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Introduction 
• When valley splitting and Zeeman splitting are in resonance, the well-known spin-

valley "hot spot" results in an enhanced spin relaxation rate [1-4] for electrons
confined to silicon quantum dots (QDs). While this spin-valley mechanism drives
decoherence, it can also drive qubit rotations [5-8].

• Here, we demonstrate a S/T0 qubit driven by intra- and inter-valley SOC. We have
measured the frequency dependence of S/T0 rotations near the hot spot for a
thorough range of B-field orientations.

• We have extended a comprehensive intra-/inter-valley theory that captures the
observed B-field dependence, in good agreement with the experiment.

• This technique allows for very precise measurement of valley splitting in this
system, and may provide further insights into the nature of SOC at the Si/Si02
interface.

MOS Co_QD So Driven S-T Qubits 
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• Single poly-silicon gate layout
• 50nm gate oxide
• Isotopically enriched epi-layer with 500ppm residual 295i.
• Qubit Pair: ( ,4) ( ,3) charge occupations on L.zui and QD2
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Valley Hot-Spot Interaction 
Model fits (red) superimposed on FFT of measured qubit rotation frequency as a
function of B-field magnitude for 12 distinct B-field orientations.
The full angular dependence is captured by the model
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Effective Hamiltonian near the hot spot (for fixed B-field orientation)
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Hot spot Taxonomy

#1: Negligible intra-valley See
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= intra-valley SOC strength
'y = inter-valley SOC strength
Avs = valley splitting
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Interfacial SOC Hamiltonian:
Hso = 6(z) [fR(x, y)(Pygx PxaY) + fp (X, y) (Pxax Pyay)1

Momentum matrix elements

(LI5(z)f (x, y)Pxl-L)

(Lk 5(z) f (x, y)PylL)

(RI( 5(z) f (x, y)PxIR)

(RI6(z)f (x y)Py IR)

(R16(z)f (x, y)Px1R*)

(R16(z) f (x, y)PyIR*)

(R* 16(z) f (x, y)PxIR*)

(R* lõ(z) f (x, y)PyIR*)

(1 - 0.24 cos(cpv,L)) [A-13y t4Bz]

- - 0.24 cos(cov,L)) [AL'Bx itly"Bz]

(1 - 0.24 cos(cov,R)) [Xl:By 4Bz]

-(1 - 0.24 cos(cov,R)) [413s +

0.24 * i sin(vv,R) [4By 4./3,]

-0.24 * i sin(vv,R) [4Bx z]

(1 + 0.24 cos(cp,,R)) [4./3y it,?Bz]

- (1 + 0.24 cos(cov,R)) [4Bx 1.413,]

(rov,L, = valley phase of left dot

(pv,R= valley phase of right dot

Factor of 0.24 comes from
form factor approximation
for Bloch functions
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• A useful feature of this qubit operating mode is the ability to
perform high-sensitivity measurements of valley splitting.

• The valley splitting sets the location of the quasi-divergence
• Valley splitting sensitivity is limited primarily by calibration of

B-field and line width of the coherent rotation frequency
• This technique should be able to measure B-field

dependence of valley splitting or at least tightly bound it

Summary
• Our MOS DQD singlet-triplet qubit exhibits a complex angular dependence
as a function of B-field orientation

• Our model for intra- and inter-valley SOC captures all features of a complete
angular dependence and points towards further insights into the nature of
SOC at the Si/Si02 interface

• This approach also provides a means of measuring valley splitting with high
precision
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