

Insights into spin-orbit coupling at the Si/SiO₂ interface using an inter-valley hot spot singlet/triplet qubit

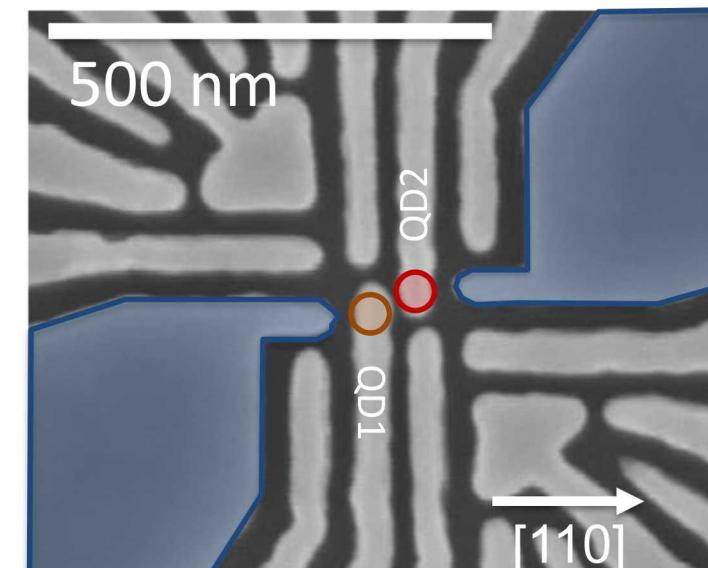
This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-7639C

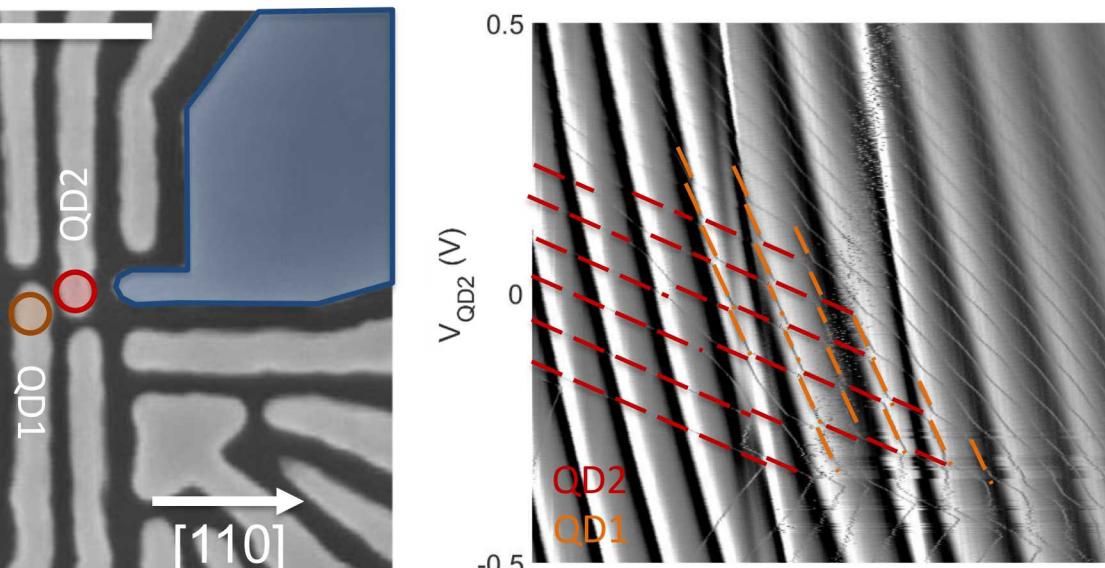
Toby Jacobson[1], Ryan M. Jock[2], Martin Rudolph[2], Dan. R. Ward[2], Andrew D. Baczewski[1],

Malcolm S. Carroll[2] and Dwight R. Luhman[2]

