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Goals and Outline
Goal:

• Demonstrate UV photodetection for AIGaN HEMTs with a nanodot-modulated gate

Requirements:

• Must be insensitive to visible light 4 Reject > 375 nm

• Sensitive to UV light

➢ Needs for UV photodetection

➢ AIGaN quantum dot floating gate HEMT vis-blind photodetectors

➢ Impact of quantum dot placement

➢ Extension to solar-blind detection

➢ Summary
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Motivation: Towards portable, highly sensitive UV photodetectors

Raman Spectroscopy
(biological agents)

Excitation laser
220-250 nm

Raman Shifts

• 0 ",20 nm
Wavelength shift

PA

Non-line of sight communication
(covert radio)

Solar-blind detection
(missile launch, sniper fire)
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Z. Xu and B. M. Sadler, "IEEE Comm. Mag. 46, (2008).
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➢ Miniaturization and efficiency are technology drivers
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COTS Parts Performance Gap

Photomultiplier Tubes (PMTs)

Large & High Voltage

tiy

I 4— n111116-$.1

• Photo m ultiplier Tube

High Voltage Supply

Low Solar-blind Rejection Ratio
100

0 10
2

cr 0.1
100 MO MO 400

Wavelength Oen)

Si Geiger-mode Avalanche Photodiodes (APDs)

Parameter  A 4" 1, ." 1 ' 41.  tab.

Cr o•enic-025C -050C -100C

Physical area 1 xl lx1 lx1 mm

Number pixels -10x4-0 20x20 10x10

Pixel size 15 50 100 I-all

Fill factor 30..8 61.5 78.5 %

SPDE at 4001.= 25 50 65 %

SPDE at 270atza 8 12 20 % Low 77

Expensive optical filters Dead time during reset

Shaw et al., Proc SPIE 7320 1 2009



AlGaN Nano-Dot Floating Gate HEMT Concept
Vis-blind

AIGaN QD-FG HEMT

Channel Egap sets

absorption wavelength

G D

30 nm A10.50Ga0.50N

GaN nanodots•A

5 nm A10.65Ga0.35N

2DEG

25

,3; 20

c 15
Lu

10

Energy Band Diagram

Dark Illuminated

GaN nanodot

Et, -

0
3.3 ,um A10.30Ga0.70N

AIN on sapphire

2DEG under gate

modulated by

charges occupying

nanodots

1. Gansen et al., IEEE JSTQE 13, 967 (2007).

100

Depth (nm)

200

IGaN lnodlot

2DE

AA/

0 20 40 60 80

Depth (nm)

AIGaN quantum dot floating gate HEMT1 

Locally trap charge carriers in GaN nanodots under

illumination, modulating the transistor relative to dark state.

➢ Small (low voltage)

➢ Room temperature (large dEv)

➢ Filter-free (large Eg)

➢ High sensitivity (Large Al Ds)
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GaN Nanodot patterning and growth

Al

V 11111•111111M111111111

MOCVD Growth +

SiN and Al blanket depositions

AAO
Mir

A10.60Ga0.40N

A10.30Ga0.70N

Anodization of Al

SEM: Anodized Aluminum Oxide
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GaN Nanodot patterning and growth
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A10.60Ga0.40N
A10.30Ga0.70N
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Anodization of Al

-II 11 1 11
A10.60Ga0.40N
A10.30Ga0.70N

AIN on sapphire

GaN Nano-Dot Growth

AAO

A10.60Ga0.40N
A10.30Ga0.70N

SiN etch (RIE: CF4 / 02)

A10.60Ga0.40N
A10.30Ga0.70N

► ph'

Remove AAO: H3PO4

SEM: GaN nano-dots in SiN

growth mask

➢ As-grown GaN nanodots — 50 nm in diameter and — 50 nm tall

➢— 101° cm-2 nanodot areal density
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GaN Nanodot patterning and growth

Al

A10.60Ga0.40N
A10.30Ga0.70N

AIN on sapphire

on sapphire

Remove SiN: HF

MOCVD Dot shrink +

Barrier overgrowth

AAO

A10.60Ga0.40N

A10.30Ga0.70N

Anodization of Al

A10.60Ga0.40N

A10.30Ga0.70N
AIN on sapphire

GaN Nano-Dot Growth

AAO

A10.60Ga0.40N
A10.30Ga0.70N

SiN etch (RIE: CF4 / 02)

