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Motivation

Flow in Nuclear Reactor (Turbulent CFD) Tokamak Equilibrium (MHD)

Climate Modeling Multi-scale Materials Modeling
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Data-informed Physics-Based Predictions
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A Deterministic Inverse Problem
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Problem
Given some observed data, find x € X that best predicts the data.
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A Deterministic Inverse Problem

" — -y

Problem
Given some observed data, find x € X that best predicts the data.

@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.
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A Stochastic Inverse Problem
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Problem

Given some observed data and an assumed noise model, find the parameters that
are most likely to have produced the data.
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A Different Stochastic Inverse Problem

Problem

Given a probability density on observations, find a probability density on X such
that the push-forward matches the given density on the observed data.

Tim Wildey (tmwilde@sandia.gov) MFEMC for SIPs ICIAM 2019 6/42



A Different Stochastic Inverse Problem

Problem

Given a probability density on observations, find a probability density on X such
that the push-forward matches the given density on the observed data.

@ Solutions may not be unique without additional assumptions.
@ We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:

@ A finite-dimensional parameter space, X.

@ A parameter-to-observation/data map,  : X — D = f(X)
@ An observed probability measure on (D, Bp), denoted ]P’%’S, that has a

density, ws.
@ An initial probability measure on (X, Bx), denoted P, that has a density,

init
> .
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We assume we are given:

@ A finite-dimensional parameter space, X.

@ A parameter-to-observation/data map,  : X — D = f(X)
@ An observed probability measure on (D, Bp), denoted ]P’%’S, that has a

density, ws.

@ An initial probability measure on (X, Bx), denoted ]P’i)’(‘it, that has a density,
7l_init.

We need to compute:

@ The push-forward of the initial density through the model.

@ In other words, we need to solve a forward UQ problem using the initial.

o We use Trgi"it) to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, IP’%"S, is absolutely continuous

with respect to the push-forward of the initial, P

f(init)
D -

obs obs
™D D
N
ﬂ_ginit) 7TFD(init)
e N
Good Initial Bad Initial

(Cannot predict all observations)
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, P2t on (X, Bx) and an observed probability
measure, P9, on (D, Bp), the probability measure Py¥ on (X, Bx) defined by

up( Ay init( % (f(x)) x
Fx(A) = /D (/Amf—l(q) e )W;(i"it)(f(x)) .ol )> A

solves the stochastic inverse problem.
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The updated measure of X is 1.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, IP’;’" on (X, Bx) and an observed probability
measure, P9, on (D, Bp), the probability measure Py¥ on (X, Bx) defined by

up _ 71_initX W%bs(f(x)) X
B = [ ([, 0 oy dun(a) VA< B

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018a)
The updated measure of X is 1.

Theorem (BJW., SISC 2018a)

Py is stable with respect to perturbations in P and in P

For details: [Combining Push-forward Measures and Bayes’ Rule to Construct Consistent
Solutions to Stochastic Inverse Problems, BJW. SISC 40 (2), 2018.]
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, P2t on (X, Bx) and an observed probability
measure, P9, on (D, Bp), the probability measure Py¥ on (X, Bx) defined by

up _ ﬂ_init % obs(f( )) %
= [ ([, )~ )) duun(a). vA< By

solves the stochastic inverse problem.

The updated density is:

up init obs( (X))
Ty (x) = mx"(x )W

o Both 7l and 7% are given.

o Computing Wg nit) requires a forward propagation of the initial density.
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A Parameterized Nonlinear System

Consider a parameterized nonlinear system of equations:

aur-tuy = 1,

=y = 1

@ The quantity of interest is the second component: f(x) = u,.
o Assume that we observe 7% ~ N(0.3,0.0252).
@ We consider a uniform initial density.

o We use 10,000 samples from the initial and a standard KDE to approximate
the push-forward.
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A Parameterized Nonlinear System

16 7 = PF Initial T
T Observed |
== = PF Updated

12
104
8
6
44
21—

=0.75
04

~1.00 -

-1.00 -0.75 -0.50 —-0.25 0.00 025 0.50 0.75 1.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure: Samples from the updated density (left) and a comparison of e, wgi"it) and

WguP) (right).

Additional demonstrations and interactive lecture materials can be found at
https://github.com/eecsu/SIAM-AN18-Tutorial.
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Nice in theory, but not very practical!

