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Goals and Outline

Goal:

* Demonstrate UV photodetection for AlIGaN HEMTs with a nanodot-modulated gate
Requirements:

* Must be insensitive to visible light > Reject > 375 nm

* Sensitive to UV light

Needs for UV photodetection

AlGaN quantum dot floating gate HEMT vis-blind photodetectors
Impact of quantum dot placement

Extension to solar-blind detection

Summary
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. Motivation: Towards portable, highly sensitive UV photodetectors
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Non-line of sight communication
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Solar-blind detection
(missile launch, sniper fire)

Z. Xu and B. M. Sadler, “IEEE Comm. Mag. 46, (2008).

» Miniaturization and efficiency are technology drivers
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COTS Parts Performance Gap

/ Photomultiplier Tubes (PMTs)

N

Parameter

Physical area

Number pixels

Pixel size

Fill factor

SPDE at 400nm

SPDE at 270nm
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Expensive optical filters Dead time during reset

Shaw et al., Proc SPIE 7320 1 2009
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. AlGaN Nano-Dot Floating Gate HEMT Concept

Vis-blind

Energy Band Diagram
AlGaN QD-FG HEMT
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AlGaN guantum dot floating gate HEMT?
Locally trap charge carriers in GaN nanodots under
e illumination, modulating the transistor relative to dark state.
2DEG under gate » Small (low voltage)
modulated by > Room temperature (large AE,)

charges occupying

> Filter-free (large E,)
nanodots

> High sensitivity (Large Aly)

1. Gansenet al., IEEE JSTQE 13, 967 (2007).
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. GaN Nanodot patterning and growth

Al
SiN j
Al 60Gag 40N » Al 60Gag 40N
Aly 30Gag 70N Alg 30Gag 70N

AIN on sapphire A -
MOCVD Growth + Anodization of Al
SiN and Al blanket depositions s

SEM: Anodized Aluminum Oxide
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. GaN Nanodot patterning and growth

Al AAO AAO
Aly 60Gag 4N » Aly.60Gag.40N » Aly 60Gag 4N
Alg30Gag 20N Alg 30Gag 70N Alg.30Gag 20N
MOCVD Growth + Anodization of Al SiN etch (R|E: CF4 / 02)
SiN and Al blanket depositions ‘

Alj 60Gag 40N | Alj 60Gag 40N
Aly 30Gag 0N Alj 30Gag 70N

lllllllllll GaN Nano-Dot Growth Remove AAO: H,PO,

S4800 3.0kV x90.0k SE(U)

SEM: GaN nano-dots in SiN
growth mask
» As-grown GaN nanodots ~ 50 nm in diameter and ~ 50 nm tall

» ~10'° cm= nanodot areal density
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. GaN Nanodot patterning and growth

Al AAO AAO

Aly.60Gag.40N » Aly.60Gag.40N Aly.60Gag.40N
Aly 30Gag 70N Aly 30Gag 7N Al 30Gag ;0N

Anodization of Al SiN etch (RIE: CF4 / 02)
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il 11N
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Alj 3,Gag 70N
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Remove SiN: HF GaN Nano-Dot Growth Remove AAO: H,PO,
MOCVD Dot shrink +
Barrier overgrowth

» In-situ thermal desorption reduces GaN nanodots to ~ 25 nm and diameter height
» Barrier then grown over the GaN nanodots
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GaN nanodot characterization

Tilted SEM of GaN nanodots (not shrunk)
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Alj 3,Gag 70N
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mag WD | tilt [ mode |
®15.00kV|35000x|58 mm|52 S= COHWV375 Sample 2

» GaN guantem nanodots ~ 50 nm in diameter and ~ 50 nm tall
» ~10'° cm= nanodot areal density
» Nanodot size distribution is not important for this application
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GaN nanodot characterization

TEM and EDS of embedded GaN nanodots (not shrunk)
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Aly 30Gag 0N

» No evidence of Al uptake during barrier overgrowth
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Device fabrication and geometry

#GaN dots:
10 nm Al ;,Ga, 4N EBL

Al 3Gag ;N
1.6 um AIN

Sapphire Substrate

200 pm Drain Diameter
10 ym  Drain-to-Source
1um  Field Plate

1.5 - 3 ym Gate Length

» 8 nm semi-transparent Ni gate
> Ti/Al/Ni/Au ohmics annealed at 900° C
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AlGaN Nanodot HEMT with good electrical characteristics