I ■I
A10.60Ga0.40N
A10.30Ga0.70N

► • ph'

Remove AAO: H3PO4

➢ In-situ thermal desorption reduces GaN nanodots to 25 nm and diameter height

➢ Barrier then grown over the GaN nanodots
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GaN nanodot characterization

A10.60Ga0.40N
A10.30Ga0.70N

AIN on sapphire

Tilted SEM of GaN nanodots (not shrunk)

HV
5 00 kV

mag
35 000 x

WD
5 8 mm

tilt mode
52 SE

1 m 
COHWV375 Sam le 2

➢ GaN quantum nanodots 50 nm in diameter and 50 nm tall

• 1010 cm-2 nanodot areal density

➢ Nanodot size distribution is not important for this application
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GaN nanodot characterization

A10.60Ga0.40N
A10.30Ga0.70N

AIN on sapphire

TEM and EDS of embedded GaN nanodots (not shrunk)

HAADF 200 nm

N

Al

>. No evidence of Al uptake during barrier overgrowth
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Device fabrication and geometry

200 pm Drain Diameter
10 pm Drain-to-Source
1 pm Field Plate
1.5 - 3 pm Gate Length

•
•:•::k3 a N dots 

L10 nm A10.60Ga0.40N

1.6 [im AIN

Sapphire Substrate

➢ 8 nm semi-transparent Ni gate

➢ Ti/Al/Ni/Au ohmics annealed at 900° C
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AIGaN Nanodot HEMT with good electrical characteristics

/-V of nanodot 50/30 HEMT
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Transfer characteristics of nanodot 50/30 HEMT
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➢ A10.3Ga0.7N HEMTs with GaN nanodots retain good ohmics and gate control

➢ Small hysteresis indicate GaN nanodots do not act like traps in dark
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45/30 nano-dot HEMTs exhibit strong photosensitivity

Photocurrent for nanodot 50/30 HEMT

103
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EE 10o
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VGS (V)
0

Photogenerated 17+ trapped in dot

Dot 2DEG

0 0

0 20 40 60 80 100 120
Depth (nm)

➢ Nanodot HEMTs exhibit large increase in las under UV illumination

>. Increase in las indicates holes are being localized on nanodots
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Visible-blind photoresponse for nanodot HEMTs

Responsivity of nanodot 50/30 HEMT

Photon wavelength (nm)

107 
1240 620 413 309 248 207

10-1

103
1 2 3 4 5 6

Photon energy (eV)

160

120

E 80

40

0

Photocurrent transient

Electrical

reset pulse

Shutter closes

Shutter

opens

I l I I I l I I I l I I I l I

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

➢ Responsivity > 106 A/W and 107 visible-blind rejection ratio

50 ms rise time and rapid las reset using -FVG.s. gate pulse
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Hole recombination with channel limits dynamic range of operation

Responsivity of nanodot 50/30 HEMT
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Hole recombination with channel limits dynamic range of operation

Responsivity of nanodot 50/30 HEMT
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➢ S increases when intensity reduced 10x

➢ Sharp drop off of S, i.e. A/Ds, when intensity reduced > 10x

➢ Hole recombination with nearby channel requires large optical generation rate
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Designed new heterostructure for improved dynamic range

Near-surface nanodots

2DEG

0 20 40 60 80 100 120

Depth (nm)

Near-channel nanodots

>

4

2

>' 0

I-11 -2

-4

Photogenerated 17+ trapped in dot

Dot 2DEG

Ev

0 0

l l l

0 20 40 60 80 100 120

Depth (nm)

➢ New heterostructure places nanodots near surface to separate localized holes and electrons

➢ Enable much wider dynamic range and greatly increase S
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Gen 1 Design

30 nm A10.50Ga0.50N

GaN nanodots

5 nm A10.65Ga0.35N

2DEG

3.3 ium A10.30Ga0.70N

Nanodots under thick barrier

Gen 2 Design

10 nm A10.30Ga0.70N
• •

GaN nanodots

50 nm A10.50Ga0.50N

3.3 ,um A10.30Ga0.70N

Nanodots under thin cap

Grow dots closer to the surface to improve hole lifetime within the nanodots
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Gen 1 AIGaN Quantum Dot Floating Gate HEMT
Vis-blind

