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‘ Ocean renewable energy; Opportunities and challenges ()
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Isolated
Communities

RM6, 10 MW, 135€/kWh

USDOE’s Reference
Model WECs
[Neary et al. 2013]

RM3, 10 MW, 0.87€/kWh

Opportunities Challenges
Urgency to move to renewable energy dominant portfolios [IPCC Difficult engineering - Harsh marine environment
2018]

High capital, installation, operation and maintenance IO&M) costs
Large power densities close to population centers [NASA 2012] [Neary et al. 2013]
Blue economy — local energy sources for maritime markets, e.g,, Infrastructure for testing and IO&M
desalinization, aquaculture, observation & navigation|[USDOE 2019]

Complex and costly permitting process

Market opportunities unclear, and no established supply chains



5 ‘ USDOE R&D Program

2015 LCOE
~1€/kWh

‘ Resource

.Technology
development

* Early stage concepts

¢ Component & subsystem
innovations

e Test infrastructure
* Open source models
* Demonstration projects

¢ Performance & LCORE
assessment

characterization &
assessment

* National resource and
regional distribution

* Resource statistics
characterizing average
and extreme conditions

2030 Target LCOE
~0.1€/kWh

‘ Market acceleration

* Potential markets and
supply chains

* Environmental
compliance

* Stakeholder/user
conflict avoidance and
mitigation

* Standards and
certification

@)
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Background

National resource assessments quantified potential
contribution of wave energy to electricity
production nationally and regionally [EPRI 2011,
Chawla et al. 2013]

More refined and comprehensive characterization
needed to improve national assessments and to
support energy planning, project development and

WEC design

Three assessment levels (area, Ax, At)

> Reconnaissance (>300 km), 5 km, 3 h
° Feasibility (20-500 m), 500 m, 3 h

> Design (<25 km), 50 m, 1 h

b~

Ly

The MHK Atlas wave power density map.

Source:[NREL 2019].https://maps.nrel.gov/mhk-atlas/

Resource Theoretical Resource

Waves 1,594-2,640 TWh/year
Tidal streams  |445 TWh/year
Ocean currents [200 TWh/year

Source: USDOE 2015 Quadrennial Technology Review, http://energy.gov/qtr
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s I Background: Information and data needs for ocean projects

Resource information, data

Energy- Project Design, Type- Installation
Infrastructure development certification,
planning (Site selection, Product-line
Feasibility) development

Operation & Decommission-
maintenance ing




9 I Motivation: Resource data sources limited
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Washington DC A DE

Latitude

80°W 76%W 72°W 68°W 64°W 60°W
Longitude

Validation buoys US East Coast [Allahdadi et al. 2019] SWAN model with over 4 M grid cells [Allahdadi et al. 2019]
Sparse coverage, limited period of record (POR) High-resolution coverage (200 m), 32-year POR vs. NOAA WWIII model
(4 arc-minute = 5-7 km), 30-year POR [Chawla et al. 2013]



10 I Motivation: Characterization metrics limited

Guidelines for met-ocean data use for marine

energy project development [Cooper et al. 2008]

6 standard metrics for assessing wave energy
resource [IEC TS 62600-101:2015-00]

IEC Wave Resource Metric

Power, ]

Sea state (Hg, T,)

Spectral width, ¢,
Directionality coefficient, d
Direction of max power, 0;,,

No metrics for temporal variability/constancy
(monthly, inter-annual)

No metrics on extremes
° High-percentile values, e.g., Hs(95-percentile)
° n-year events, e.g., Hs(50-year)

lu'z.‘ !}

MHK Atlas showing spatial distribution of average
annual omni-directional power density computed
From NOAA WWIII 30-y hindcast [NREL 2019]

S
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11 ‘ Motivation: Data archiving & dissemination limited

MHK ATLAS currently limited to four IEC parameters calculated from 30-year NOAA hindcast
Coarse resolution 4 arc-minute, 5-7 km
Hindcast accuracy poor

Shallow nearshore waters not resolved

PRI {INREL  MHK Atlas

Turn Off ALL Layers

. 1ange Base Map
4 Marine & Hydrokinetic Atias NREL, MHK Atlas, web site accessed 26 June 2019 @]+ [0!
. Otean Current:Pawer : https://maps.nrel.gov/mhk-atlas/
Ocean Thermal Energy Conversion |I