@ We cannot expect to be able to generate a large number of samples from a
high-fidelity computational model!
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@ Can we use approximate models, e.g., discretizations or surrogate models?
o Yes, see [Butler, Jakeman, W. SISC 2018b].
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Nice in theory, but not very practical!

o We cannot expect to be able to generate a large number of samples from a
high-fidelity computational model!
@ Can we use approximate models, e.g., discretizations or surrogate models?
o Yes, see [Butler, Jakeman, W. SISC 2018b].
@ Can we use dimension reduction techniques, e.g., active subspaces?
o Yes, initial results presented at SIAM CSE 2019. Journal article in preparation.

o Can we leverage connections with deterministic optimization with
regularization and randomized methods to develop scalable approaches?

o Yes, see [Marvin, Bui-Thanh, W. CCR Proceedings 2018].

Can we leverage lower-fidelity models in a multi-fidelity context?
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Multilevel /Multifidelity Methods

o Objective: leverage cheaper (typically lower-fidelity) models to reduce the
computational burden in performing UQ with high-fidelity (typically
expensive) models.

o Multi-level Monte Carlo are theoretically robust approach for expectations
(moments, probabilities of events, etc.) [Giles 2015; Cliffe et al 2011; Nobile et al
2015; Beskos et al 2017]

o Multi-index [Haji-Ali et al 2016] and multi-fidelity [Zhu et al 2017; Ng et al 2014;
Perherstorfer et al 2016; Geraci et al 2015] approaches are generalization with the
same objective.

@ In order to solve our stochastic inverse problem, we require the push-forward
of the initial density.

o Extensions of the aforementioned methodologies to probability densities have
been developed [Elferson et al 2016; Giles et al 2015; Biereg et al 2016]

o Typically limited to parametric density estimates.

@ We utilize an approach that is a bit more broadly applicable ...
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A General Framework

INPUT SPACE OUTPUT SPACE
(high dimensional) (low dimensional)
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A General Framework

INPUT SPACE OUTPUT SPACE
(high dimensional) (low dimensional)

INTERMEDIATE
SPACE
(low dimensional)
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INPUT SPACE OUTPUT SPACE
(high dimensional) (low dimensional)

INTERMEDIATE
SPACE
(low dimensional)

o If h(x) is lower-fidelity model, then we recover a particular multi-fidelity
formulation [Koutsourelakis 2009; Biehler, Gee, Wall 2015; Bruder, Gee, W. 2019]
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A MFMC Framework

For simplicity, consider one low-fidelity map, fio : X o — DLo, and one
high—fidelity map fur 2 Xui — Dh.

At this point, we do not make any assumptions about a possible structure or
hierarchy among the low-fidelity models.

We further note that approximations can be very poor as long as there is a
statistical dependence, even highly nonlinear, between the models.

By basic rules of probability theory, we can rewrite this density as the
marginal of a joint density:

i (g) = /D r(gmilaLo) 75 (ar0) da,
LO

The parameterization of the random variables x is not required to be the
same over all levels of fidelity,

We do require that the parameters for a given lower fidelity model be a
subset of the parameters for all of the higher fidelity models, or that there
exists a relationship between the parameters of the different models.

The key ingredient is constructing the conditional density w(qui|qLo).
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Approximating the Conditional Densities

In [Koutsourelakis 2009], a custom Bayesian regression model was employed.
An appealing alternative is to use a Gaussian process (GP) model.

Easy to generate samples from conditional densities.

A GP comes with certain assumptions on the noise and joint distribution of

the process variables.

@ Hence, we cannot expect it to yield an exact conditional distribution, even if
the number of training points becomes large.

@ We can compare the GP results with those obtained using a kernel density

estimator.
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Summary of the MFMC Framework with Two Models

Define a high-fidelity model Q(x) and a low-fidelity model g(x).

Generate N o samples from the initial density and compute the low-fidelity
push-forward of the initial density using a standard KDE model.

Generate a training data set {qLo.;, qri,i } ™.

©0 o060

Train a regression model on the training set, generate high-fidelity samples
gH1,i corresponding to the low-fidelity evaluations g ; from the noise model
and approximate the high-fidelity push-forward.
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A Very Simple Motivational Example

Consider a simple polynomial model,

fix}=x, p=13,5,..., A=[11]

The initial density is assumed uniform over the input space.
The observed density a Gaussian distribution 7%%(q) = N/(0.25,1072).

o Consider a three-level hierarchy:

flo(x) = x,
b (x) = x°,
fin(x) = x°.