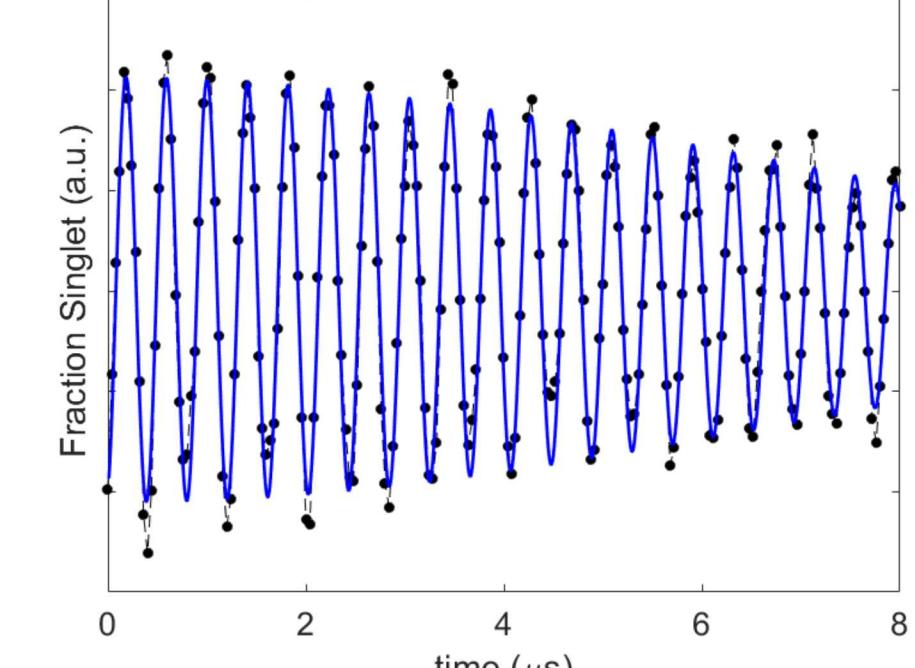
[1] Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, USA


