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4 I Ocean renewable energy; Opportunities and challenges
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Opportunities
Urgency to move to renewable energy dominant portfolios [IPCC
2018]

INEC Extreme Condition
Modeling Workshop -
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aminialstra

RM5, 10 MW, 0.87€ /kWh

RM3, 10 MW, 0.87E/kWh

Challenges
Difficult engineering - Harsh marine environment

39 m It Person

RM6, 10 MW, 135€/kWh

USDOE's Reference
Model WECs
[Neary et al. 2013]

High capital, installation, operation and maintenance (IO&M) costs
Large power densities close to population centers [NASA 2012] [Neary et al. 2013]

Blue economy — local energy sources for maritime markets, e.g.,
desalinization, aquaculture, observation & navigation[USDOE 2019]

Infrastructure for testing and IO&M

Complex and costly permitting process

Market opportunities unclear, and no established supply chains



5 USDOE R&D Program

2015 LCOE

—1€/kWh

`'FTechnology
development

• Early stage concepts
• Component & subsystem
innovations

• Test infrastructure
• Open source models
• Demonstration projects
• Performance & LCOE
assessment

Resource
characterization &
assessment

• National resource and
regional distribution

• Resource statistics
characterizing average
and extreme conditions

•Market acceleration

• Potential markets and
supply chains

• Environmental
compliance

• Stakeholder/user
conflict avoidance and
mitigation

• Standards and
certification

2030 Target LCOE

—0.1€/kWh
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7 Background

. National resource assessments quantified potential
contribution of wave energy to electricity
production nationally and regionally [EPRI 2011,
Chawla et al. 2013]

• More refined and comprehensive characterization
needed to improve national assessments and to
support energy planning, project development and
WEC design

• Three assessment levels (area, Ax, At)

o Reconnaissance (>300 km), 5 km, 3 h

Feasibility (20-500 m), 500 m, 3 h

o Design (<25 km), 50 m, 1 h

The MHK Atlas wave power density map.
Source: [NREL 2019].https://maps.nrel.gov/mhk-atlas/

Resource Theoretical Resource
Waves 1,594-2,640 TWh/year

Tidal streams 445 TWh/year
Ocean currents 200 TWh/year

Source: USDOE 2015 Quadrennial Technology Review, http://energy.gov/qtr



8 Background: Information and data needs for ocean projects
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9 Motivation: Resource data sources limited
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Sparse coverage, limited period of record (POR) High-resolution coverage (200 m), 32-year POR vs. NOAA WWIII model
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10 Motivation: Characterization metrics limited

Guidelines for met-ocean data use for marine
energy project development [Cooper et al. 2008]

6 standard metrics for assessing wave energy
resource [IEC TS 62600-101:2015-06]

IEC Wave Resource Metric

Power, j

Sea state (Hs, Te)

Spectral width, E0

Directionality coefficient, d

Direction of max power, Ajmax

No metrics for temporal variability/constancy
(monthly, inter-annual)

No metrics on extremes
High-percentile values, e.g., Hs(95-percentile)

n-year events, e.g., Hs(50-year)

E
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MHK Atlas showing spatial distribution of average
annual omni-directional power density computed
From NOAA WWIII 30-y hindcast [NREL 2019]



11 I Motivation: Data archiving & dissemination limited

MHK ATLAS currently limited to four IEC parameters calculated from 30-year NOAA hindcast

Coarse resolution 4 arc-minute, 5-7 km

Hindcast accuracy poor

Shallow nearshore waters not resolved

Data L3yers WWI QUM

Turn Off ALL Layers

A Marine & Hydrokinetic Atlas

K1NREL MHK Atlas About Flome Print Tutorials

t Ocean Current Power

t Ocean Thermal Energy Conversion

Riverine Hydrokinetic Resource

t Tidal Stream Power

A Wave Energy

Bathymetry

t Political

t Significant Wave Height

t Wave Energy Period

t Wave Hindcast Direction

A Wave Power Density

M Wave Power Density - Annual fi)
❑ Wave Power Density -Ian

E Wave Power Density - Feb
E Wave Power Density - Mar
El Wave Power Density -Apr
❑ Waw Power Density - May

