transport & Kinetics

Unstructured FEM ES Particle-In-Cell model for non-equilibrium plasmas
, Trilinos used to solve Poisson eqn. (w/ML multigrid preconditioner)

, Massively parallel (scales to >50K cores) w/dynamic load balancing and reweighting of particles

Surface physics models:

O Fowler-Nordheim, thermionic, and Murphy-Good e- emission models

O Sputtering, surface charging, Auger-neutralization, SEE,
photoemission, sublimation/vaporization

O Can use time-varying flux files (e.g., from data or pre-computed)

Direct Simulation Monte Carlo collision physics:

O Elastic, charge exchange, chemistry (dissociation, charge exchange, etc.), excited states (w/
radiative decay & self-absorption), ionization, Coulomb collisions (Nanbu)

Slide courtesy C. Moore and M. Hopkins, Sandia National Laboratories



Discrete photon method with line broadening 

• For each excited particle in the simulation, evaluate

R1 < 1 — e•-°tIT

• Compute the natural line width using

As = tanKR2 — 0.5)4021 + 2.0
1

with AAL = 
A6 271-CT

to account for natural
line broadening

• Final wavelength accounting for doppler shift

(C 17-ph • vp)As
Af =

A. Fierro, et al., J. Phys. D.: Appl. Phys., 50, 065202, 2017
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Self-absorption in helium
A key physics mechanism to include is self-absorption for the resonance states of the helium atom
• He(21P), He(31P), and He(41P)

• These excited states exhibit short lifetimes (- 1 ns) and emit energetic photons (E > 19 eV)

• However, they suffer from self-absorption that effectively increases their lifetime and only photons with
wavelengths in the wings of the emission profile escape
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A. Fierro, et al., J. Phys. D.: Appl. Phys., 50, 065202, 2017
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Photoionization  in He/N2 
Studied photoionization in He/N2 mixtures in a fully-resolved three-dimensional simulation.
Contained over 160 million elements and ran on 5000 processors for 8 days. Total operating
pressure of 500 torr. v= 1500

Smallest mesh
element -50 nm
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Discharge evolution is shown for 2 He/N2
mixture cases:
90% N2, 10% He

90% He, 10% N2

Speed is faster in the mostly helium case
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Location of photoionization events
(a) 90% N2, 10% Hc
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o The location of the photoionization events at different
times is shown by the black spheres relative to the
magnitude of the electric field (the colormap).

o Changing the gas mixture changes among other things,
ionization rates, electron mobilities, production of
excited species.

o From the location of photoionization events, however, it
appears that photoionization is more non-local in the
higher helium partial pressure.

A. Fierro, et al., Plasma Sources Sci. Technol., 27, 105008, 2018



Influence of photoemission
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1 D simulation in pure helium at 75 torr that includes
two important surface mechanisms:

Photoemission from the surface

° Yph = Const for A < 100 nm

Secondary emission due to ion impact
y,on = Const for all ions

Compared the simulation with an experiment to find best fit
parameters for the photoemission and secondary yield from ion
impact. 10 1 ' T
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Influence of photoemission
O Varying the photoemission yield coefficient
from 0.01 to 0.2 demonstrated different
current waveforms with a best fit parameter
using yph = 0.01

O The photoemission yield has a large impact
in both early and late stages of the
discharge.
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O Also examined the influence of the helium
excimer (He2*) versus the atomic resonance
emission.

O While radiation trapped, the resonance
emission is still more responsible for injected
electron current at the cathode than the
helium excimer.



Conclusions
A model has been developed that can discretely track photons in the simulation volume
and accounts for photon-gas interactions and photon-surface interactions. However, this
comes with a large computational price — Fully 3D simulations are even more expensive!

Photoionization studies in different He/N2 mixtures showed that the location of
photoionization events in the mostly helium case were more non-local than in the more
nitrogen case.

A one-dimensional pulsed discharge simulation in pure helium showed the large
influence of photoemission from the surface on the discharge current. Furthermore, the
resonance emission accounted for more injected electron current due to photoemission
than the helium excimer state.

Future

Comparison of fundamental photoionization simulations with experimental data

Incorporation of highly Doppler shifted emission from fast excited species