[2] Sandia National Laboratories, Albuquerque, NM, USA

Introduction

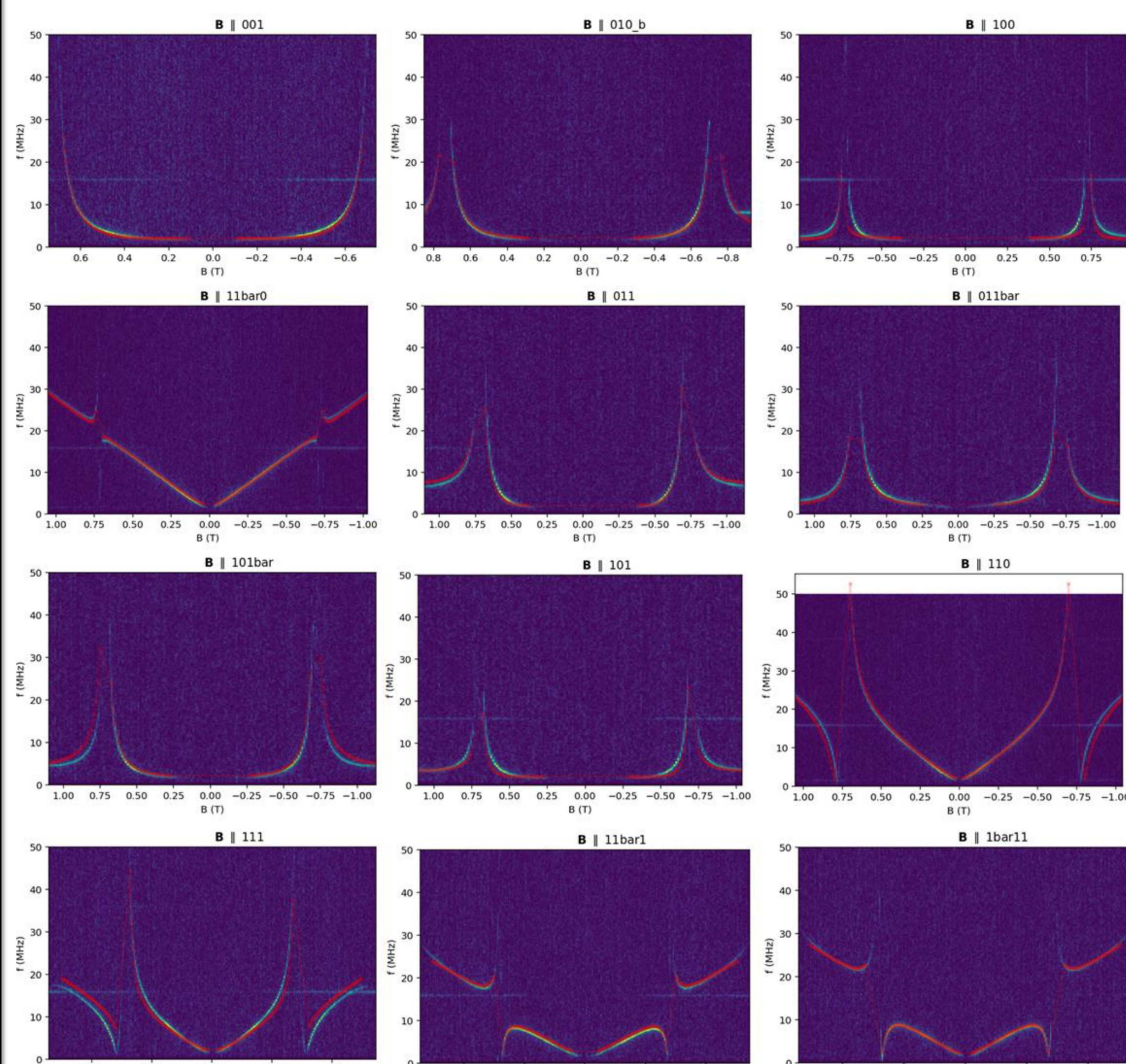

- When valley splitting and Zeeman splitting are in resonance, the well-known spin-valley “hot spot” results in an enhanced spin relaxation rate [1-4] for electrons confined to silicon quantum dots (QDs). While this spin-valley mechanism drives decoherence, it can also drive qubit rotations [5-8].
- Here, we demonstrate a S/T₀ qubit driven by intra- and inter-valley SOC. We have measured the frequency dependence of S/T₀ rotations near the hot spot for a thorough range of B-field orientations.
- We have extended a comprehensive intra-/inter-valley theory that captures the observed B-field dependence, in good agreement with the experiment.
- This technique allows for very precise measurement of valley splitting in this system, and may provide further insights into the nature of SOC at the Si/SiO₂ interface.