Riverine Hydrokinetic Resource
Tidal Stream Power
4 Wave Energy
b Bathymetry
b Political
b Significant Wave Height

b Wave Energy Period

UNITED STATES
OF AMERICA

b Wave Hindcast Direction

4 Wave Power Density
¥ Wave Power Density - Annual & @
[] wave Power Density - lan

[] wave Power Density - Feb

[] Wave Power Density - Mar
|| Wave Power Density - Apr
[] wave Power Density - May
[] Wave Power Density - lun
[] wave Power Density - Jul

[] wave Power Density - Aug MEXICO

SA
- 500 km
|| Wave Power Density - Sep a rr e, 300 mi



‘ Goals/Objectives

Generate high-resolution resource data source covering all US economic exclusion zones (EEZ)
from 32-40 year wave model hindcast

Improve data source and augment resource metrics

Improve dissemination through MHK ATLAS upgrade

" ALASKA REGION

Region Area, km?  Status
West Coast 825,549 Complete
East Coast 915,763 Complete
Alaska 3,770,021 Complete
Hawaii Islands 1,579,538 2019 m’mmwl PACIFIC ISLANDS REGION
Gulf of Mexico 707,832 2019 - ”‘””"'""""“’ P ol
Pacific Islands 3,328,925 2020 o . ‘M e
Puerto Rico, US Virgin Islands 211,429 2020 B ?\ﬁ;"’f

y 4 i i

\‘. - 1z ‘Ammn -

US Economic Exclusion Zones

U.S. EEZ consists of following sub-regions: (a) Pacific West Coast; (b) East Coast (Northeast and Southeast regions); (c) Alaska; (d) Gulf of Mexico; (e) Puerto Rico and U.S.
Virgin Islands; (f) Hawaii and Pacific Islands. EEZ is defined as a sea zone that extends 370 km (200 nmi) offshore from its coastal baseline. The image is obtained from
NOAA National Ocean Service. https://www.worldatlas.com/articles/countries-with-the-largest-exclusive-economic-zones.html




13 I Methods: Spectral wave modeling (SWAN)

Source: SWAN Technical Manual

Emphasis on validated spectral wave model hindcast S(f.0) - rectionally resolved
data windsea ; -——-—

=7
Evolution of wave action density (N) in space and NOR]?*% \

time for all frequencies (6=2mf) and directions (0)

(LHS) \ s

: 1
Source and sink terms that generate, transfer and S 1
dissipate wave energy windsea

---I-FY) - E Em e s o
~.
>
)

3 assessment classes, area, Ax, At: el -
> Reconnaissance (>300 km), 5 km, 3 h 4}\ directionally unresolved
o Feasibility (20-500 m), 500 m, 3 h —

o Design (<25 km), 50 m, 1 h ,
N — S(f, 9)/0. ﬁsl.Sm-§Hﬁ5<2Om,Ts§7:<85
:’35 H
ON O0czN OcyN Oc,N 0cgN  Siot Y moury
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. . . , , Ay
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14 | Resource metrics: |[EC parameters [IEC TS 62600-101:2015-06]

Omnidirectional ] =pg Zi,j Cg,iSij AfiAG;  [KW/m]

wave power, J

«Total wave energy flux at point of interest
Directionally unresolved

Directionally _
resolved wave ]9 = PY Zi,j Cg,iSijAfiAgj COS(H - Qj)S [KW/m]
power, J,
*Wave energy flux through vertical plane of unit width

Direction of max H]max [deg]
Jo

*Bearing where most of the incident wave power coming from

Jo
Directionality d = IR [']
coefficient, d ]

; WE35-40+
B30 -35
25 - 30

i / [@20-25
L 15 - 20

! . B0 - 15

Jomax =36 KW/m © ms - 10
0,.., ~300 deg.

*Measure of directional spreading

.............
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Resource metrics: |[EC parameters [IEC TS 62600-101:2015-06]

Spectral _ V. fNC.AF

 Used to derive important wave statistics

Significant Hyo = 4ymy, [m]
wave height

« Proxy for H,, combined with T, to define sea states in scatter plots

Energy T. =T . =21 S

« Centroid of wave power spectrum, with H,,, to define sea states in scatter plots

Spectral €0 = \/"“’T‘z —-1 []
width -1

» Measure of energy spreading in wave spectrum.