AIGaN QD-FG HEMT
Channel Egap sets

absorption wavelength

S G D

10 nm A10.30Ga0.70N

GaN nanodots

50 nm A10.50Ga0.50N

2DEG

.3 ,um A10.30Ga0.70N

AIN on sapphire

2DEG under gate
modulated by

charges occupying

nanodots

30

Energy Band Diagram

GaN nanodot

0 50 100 150

Depth (nm)

200

GaN nanodot

4

2

-4

,,,,",,",,
NN

\i,a,.
Illuminated"

2DEG

0 25 50 75 100

Depth (nm)

➢ AIGaN capping layer over GaN nanodots aids capture and
keep holes from surface
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GaN nano-dot patterning and growth

Al

A1o.5oGao.5oN

A10.30G a 030 N

AIN on sapphire

A10.50G a 0.50N

AIN on sapphire

AAO

irm
A10.50G a 0.50N

A10.30G a 030 N

AIN on sapphire

A1o.5oG a o.soN

A10.30G a 030 N

IN on sapphi

AAO

A10.50G a 0.50N

A10.30G a 030 N

AIN on sapphire

I ■I
A10.50Ga0.50N

A10.30G a 030 N

AIN on sapphire

>. Similar epitaxial and process flow to form embedded GaN nanodots
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Near-surface nanodot HEMT exhibits strong photoresponse

Transfer characteristics of near-surface nanodot HEMT
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>. Near-surface nanodot HEMT did not pinch off (atypical template effect)

>. Degraded VBRR — 104 but still achieved large S
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Near-surface nanodot HEMT capable of photon counting

108
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Intensity (nW/cm2)

10

➢ Moving nanodots near surface enabled operation over large dynamic range of intensity

➢ Peak S = 1.7 x 108 A/W = 100 pA/y sufficient for UV photon counting

➢ Gain-bandwidth product > 1 GHz
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Near-surface nanodot HEMT compares well to PMT
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➢ PMTs achieve much lower dark current and 100 MHz but at 105 A/W

➢ Responsivity » bandwidth for threat detection

➢ High S enables very high sensitivity and very low false alarm rate
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Nanodot HEMT compares well to AIGaN MESFET and MSM

10

108

-1o7

MSM 106
2. Yoshikawa et al., APL 111 1911013 (2017).

io5

1 1111111 1 1 1111111 1 1 1111111 1 1 1111111 1 1 1111111 1 1 1111111 1 1 1111111 1 1 111144

•
104  1 1 1111111 , 1 Hind 11111 11111 11111 mill 1

10° 101 102 103 104 105 106 107 108

Intensity (nW/cm2)

•
1000

100

10

N
I

MESFETs
1. Muhtadi et al., IEEE APL 110 171104 (2017).

➢ Nanodot HEMT exhibits larger S and f than AIGaN MESFETs1 or AIGaN MSM2 devices

➢ Important to note that MSM and MESFET devices were solar-blind

➢ Next step is to increase nanodot HEMT channel composition to achieve solar-blind detection
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physics.stacexchange.com

Gen 1 and 2: < 375 nm

Gen 3 Design

10 nm A10.70Ga0.30N
1 1 I 1 •

GaN nanodots,

50 nm A10.85Ga0.15N

500 nm A10.70Ga0.30N

10 nm AINA107Ga03N

Nanodots under thin cap 

Increased Al composition

Modify Al composition to go from vis-blind to solar-blind

Brianna Klein - baklein@sandia.gov 25



Increase Al content for solar-blind detection

Channel Egap sets
absorption wavelength

10 nm AI0.70Ga0.30N

GaN nanodots,

50 nm A10.85Ga0.15N

2 D.EG
,511m A 0.70Ga0.30N

AIN on sa..hire

2DEG under gate
modulated by

charges occupying

nanodots
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j 25

E.) 20
a)

15
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➢ Same design can be used for solar-blind detection by increasing HEMT Al content

➢ Same GaN nano-dot formation process
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Increase Al content for solar-blind detection
Transfer characteristics of near-surface

nanodot HEMT
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➢ Similar qualitative device photo-response

➢ High solar-rejection ratio

➢ However, poor ohmic contacts limit las, Al Ds and thus S
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AIGaN HEMT with nanodots near channel
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Photogonnoted tr
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AIGaN HEMT with nanodots near surface

2DEG

0 20 40 60 80 100 120
Depth (nm)

High S and VBRR but limited dynamic range

5

Vis-blind nanodot AIGaN HEMT with G•BW > 1 GHz
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