MOS DQD SO Driven S-T Qubits

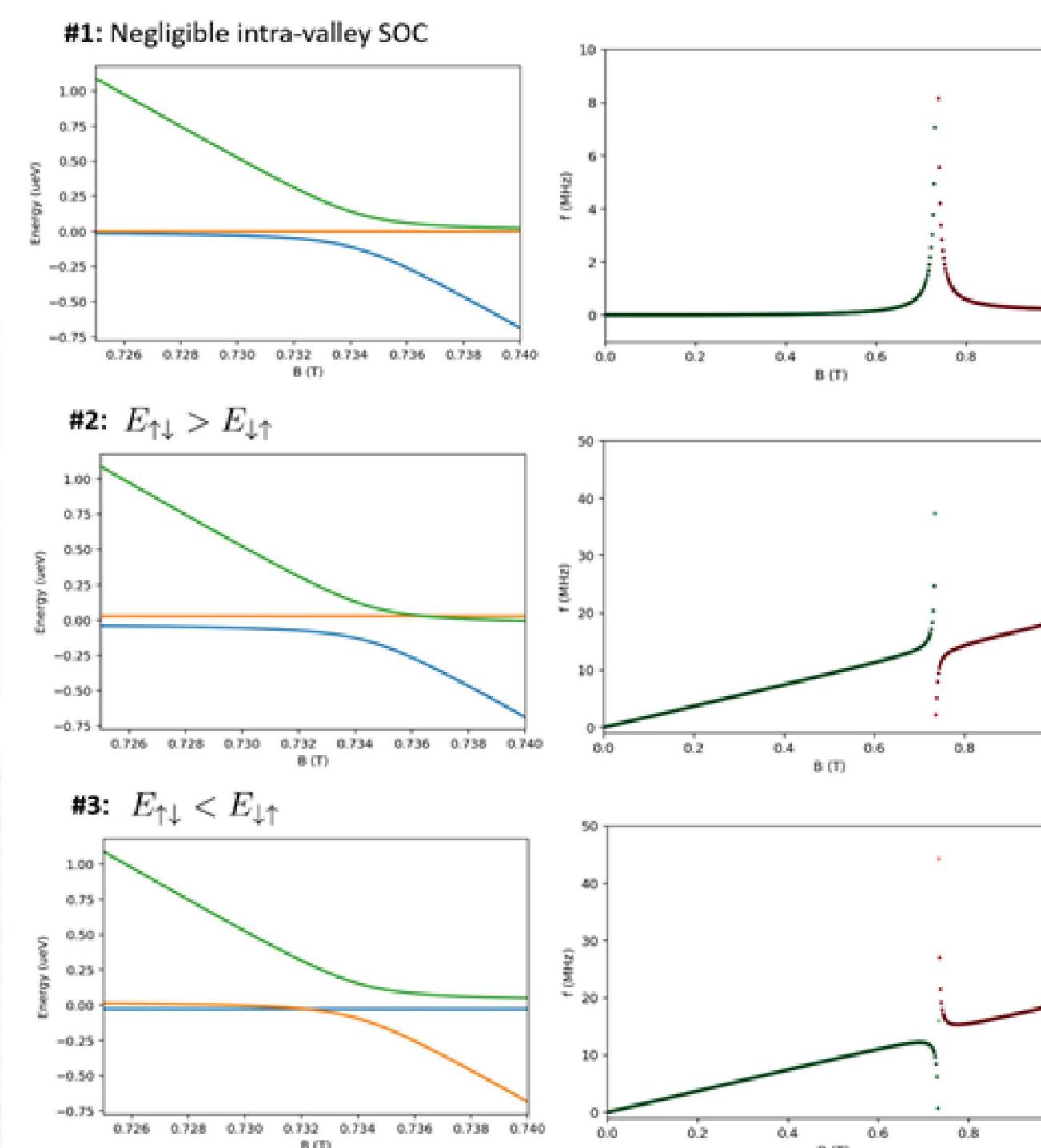

Device Layout

Charge Stability Diagram

Singlet-Triplet FID



- Single poly-silicon gate layout
- 50nm gate oxide
- Isotopically enriched epi-layer with 500ppm residual ²⁹Si.
- Qubit Pair: (0,4)–(1,3) charge occupations on QD1 and QD2


Valley Hot-Spot Interaction

Model fits (red) superimposed on FFT of measured qubit rotation frequency as a function of B-field magnitude for 12 distinct B-field orientations.

The full angular dependence is captured by the model

Hot spot Taxonomy

Effective Hamiltonian near the hot spot (for fixed B-field orientation)

$$H_{3 \times 3} = \begin{pmatrix} |S\rangle & |T_0\rangle & |T^*\rangle \\ 0 & B\delta & B\gamma e^{i\phi} \\ B\delta & 0 & -B\gamma e^{i\phi} \\ \gamma Be^{-i\phi} & -B\gamma e^{-i\phi} & \Delta_{vs} - g\mu_B B \end{pmatrix}$$

Depend strongly on orientation of \mathbf{B}
 δ = intra-valley SOC strength
 γ = inter-valley SOC strength
 Δ_{vs} = valley splitting

Eigenenergy	Eigenstate
δB	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$
$\frac{1}{2}(\Delta_{vs} - (\delta + g\mu_B)B) + \frac{1}{2}\sqrt{(\Delta_{vs} - (\delta + g\mu_B)B)^2 + 8\gamma^2 B^2}$	$\frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{2}e^{i\phi/2}w_- \\ -\frac{1}{2}e^{-i\phi/2}w_- \\ \sqrt{2}e^{-i\phi/2}w_+ \end{pmatrix}$
$\frac{1}{2}(\Delta_{vs} - (\delta + g\mu_B)B) - \frac{1}{2}\sqrt{(\Delta_{vs} - (\delta + g\mu_B)B)^2 + 8\gamma^2 B^2}$	$\frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{2}e^{i\phi/2}w_+ \\ \frac{1}{2}e^{-i\phi/2}w_+ \\ \sqrt{2}e^{-i\phi/2}w_- \end{pmatrix}$

$$\langle \tilde{S}|H|\tilde{T}_0\rangle = \frac{1}{\sqrt{2}} \sin(\theta) (e^{i\varphi} \langle S|H|T_- \rangle - e^{-i\varphi} \langle S|H|T_+ \rangle)$$

$$= \frac{1}{2} \sin(\theta) [e^{i\varphi} (h_{\uparrow\downarrow}^{LL} - h_{\uparrow\downarrow}^{RR}) + e^{-i\varphi} (h_{\uparrow\downarrow}^{LL} - h_{\uparrow\downarrow}^{RR})]$$