@ We choose training sets with N o = 20,000, Nyip = 50 and Ny = 25.
o Utilize Gaussian process regression models with homoscedastic noise for the
mapping between fidelities.
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Comparison of push-forward densities

3 — Low-fidelity
wMulti-fidelity (low, mid)
= Multi-fidelity (low, mid, high)
== = MC reference

-1.0 =05 0.0 05 1.0
Quantity of interest

Figure: Estimated push-forward of the initial density using the low-, mid- and
high-fidelity models along with the Monte Carlo reference for the one-to-one example.
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Regression models between fidelities

1001 + Predicted mean 1.00{ + Predicted mean
* Training data * Training data
0.75 99% Confidence interval 075 99% Confidence interval
050 050
& 025 S o025
5 z
3 000 2 o000
3 z
2 025 £ -025
-0.50 ~0.50
-0.75 -0.75
-1.00

-1.00

-1.00 -0.75 -0.50 -0.25 000 025 050 075 100

-1.00 -0.75 -0.50 -025 000 025 050 075 1.00
Mid-fidelity: gy

Low-fidelity: go

Figure: Training data, Gaussian process predicted means and 99% confidence intervals
for the low- / mid-fidelity (left) and the mid- / high-fidelity (right) regression models for
the one-to-one example.
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Updated densities and push-forwards

5 — PF Initial — Low-fidelity

- Observed = Multi-fidelity (low, mid)

— = PF Updated —— Multi-fidelity (low, mid, high)
5 === MC reference

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 05 1.0
Quantity of interest A

Figure: The push forward of the initial and updated densities using the multi-fidelity
model (left). Updated densities using fio, a multi-fidelity model involving flo and fuip,
and a multi-fidelity model involving fio, fuip and fy (right).
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Diagnostic Data

We consider the following diagnostics:
@ The integral of the updated density (should be close to 1).

@ The Kullback-Leibler (KL) divergence between the push-forward of the
updated density and the observed density (should be close to 0).

@ The information gained between the initial and updated densities, measured
by the KL divergence

@ The acceptance rate from rejection sampling.

Diagnostic HF Monte Carlo | Multi-fidelity
Updated integral 0.945883 0.942736
KL (3P| mrobs) 0.026284 0.013593
Information gain 1.854633 1.855338
Acceptance rate 7.19% 7.10%

Table: Diagnostic values for the one-to-one example.
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—o— 1HF —e— 1HF
—e— 1HF1LF 06 —o— 1HF1LF
Lo —e— 1HF, 1MF, 1LF —e— 1HF, 1MF, 1LF

0.8

0.2

0.0

10! 107 10° 10! 10? 10°
No. HF samples No. HF samples

Figure: Convergence behavior of the L; error between the approximate high-fidelity
push-forward of the initial density and the Monte Carlo reference with an increasing
number of training samples (left) and the corresponding L error for the updated
densities for the one-to-one example (right).
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Single-phase Incompressible Flow

Consider the following elliptic partial differential equation (PDE)

V- (K(x)Vp) =0, on (0,1)?,

p=1, right side,
p=0, left side,
K(x)Vp-n=0, top and bottom.

y

K(x) is a truncated Karhunen-Loéve expansion of Y = log K with 100 terms.
The initial density is given by 7idit(x) = A(0,1).
The quantities of interest are pressure values at different locations.

Solution approximated using a finite element discretization with three
uniform grids with element sizes h =1/40, h=1/80 and h = 1/160.

We choose training sets with N o = 10,000, Ny p = 200 and Ny, = 20.

Utilize Gaussian process regression models with heteroscedastic noise for the
mapping between fidelities.
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Figure: Estimated push-forward of the initial density using the low-, mid- and
high-fidelity models along with the Monte Carlo reference for the elliptic PDE example.
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Diagnostic Data

Diagnostic HF Monte Carlo | Multi-fidelity
Updated integral 0.997210 0.995296
KL (/3" | robs) 0.001138 0.003231
Information gain 0.520369 0.519468
Acceptance rate 33.63% 34.21%

Table: Diagnostic values for the linear elliptic example.
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Regression Models

using Heteroscedastic Noise

o8 08
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Figure: Training data, Gaussian process predicted means and 99% confidence intervals
for the low- / mid-fidelity (left) and the mid- / high-fidelity (right) regression models for
the elliptic PDE example.
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Samples From Regression Models
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Figure: Obtained joint and marginal densities for the low- / mid-fidelity (left) and the
mid- / high-fidelity (right) regression models for the elliptic PDE example.
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Convergence of the densities

