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What are epsilon-near-zero (ENZ) materials?

Natural effective medium: crystals, metals, doped semiconductors, graphene, etc.
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Artificial effective medium materials (metamaterials):
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Key properties of ENZ materials are:
• Highly dispersive
• Low index of refraction
• Unavoidable loss

engineered plasmonic (hyperbolic metamaterials);
cutoff waveguides;
Coupled dielectric resonances (photonic crystals)



What are epsilon-near-zero modes?
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Homogeneous metal: no propagating mode; above
the plasma frequency, longitudinal wave with
parabolic dispersion.

Two interfaces, subwavelength thickness:
epsilon-near-zero mode and Berreman mode.

Two interfaces: short-range and long-range SPP.

One interface: Surface propagating wave called
surface plasmon polariton (SPP).

Vassant, Marquier, Greffet et al., Opt. Express 20, 23971 (2012)

Campione, Brener, Marquier, Phys. Rev. B 91, 121408 (2015)

Campione et al., Opt. Express 24, 18782 (2016)



Critical coupling of light to absorbing materials: Perfect absorption
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T. S. Luk et. al, " Directional perfect absorption using deep subwavelength low-permittivity films" PRB, 085411(2014)



Tuning the light-ENZ material interaction

Low index material
).

1

Scattering

Mirror

• Modes in the waveguide get sucked into the low index material
• Tune the low index layer by carrier injection, making a lossy layer
• Waveguide loss is modulated

Z. Yu, A. Raman, and S. Fan, "Fundamental limit of nanophotonic light trapping in solar cells," PNAS (2010)



Application: epsilon-near-zero optical modulators

(a)
gate metal

transparent conducting oxide
gate dielectric

ion implanted Si

silicon waveguide

CW input

(b)

base contact

modulated output

gate contact
base contact

SOI device layer
SOl buried oxide

gate metal — Au

gate dielectric — HfO,

4-
400 nm 90 nm

accumulation layer

ion implanted Si

TCO: In203 10nm

Ay Gate oxide: Hafnia 5nm

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler,

"Gigahertz speed operation of epsilon-near-zero silicon photonic modulators," Optica 5, 233-236 (2018).



Gigahertz epsilon-near-zero optical modulators

Grating couplers

CMOS compatible

Free space coupling through grating

Silicon waveguide: 290x400nm

TCO: In203 lOnm

Gate oxide: Hafnia 5nm

Length: 4um

Bandwidth 1530-1590nm

Speed: 2.5 Gb/s, RC limited

Extinction ratio: 6.5 dB

Drive voltage 2 vpp

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler,

"Gigahertz speed operation of epsilon-near-zero silicon photonic modulators," Optica 5, 233-236 (2018).



2.0 -

-2.0-

High quality ENZ material: High mobility Cd0

Low Loss

Y:CdO has more than 10x

higher mobility than ITO

CdO:ln film, 75 nm
Carrier concentration: 2.8 x 1020 c
Carrier mobility: 300 cm2
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Absorption modulation by effective mass tuning

co 
P 
= Vne2/6.

0 
m*

1

tz

.eL±
1 x i 

1, a)
1 c)

c0 1 as
!

ig4Pv 15
a)
T)

Mg0 II

. lb 1

Au

o

- -.....s-pol

i
i

0
,
,
I
/

0

Wavelength

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J.-P. Maria, M. B. Sinclair, and I. Brener,
"Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber," Nature Photonics 11, 390 (2017)



CdO:In

AuFgO

Ultrafast high contrast reflectance modulator

Probe

Monochromator
& extended InGaAs detector
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• Absolute reflectance modulation from 1% to 86%!
• Pump energy density: 339 µ.1/cm2

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J.-P. Maria, M. B. Sinclair, and I. Brener,

"Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber," Nature Photonics 11, 390 (2017)



Reflectance modulation by effective mass tuning via heating

Electron heating mechanism

Speed limitations: Hot carrier lifetime

Electron temperature estimate:

Pump
(0.60 eV)

T= 300 K

T =final

ti

4T Fermi E per _electron

For a pump fluence of 300uJ/cm2

Tfinal (75nm sample)=6.7x103K
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• Effective mass change of about 10%, -7% shift in plasma frequency

Guo et. al., Nat. Photon, (2016)



Sinusoidal field driven free electron
(ignore Lorentz force)

dp
— = — eE0sin
dt

Types of nonlinear electronic response
Quasi-free electron in a sinusoidal field

and an ion core field
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to is the time of birth of a quasi-free electron

T. F. Gallagher, "Above-Threshold lonization in Low-Frequency Limit," PRL(1988).

P. B. Corkum, "Plasma perspective on strong field multiphoton
ionization," Physical Review Letters 71, 1994-1997 (1993)



Types of nonlinear electronic response
Sinusoidal driven electron in a

lattice fields
Sinusoidal driven electron in
an non-parabolic potential
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D. Golde, T. Meier, and S. W. Koch, "High harmonics generated in semiconductor
nanostructures by the coupled dynamics of optical inter- and intraband excitations," PRB (2008)

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis,
"Observation of high-order harmonic generation in a bulk crystal," Nat Phys 7, 138-141
(2011)
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Experimental setup of high harmonic generation from Cd0

Optical parametric
amplifier, 1 kHz

UV-vis
spectrometer

CaF2 lens,
f=20cm

Idler pulses, -,60 fs
k: 2.0-2.2 [Am (0.6 eV)

El19 W°

ND CaF
2 
lens

'
filter 

HWP 
f = 50 cm

,

CaF2 lens,
f=10cm

/ample
2mm
dia spot

Maximum intensity used 11.3 GW/cm2

(enhanced intensity 200GW/cm2, ponderomotive energy 0.4eV)

2 08 pm, 60 fs

HHG

75 nm

Gold CdO: In Mg0



S-polarized is
much weaker
than p-polarized
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HHG from 3rd to 9th order
• Incident intensity 11.3GW/cm2
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Y. Yang, et. al., to be published in Nat. Phys. (2019) 17



Nonlinear response dominated by electrons in conduction band

Laser intensity —5.6 GW/cm2

(8MV/cm internal enhanced field)
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Harmonic yield decreases when detuned from the ENZ frequency
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Shift and broadening of the harmonic fields

Wavelength (nm)
480460 440 420 400 380

/0 (GW/cm2)
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24.2
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Plasma frequency shift from heating

Te = 300 K

Pump
Te = 1000s K

Te = 300 K

Relaxation

Optical power absorbed

Pabs = Imf ECd0 Ecdo l
2

Uabs = PabsAt = Ecd0 Ig(Co, 0)12 Cos 0.

Solve for the electron temperature
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Adiabatic time dependence model
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Summary

Quasi-free electrons confined in nano-structures
enables strong light-matter interactions

• We exploited these properties to show:
enhanced absorber
amplitude modulator
Transient reflectance and polarization modulator

• High harmonic generation from high mobility degenerate electron plasma

• New nonlinear mechanisms (non-parabolicity and heating) to explain the
nonlinear harmonic behavior
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ITO perfect absorption

Si waveguide modulator

Polarization tuning using Cd0
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