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Introduction MOS DQD SO Driven S-T Qubits
 When valley splitting and Zeeman splitting are in resonance, the well-known spin- Device Layout Charge Stability Singlet-Triplet FID
valley “hot spot” results in an enhanced spin relaxation rate [1-4] for electrons Diagram

confined to silicon quantum dots (QDs). While this spin-valley mechanism drives
decoherence, it can also drive qubit rotations [5-8].
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* Here, we demonstrate a S/T, qubit driven by intra- and inter-valley SOC. We have 44
measured the frequency dependence of S/T, rotations near the hot spot for a 4 T

thorough range of B-field orientations.
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* We have extended a comprehensive intra-/inter-valley theory that captures the

observed B-field dependence, in good agreement with the experiment. : . time (us)
* Single poly-silicon gate layout
* This technique allows for very precise measurement of valley splitting in this - 50nm gate oxide
system, and may provide further insights into the nature of SOC at the Si/SiO, - Isotopically enriched epi-layer with 500ppm residual 29Si.
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 Measurement of Valley Splitting 1( Summary )

 Our MOS DQD singlet-triplet qubit exhibits a complex angular dependence

1101 50 QD, Excited State QD, Excited State . . . .
— — as a function of B-field orientation
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‘ = Taxonomy #2 <\D W b2 Qﬁ/> * Our model for intra- and inter-valley SOC captures all features of a complete
By Il [310] $2° angular dependence and points towards further insights into the nature of
210 #3 . Foms .
O AEyattey,2 | AEyqttey.s SOC at the Si/SiO, interface
[ ] * This approach also provides a means of measuring valley splitting with high
« A useful feature of this qubit operating mode is the ability to precision
perform high-sensitivity measurements of valley splitting. 1] Yang, et al. Nat. Comm. 4, 2069 (2013) 7] Huang, et al. PRB 95, 075403 (2017)
#2 The valley splitting sets the location of the quasi-divergence 2] Hao, et al. Nat. Comm. 5, 3860 (2014) 8] Harvey-Collard, et al. PRL 122, 217702 (2019)
| * Valley splitting sensitivity is limited primarily by calibration of 3] Veldhorst, et al. Nat. Nano. 9, 981 (2014) 9] Veldhorst, et al. PRB 92, 201401 (2015)
b s B-field and line width of the coherent rotation frequency 4] Borjans, et al. PRA 11, 044063 (2019) 10] Jock, et al. Nat. Comm. 9, 1768 (2018)
L, * This technique should be able to measure B-field 5] Scarlino, et al. PRB 95, 165429 (2017) 11] Fogarty, et al. Nat. Comm. 9, 4370 (2018)
< aanetienieid (D dependence of valley splitting or at least tightly bound it~} { [6] Corna, et al. npj Quant. Info 4:6 (2018) 12] Tanttu, et al. PRX 9, 021028 (2019) y
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