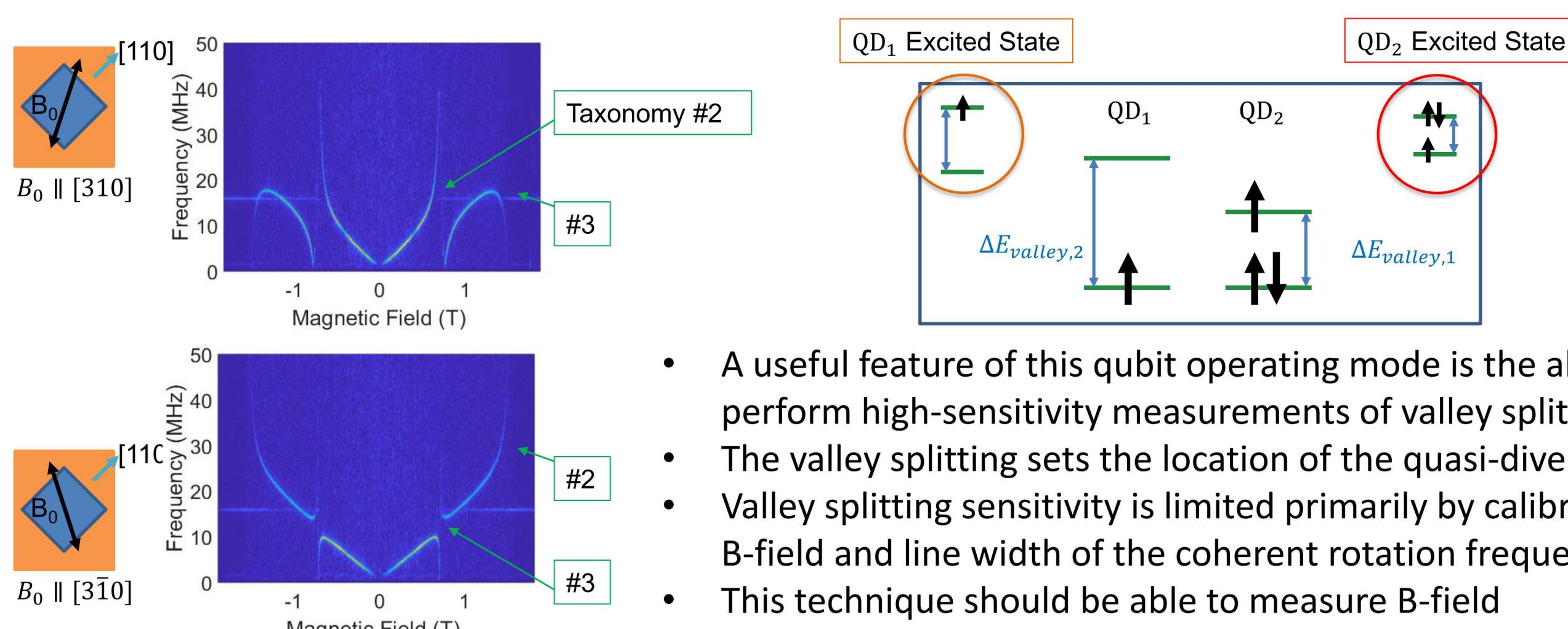
$$\langle \tilde{S}|H|\tilde{T}^*\rangle = e^{-i\varphi} \sin^2 \left(\frac{\theta}{2} \right) \langle S|H|T_+^* \rangle + e^{i\varphi} \cos^2 \left(\frac{\theta}{2} \right) \langle S|H|T_-^* \rangle$$

$$= \frac{1}{\sqrt{2}} \left(\sin^2 \left(\frac{\theta}{2} \right) e^{-i\varphi} h_{\uparrow\downarrow}^{RR*} - \cos^2 \left(\frac{\theta}{2} \right) e^{i\varphi} h_{\uparrow\downarrow}^{RR*} \right)$$