E Waw Power Density -Inn
❑ Waw Power Density -Jul

Wave Power Density -Aug

Wave Power Density - Sep

NREL, MHK Atlas, web site accessed 26 June 2019
: https://maps.nrel.gov/mhk-atlas/
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12 I Goals/Objectives

Generate high-resolution resource data source covering all US economic exclusion zones (EEZ)
from 32-40 year wave model hindcast

Improve data source and augment resource metrics

Improve dissemination through MHK ATLAS upgrade

Region Area, km2 Status
West Coast 825,549 Complete
East Coast 915,763 Complete
Alaska 3,770,021 Complete
Hawaii Islands 1,579,538 2019
Gulf of Mexico 707,832 2019
Pacific Islands 3,328,925 2020
Puerto Rico, US Virgin Islands 211,429 2020

Northam

rianc:
111

Guam

Midway
Islands

4i;iake
Island

Howland Island

Bakes Island •

--'4111rww• Illmsavr

ALASKA REGION

PACIFIC
COAST
REGION ORTHEAST

REGION
Hawaiian
Islands SOUTHEAST

.°7141kr:;ift.

PACIFIC ISLANDS REGION

Palmyra Atoll
Kingman Reef

Jarvis lsbnd

Swains island ..

• 
•

Amedcan
Samoa

and

Puerto Rico die
Vir *nth

US Economic Exclusion Zones

U.S. EEZ consists of following sub-regions: (a) Pacific West Coast; (b) East Coast (Northeast and Southeast regions); (c) Alaska; (d) Gulf of Mexico; (e) Puerto Rico and U.S.
Virgin Islands; (f) Hawaii and Pacific Islands. EEZ is defined as a sea zone that extends 370 km (200 nmi) offshore from its coastal baseline. The image is obtained from
NOAA National Ocean Service. https://www.worldatlas.com/articles/countries-with-the-largest-exclusive-economic-zones.html



13 Methods: Spectral wave modeling (SWAN)

Emphasis on validated spectral wave model hindcast

data

Evolution of wave action density (N) in space and
time for all frequencies ($5=2Thf) and directions (0)
(LHS)

Source and sink terms that generate, transfer and
dissipate wave energy

3 assessment classes, area, Ax, At:
• Reconnaissance (>300 km), 5 km, 3 h

• Feasibility (20-500 m), 500 m, 3 h

• Design (<25 km), 50 m, 1 h
N = S(f,19)/0-

ON acxN acyN acaN acoN stot 
at ax ay ao- 00 o-

Stot = Sin + Sn13 Sn14 Sds,w Sds,b Sds,br

NORTH

s(f)

Source: SWAN Technical Manual

windsea

windsea

swell

directionally resolved
— — 1

directionally unresolved
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5

E 4

; 2

1.6re H„,a <2.0m, 7s < T. < Els

hourly
wave
spectra

coo 02 0.4
Frequency ifizI
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14 I Resource metrics: IEC parameters [IEC TS 62600-101:2015-06]

Omnidirectional
wave power, J

J = pg Ei coSi j MAO./ [kW/m]

•Total wave energy flux at point of interest
•Directionally unresolved

Directionally
resolved wave

power, Jo

Jo = pg Ei coSijAfiAt91 cos09 — t9j)8 [kW/m]

•Wave energy flux through vertical plane of unit width

Direction of max
JB

19Jrnax [deg]

•Bearing where most of the incident wave power coming from

Directionality
coefficient, d

•Measure of directional spreading

Jomax -36 kW/m
jmax -300 deg.
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15 Resource metrics: IEC parameters [IEC TS 62600-101:2015-06]

Spectral
moments mn = Ei finSiAfi

• Used to derive important wave statistics

Significant
wave height

Hmo = 4.\/mo [m]

• Proxy for Hs, combined with Te, to define sea states in scatter plots

Energy
period

Te E T— 10 =
m-1

mo
[s]

• Centroid of wave power spectrum, with Hmo to define sea states in scatter plots

Spectral
width

In0 M— 2 1

E0 = M2 
-1

• Measure of energy spreading in wave spectrum.

