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What are epsilon-near-zero (ENZ) materials?

Natural effective medium: crystals, metals, doped semiconductors, graphene, etc.
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Key properties of ENZ materials are:
* Highly dispersive

* Low index of refraction

* Unavoidable loss
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Artificial effective medium materials (metamaterials): engineered plasmonic (hyperbolic metamaterials);
cutoff waveguides;

Coupled dielectric resonances (photonic crystals)
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What are epsilon-near-zero modes?

2 2
©, Yo
gxl-—"L+i—F, o>>y
)

Homogeneous metal: no propagating mode; above
the plasma frequency, longitudinal wave with
parabolic dispersion.

Two interfaces, subwavelength thickness:
epsilon-near-zero mode and Berreman mode.

ke Two interfaces: short-range and long-range SPP.
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Te\l+e |20 - surface plasmon polariton (SPP).

Vassant, Marquier, Greffet et al., Opt. Express 20, 23971 (2012)
> Campione, Brener, Marquier, Phys. Rev. B 91, 121408 (2015)
k Campione et al., Opt. Express 24, 18782 (2016)
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Critical coupling of light to absorbing materials: Perfect absorption
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T.S. Luk et. al, “ Directional perfect absorption using deep subwavelength low-permittivity films” PRB, 085411(2014)



Tuning the light-ENZ material interaction

Scattering

Low index material Cladding

Mirror

* Modes in the waveguide get sucked into the low index material
* Tune the low index layer by carrier injection, making a lossy layer
* Waveguide loss is modulated

Z.Yu, A. Raman, and S. Fan, "Fundamental limit of nanophotonic light trapping in solar cells," PNAS (2010)



Application: epsilon-near-zero optical modulators

(a) gate metal

transparent conducting oxide
gate dielectric

ion implanted Si

* modulated output

silicon waveguide

gate contact
base contact

SOl device layer
SOl buried oxide

P o

CW input

(b) te metal — Au .

e dielectric — HfO ion implanted Si

base contact

l

TCO: In,05 10nm
Gate oxide: Hafnia 5nm

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler,
"Gigahertz speed operation of epsilon-near-zero silicon photonic modulators," Optica 5, 233-236 (2018).



Gigahertz epsilon-near-zero optical modulators

lon imptanted Si —

7.6mV/div 50 ps/div

CMOS compatible

Free space coupling through grating Bandwidth 1530-159.0n-m
Silicon waveguide: 290x400nm Spged:_Z.S GIg/s, RC limited
TCO: In,0, 10nm Ex’Flnctlon ratio: 6.5 dB
Gate oxide: Hafnia 5nm Drive voltage 2V,

Length: 4um

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler,
"Gigahertz speed operation of epsilon-near-zero silicon photonic modulators," Optica 5, 233-236 (2018).
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High quality ENZ material: High mobility CdO

Low Loss

Y:CdO has more than 10x
higher mobility than ITO
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Absorption modulation by effective mass tuning
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Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J.-P. Maria, M. B. Sinclair, and |. Brener,
"Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber," Nature Photonics 11, 390 (2017)
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Ultrafast high contrast reflectance modulator

CdO:In Probe
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* Absolute reflectance modulation from 1% to 86%!
* Pump energy density: 339 uJ/cm?

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J.-P. Maria, M. B. Sinclair, and I. Brener,
"Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber," Nature Photonics 11, 390 (2017)
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Reflectance modulation by effective mass tuning via heating

Electron heating mechanism

Speed limitations: Hot carrier lifetime

Electron temperature estimate:
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* Effective mass change of about 10%, ~7% shift in plasma frequency

Guo et. al., Nat. Photon, (2016)



Types of nonlinear electronic response

Quasi-free electron in a sinusoidal field

Sinusoidal field driven free electron ) )
and an ion core field

(ignore Lorentz force)
U,>hw regime

— = -coulomb field

dp = == quasi-static field
T = —eEysin wt
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For parabolic band, . t, is the time of birth of a quasi-free electron
k
m* is constant since 62(2 ) = constant

T. F. Gallagher, "Above-Threshold lonization in Low-Frequency Limit," PRL(1988).

JMSWET@NG H\H has no \i"ﬁm‘fgh@f harmonic P B qukum, Pljc\sma pgrspective on strong field multiphoton
&R ionization," Physical Review Letters 71, 1994-1997 (1993)



Types of nonlinear electronic response

Sinusoidal driven electron in a
lattice fields

ek
Xmax =

4); m*a)z
QTQ o For CdAOd — 0.47nm

When E is so large that, x...>d,
additional modulation comes from lattice field
(Bloch oscillation)
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Bloch oscillation frequency wg = P
The nth harmonic current
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D. Golde, T. Meier, and S. W. Koch, "High harmonics generated in semiconductor

nanostructures by the coupled dynamics of optical inter- and intraband excitations," PRB (2008)

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis,

"Observation of high-order harmonic generation in a bulk crystal," Nat Phys 7, 138-141

(2011)

Sinusoidal driven electron in
an non-parabolic potential
de ek,

j(t) = — ap = ——_coswt

For non-parabolic dispersion zZn =&+ —

&g is non-parabolicity parameter

:> G 1 p

e?E, cos wt

2e2E¢cos?wt
PRY
m*w?e,

jt) = -

mwl|l+

P. Guo, et. al., "Ultrafast switching of tunable infrared plasmons in indium tin

oxide nanorod arrays with large absolute amplitude," Nat Photon (2016)



Experimental setup of high harmonic generation from CdO

UV-vis
spectrometer —
CaF, lens,
f=20cm
ldler pulses, ~60 fs cf;aFf(;enS,
50, =10 cm
A: 2.0-2.2 um (0.6 eV) s ’
Optical parametric - - |
amplifier, 1 kHz h Sample z
3o 2.08 um, 60 fs 5 Tqy
ND CaF, lens, dia spot 7 e
filter HWP f= 520 cm

75nm

Maximum intensity used 11.3 GW/cm?
(enhanced intensity 200GW/cm?, ponderomotive energy 0.4eV) S Gold [ C4O: In MgO
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Highly nonlinear response

HHG from 3 to 9t" order

* Incident intensity 11.3GW/cm?
* Internal intensity ~200GW/cm?
* (12MV/cm internal field)
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Y. Yang, et. al., to be published in Nat. Phys. (2019)



Nonlinear response dominated by electrons in conduction band

HHG Yield (a.u.)

b

Laser intensity ~5.6 GW/cm?
(8MV/cm internal enhanced field)
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Shift and broadening of the harmonic fields
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T.=300K

A S

Plasma frequency shift from heating

Optical power absorbed
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HHG Yield (a.u.)

Adiabatic time dependence model
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Y. Yang, et. al., to be published in Nat. Phys. (2019)
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Summary

Quasi-free electrons confined in nano-structures
enables strong light-matter interactions

We exploited these properties to show:
enhanced absorber

amplitude modulator

Transient reflectance and polarization modulator

High harmonic generation from high mobility degenerate electron plasma

New nonlinear mechanisms (non-parabolicity and heating) to explain the
nonlinear harmonic behavior

22
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ITO perfect absorption
Si waveguide modulator

Polarization tuning using CdO

—

— ITO perfect absorption
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