16 | Resource metrics: Temporal variability [Haas et al. 2019]

Coefficient of

monthly c =t (max) — ] (min)

variability J z

e Measure of seasonal variability/constancy of resource

Coefficient of  o[AAE(Y) = (5,Y +5,)]

inter-annual Ciq TG X 100 %

variability

» Measure of inter-annual variability/constancy of resource




17 I Resource metrics: Extreme conditions [Neary et al. 2017, 2019] ®

Extreme wave

height Hgs0y | Hssy | Hscry | [m]

» Measure of wave load [DNV RP-C205 2014]

Relative risk p = _1sG0) (]
ratio Hs(mean)

e Measure of risk relative to opportunity [Neary et al. 2017




18 I Results: Model mesh refinement

b

a) NOAA WWIII [Chawla et al. 2013]

a . ,» 60°N =3 .
Washington DCgaeN — : e s m4.0
- 3.5
58°N - ~> .l:!"’ '
57°N r : T .u =
154°W 152°W 150°W L 5> 5
. . 2.0
) SWAN Alaska Region Hindcast
60°N 1.8
59°N - 1.0
58°N A 0.5
e cemt R Yoo
154°W 152°\W 150°W
SWAN model grid for U.S. East Coast (a) and Significant wave height near Kodiak, Alaska,
zoomed-in near the Chesapeake Bay region (b) simulated by NOAA WWIII (a) and UnSWAN (b)

[Allahdadi et al. 2019] [Yang & Neary 2019]



19 | Results: Better accuracy, IEC metrics [Yang et al. 2017; (®
Allhadadi et al. 2019;Yang and Neary 2019]

A I /f//z _H I / |
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20 | Results: Better accuracy, H s, [Neary et al. 2019]
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o0
1

WWIII [Chawla et al. 2013]

Hsisp) Buoy (m)

Hs(s0) SWAN (m)
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SWAN [Neary et al. 2019]
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21 | Results: 6 |EC parameters mapped at 200-300 m resolution

a) R
J [KW/m] | & |9

1.0 o~
l 05 o Ak .

03

o

O =N E OO N DO S —

Simulated annual averages of six IEC metrics for year 2009 in Alaska region: (a) omnidirectional
wave power; (b) significant wave height; (c) energy period; (d) spectral width; (e) direction of
maximum directionally resolved wave power, and (f) directionality coefficient [Yang & Neary 2019]



2 | Results: Additional metrics, monthly variability, C
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23 | Results: Additional metrics, inter-annual variability, C,
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Results: Additional metrics, extreme wave height, relative-risk
ratio [Neary et al. 2019]

72°N|

60°N

48°N [
36°N |
24°NT

72°Nt

60°N

48°N[|
36°N|
24°N}

R = HS(SO)/Hs(mean)

SE>.

175°W  150°W 125°W 100°wW  75°W

Regional correlations extreme
. EGunCosst and mean wave heights [Neary

= W Guilf Coast
+  E Hawaii Coast et al. 2017]
=W Haremii Coensl
= ‘\Wegl Coast

= 5 Alaska Coasl
= Alaska (Al ls)

o G Alaska Coasl
= Alaska (Si1L =)
* M Alaska Coast

2 25 3 3.5




25 | Results: Resource data archiving & dissemination (In progress)

Cumulative frequency

MHK ATLAS upgrade (In-progress) A==
o All 6 IEC parameters, monthly averages and average g f """"
annual values Spatial distribution 3 / Seasonal variations (monthly averages)
° 200-300 m resolution within US EEZ : FS - I WP P PNest
° Includes shallow nearshore watets pis s efte fadas Sieats N SEES——
: g ‘ JEEERER
MHK Data Repository (TBD) ] | i S =
o 2D spectra, O(100) points each region RN g T S
° Partitioned bulk parameters, O(1,000) points each = o
region 7 e T as
o IEC parameter time series, 3h intervals, O(1M) LN
points Je
i CEAST ) wim »
o Hs(50, 5, 1-year) e
Functional GIS dissemination platforms (TBD) | B K ' s B s B
° Bureau of Ocean Ener gManagement (BOEM), == ==s==|))
US Dept. of Interior (L% DOI) T jl ] Wave rose
> NOAA, Ocean Project Planning Tool, Sea state scatter plots A
> US Dept. of Commerce (USDOC) Environmental contours

1,

° Private vendor, e.%., Open Ocean (Marine data
intelligence) http:/ /www.openocean.fr/en/
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Concluding remarks

Successful ocean development requires best available data sources and metrics to characterize the
opportunities, risks and constraints for all phases of project life cycle.

US experience demonstrates trend towards improved resource characterization and assessment

through:
> High-resolution validated wave model hindcasts
> Additional metrics to characterize extreme conditions and temporal variability

o Improved data dissemination through functional GIS platforms (MHK Atlas) and on-line data repositories

High-quality resource data/information accessible on web-based functional GIS platforms can
significantly reduce costs for ocean development

Ongoing R&D will introduce better data sources, improved model hindcasts and knowledge on non-
stationary trends due to climate change that will require periodic upgrades to metocean data and
information
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