I-V of nanodot 50/30 HEMT Transfer characteristics of nanodot 50/30 HEMT
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> Al,;Ga,,N HEMTs with GaN nanodots retain good ohmics and gate control
» Small hysteresis indicate GaN nanodots do not act like traps in dark
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. 45/30 nano-dot HEMTs exhibit strong photosensitivity

Photocurrent for nanodot 50/30 HEMT
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» Nanodot HEMTs exhibit large increase in I, under UV illumination
> Increase in /¢ indicates holes are being localized on nanodots
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Visible-blind photoresponse for nanodot HEMTs

Responsivity of nanodot 50/30 HEMT Photocurrent transient
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» Responsivity > 108 A/W and 107 visible-blind rejection ratio
» ~ 50 ms rise time and rapid / reset using +V. gate pulse
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Hole recombination with channel limits dynamic range of operation

Responsivity of nanodot 50/30 HEMT

Photon wavelength (nm)
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Hole recombination with channel limits dynamic range of operation

Responsivity of nanodot 50/30 HEMT

Photon wavelength (nm)
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» Sincreases when intensity reduced 10x
» Sharp drop off of S, i.e. 4l,, when intensity reduced > 10x
» Hole recombination with nearby channel requires large optical generation rate
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. Designed new heterostructure for improved dynamic range

Near-surface nanodots Near-channel nanodots
6 T T T T 1 ™ T "1
| 4l Photogenerated h* trapped in dot |
4+
e i —~ 2
s 2[ s |
1 :
5 S |
c c
L 2+ L 2F
4 ma
] 1 ] 1 ] 1 ] '|/|O| 1 ] 4
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Depth (nm) Depth (nm)

» New heterostructure places nanodots near surface to separate localized holes and electrons
» Enable much wider dynamic range and greatly increase S
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Next Design

Gen 1 Design Gen 2 Design

30 nm Aly 54Gag 0N 10 nm Alg 30Gag 70N

GaN nanodots~a GaN nanodots ./~

5 nm Al gsGag 35N 50 nm Aly 5,Gag 50N

ypldc

3.3 um Al; 3,Gag 5N 3.3 um Al 5,Gag 50N

Nanodots under thick barrier Nanodots under thin cap

Grow dots closer to the surface to improve hole lifetime within the nanodots
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Vis-blind

AlGaN QD-FG HEMT
Channel Egap sets

absorption wavelength
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keep holes from surface
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» AlGaN capping layer over GaN nanodots aids capture and



. GaN nano-dot patterning and growth

Alj 50Gag 50N
Alj 30Gag 70N

Alj 3,Gag 70N
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Il 118
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» Similar epitaxial and process flow to form embedded GaN nanodots
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Near-surface nanodot HEMT exhibits strong photoresponse

Transfer characteristics of near-surface nanodot HEMT Responsivity of near-surface nanodot HEMT
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» Near-surface nanodot HEMT did not pinch off (atypical template effect)
» Degraded VBRR ~ 10* but still achieved large S
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. Near-surface nanodot HEMT capable of photon counting
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» Moving nanodots near surface enabled operation over large dynamic range of intensity
» Peak S=1.7 x 108 A/W =100 pA/y sufficient for UV photon counting
» Gain-bandwidth product > 1 GHz
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. Near-surface nanodot HEMT compares well to PMT
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» PMTs achieve much lower dark current and 100 MHz but at 10° A/W
» Responsivity >> bandwidth for threat detection
» High S enables very high sensitivity and very low false alarm rate
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Nanodot HEMT compares well to AIGaN MESFET and MSM
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» Nanodot HEMT exhibits larger S and f than AIGaN MESFETs! or AIGaN MSM? devices
» Important to note that MSM and MESFET devices were solar-blind
» Next step is to increase nanodot HEMT channel composition to achieve solar-blind detection
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Next Design

Gan 1 Nacian . . ~on D Nacion Gen 3 Design
Solar Radiation Spectrum
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Gen 3: <250 nm
Modify Al composition to go from vis-blind to solar-blind

4—

Gen1land 2: <375 nm
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. Increase Al content for solar-blind detection

Channel Egap sets
absorption wavelength
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» Same design can be used for solar-blind detection by increasing HEMT Al content
» Same GaN nano-dot formation process
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. Increase Al content for solar-blind detection

Transfer characteristics of near-surface Responsivity of near-surface nanodot

nanodot HEMT
Photon wavelength (nm)
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» Similar qualitative device photo-response
» High solar-rejection ratio
» However, poor ohmic contacts limit /,, 4/, and thus S
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Summary

AlGaN HEMT with nanodots near channel High S and VBRR but limited dynamic range
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