[-]



16 Resource metrics:Temporal variability [Haas et al. 2019]

Coefficient of
monthly

variability
cm =

I

J (max) — J (min)
[-]

• Measure of seasonal variability/constancy of resource

Coefficient of
inter-annual
variability

(7[AAE(Y) — (S1Y + S2)1

Cia — 
AAE 

X 100 %

• Measure of inter-annual variability/constancy of resource



17 Resource metrics: Extreme conditions [Neary et al. 2017, 2019]

Extreme wave
height Hs(5o) Hs(5) 'Ism [m]

• Measure of wave load [DNV RP-C205 2014]

Relative risk
ratio

Hs(5o)
R =

Hs (me an)
[-]

I

I

1
• Measure of risk relative to opportunity [Neary et al. 2017 i

1



18 I Results: Model mesh refinement

Washington D

SWAN model grid for U.S. East Coast (a) and
zoomed-in near the Chesapeake Bay region (b)
[Allahdadi et al. 2019]

a) NOAA WWIII [Chawla et al. 2013
60'N
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58°N
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154°W 152°W 150°W

b) SWAN Alaska Region Hindcast
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Hs [m]4.0i
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0.0

Significant wave height near Kodiak, Alaska,
simulated by NOAA WWIII (a) and UnSWAN (b)
[Yang Et Neary 2019]



1 9 I Results: Better accuracy, IEC metrics [Yang et al. 2017;
Allhadadi et al. 20 I 9;Yang and Neary 2019]
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20 I Results: Better accuracy, 1-1,(so) [Neary et al. 2019]
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21 I Results: 6 IEC parameters mapped at 200-300 m resolution
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Simulated annual averages of six IEC metrics for year 2009 in Alaska region: (a) omnidirectional
wave power; (b) significant wave height; (c) energy period; (d) spectral width; (e) direction of
maximum directionally resolved wave power, and (f) directionality coefficient [Yang Et Neary 2019]



22 Results:Additional metrics, monthly variability, Cm
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23 Results:Additional metrics, inter-annual variability, Cia
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24 I Results:Additional metrics, extreme wave height, relative-risk
ratio [Neary et al. 2019]
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25 Results: Resource data archiving & dissemination (In progress)

MHK ATLAS upgrade (In-progress)
O All 6 IEC parameters, monthly averages and average
annual values

o 200-300 m resolution within US EEZ
O Includes shallow nearshore waters

MHK Data Repository (TBD)
o 2D spectra, 0(100) points each region
O Partitioned bulk parameters, 0(1,000) points each
region

• IEC parameter time series, 3h intervals, O(1M)
points

o Hs(50, 5, 1-year)

Functional GIS dissemination platforms (TBD)
o Bureau of Ocean Energy Management (BOEM),
US Dept. of Interior MSDOI)

o NOAA, Ocean Project Planning Tool,
o US Dept. of Commerce (USDOC)
o Private vendor, e.g., Open Ocean (-Marine data

intelligence) http:7/www.openocean.fr/en/ 
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26 Concluding remarks

Successful ocean development requires best available data sources and metrics to characterize the
opportunities, risks and constraints for all phases of project life cycle.

US experience demonstrates trend towards improved resource characterization and assessment
through:
O High-resolution validated wave model hindcasts

O Additional metrics to characterize extreme conditions and temporal variability

o Improved data dissemination through functional GIS platforms (MHK Atlas) and on-line data repositories

High-quality resource data/information accessible on web-based functional GIS platforms can
significantly reduce costs for ocean development

Ongoing R&D will introduce better data sources, improved model hindcasts and knowledge on non-
stationary trends due to climate change that will require periodic upgrades to metocean data and
information

n
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