$\langle \tilde{T}_0|H|\tilde{T}^*\rangle = -\langle \tilde{S}|H|\tilde{T}^* \rangle$ (reason for special structure of 3x3 Hamiltonian)

$$\text{where } h_{s_1 s_2}^{MN} \equiv \langle \phi_M s_1 | H_{SO} | \phi_N s_2 \rangle$$

Interfacial SOC Hamiltonian:


$$H_{SO} = \delta(z) [f^R(x, y) (P_x \sigma_x - P_y \sigma_y) + f^D(x, y) (P_x \sigma_x - P_y \sigma_y)]$$

Momentum matrix elements

$$\begin{aligned} \langle L | \delta(z) f(x, y) P_x | L \rangle &= (1 - 0.24 \cos(\varphi_{v,L})) [\lambda_x^L B_y + \mu_x^L B_z] \\ \langle L | \delta(z) f(x, y) P_y | L \rangle &= -(1 - 0.24 \cos(\varphi_{v,L})) [\lambda_y^L B_x + \mu_y^L B_z] \\ \langle R | \delta(z) f(x, y) P_x | R \rangle &= (1 - 0.24 \cos(\varphi_{v,R})) [\lambda_x^R B_y + \mu_x^R B_z] \\ \langle R | \delta(z) f(x, y) P_y | R \rangle &= -(1 - 0.24 \cos(\varphi_{v,R})) [\lambda_y^R B_x + \mu_y^R B_z] \\ \langle R | \delta(z) f(x, y) P_x | R^* \rangle &= 0.24 * i \sin(\varphi_{v,L}) [\lambda_x^R B_y + \mu_x^R B_z] \\ \langle R | \delta(z) f(x, y) P_y | R^* \rangle &= -0.24 * i \sin(\varphi_{v,R}) [\lambda_y^R B_x + \mu_y^R B_z] \\ \langle R^* | \delta(z) f(x, y) P_x | R^* \rangle &= (1 + 0.24 \cos(\varphi_{v,R})) [\lambda_x^R B_y + \mu_x^R B_z] \\ \langle R^* | \delta(z) f(x, y) P_y | R^* \rangle &= -(1 + 0.24 \cos(\varphi_{v,R})) [\lambda_y^R B_x + \mu_y^R B_z] \end{aligned}$$

$\varphi_{v,L}$ = valley phase of left dot
 $\varphi_{v,R}$ = valley phase of right dot
Factor of 0.24 comes from form factor approximation for Bloch functions

Measurement of Valley Splitting

- A useful feature of this qubit operating mode is the ability to perform high-sensitivity measurements of valley splitting.
- The valley splitting sets the location of the quasi-divergence
- Valley splitting sensitivity is limited primarily by calibration of B-field and line width of the coherent rotation frequency
- This technique should be able to measure B-field dependence of valley splitting or at least tightly bound it

Summary

- Our MOS DQD singlet-triplet qubit exhibits a complex angular dependence as a function of B-field orientation
- Our model for intra- and inter-valley SOC captures all features of a complete angular dependence and points towards further insights into the nature of SOC at the Si/SiO₂ interface
- This approach also provides a means of measuring valley splitting with high precision

[1] Yang, et al. Nat. Comm. 4, 2069 (2013)
[2] Hao, et al. Nat. Comm. 5, 3860 (2014)
[3] Veldhorst, et al. Nat. Nano. 9, 981 (2014)
[4] Borjans, et al. PRA 11, 044063 (2019)
[5] Scarlino, et al. PRB 95, 165429 (2017)
[6] Corra, et al. npj Quant. Info 4:6 (2018)

[7] Huang, et al. PRB 95, 075403 (2017)
[8] Harvey-Collard, et al. PRL 122, 217702 (2019)
[9] Veldhorst, et al. PRB 92, 201401 (2015)
[10] Jock, et al. Nat. Comm. 9, 1768 (2018)
[11] Fogarty, et al. Nat. Comm. 9, 4370 (2018)
[12] Tanttu, et al. PRX 9, 021028 (2019)