—o— 1HF —o— 1HF
0.30 ~8— 1HF,1LF 0.20 ~&— 1HF, 1LF
—8— 1HF, 1 MF, 1LF - ~®— 1HF, 1 MF,1LF

0.05

Figure: Convergence behavior of the L; error between the approximate high-fidelity
push-forward of the initial density and the Monte Carlo reference (left) and the L; error
in the corresponding updated densities (right), using one high-fidelity model (1 HF /
Monte Carlo sampling), a high- and low-fidelity model (1 HF, 1 LF) and a high-, mid-
and low-fidelity model (1 HF, 1 MF, 1 LF) for the elliptic PDE example.
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Results using GP r [ noise model

08
0.7 20.0 1 == PF Initial
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06 1751 == PF Updated
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: 02 04 06 08
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Figure: Obtained joint and marginal densities for the low- / mid-fidelity (left) and the
comparison of the push-forwards of the initial and updated densities with the observed
density for the elliptic PDE example with GP regression and a kernel density noise model.
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Diagnostics using GP regression and a KDE noise model

Diagnostic HF Monte Carlo | Multi-fidelity | Multi-fidelity (KDE)
Updated integral 0.997210 0.995296 1.003031
KL (73" | robs) 0.001138 0.003231 0.001173
Information gain 0.520369 0.519468 0.518980
Acceptance rate 33.63% 34.21% 36.32%

Table: Diagnostic values for the linear elliptic example.
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Multiple quantities of inter
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Figure: Visualization of the approximate high-fidelity push-forward of the initial density
for the elliptic PDE example with multiple Qol. Marginal distributions of the three
quantities of interest are shown on the diagonal and pairwise joint distributions on the

off-diagonals.
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Convergence with multiple quantities of interest

—o— 1HF
~&— 1HF, 1LF
~®— 1HF, 1 MF,1LF

—o— 1HF
-8 1HF,1LF
—e— 1HF, 1 MF,1LF

0.0 0.0

Figure: Convergence behavior of the L; error between the approximate high-fidelity
push-forward of the initial density and the Monte Carlo reference (left) and the L error in
the corresponding updated densities (right), using one high-fidelity model (1 HF / Monte
Carlo sampling), a high- and low-fidelity model (1 HF, 1 LF) and a high-, mid- and
low-fidelity model (1 HF, 1 MF, 1 LF) for the elliptic PDE example with multiple Qol.
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Diagnostics with multiple quantities of interest

Diagnostic HF Monte Carlo | Multi-fidelity
Updated integral 0.994670 1.010853
KL (/") | rgbs) 0.093677 0.187659
Information gain 1.589674 1.647271
Acceptance rate 4.58% 4.47%

Table: Diagnostic values for the linear elliptic example with multiple Qol.
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An Example Inspired by Additive Manufacturing

— 1 0 mm

3.8 kW LENS

38w (Edge)

ParaletHatch
(Edge & Canter)

Greater

stress

200 XHach

Wt
(Eoge
... A

Wiought
(Center

intial yeld Less elongation

3 40 50 6 70 80

Strain




A Low-fidelity Model

@ For the low-fidelity model, we solve the linear isotropic elasticity equations,
1 1
~V-o(u)=f, oj=Ciuen, €= EVU + EVuT,

using bilinear finite elements on a mesh with 16,600 hexahedral elements.
o Assume E ~ U(1.8-10% 2.2-10%) and v ~ 14(0.27,0.33).
@ Quantity of interest is the average vertical displacement within the connector.
@ Assume the observed density is given by m9P5(Q) = N(0.95,1-107%).

dy
5.822¢-04
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A High-fidelity Model

@ The high-fidelity model utilizes a crystal elasticity formulation where

PN

oij = Cjuews  Cijxt = CrmnopRip Rko Rjn Rim-

@ Assume a grain diameter of 50um and use well-spaced Voronoi cells to
produce approximately 224,000 grains within the computational domain.

o High-fidelity model uses a finer discretization with 17,040,000 elements.

@ This resolution provides approximately 76 elements per grain whereas the
coarse discretization would have approximately 14 grains per element.

o Each grain is endowed with a random orientation defined by 4 independent
normal random variables.

o Both models use these distributions for E and v, but the high-fidelity has
896,000 additional random parameters associated with the random
orientations.
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A High-fidelity Model
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Figure: On the left, the grains for the high-fidelity model. On the right, the vertical
displacement using the high-fidelity model and the nominal parameter values
(E=20-10" and v = 0.3).
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Regression Model and Push-forward Densities

*  Predicted mean 6 — Low-fidelity
*  Training data s Multi-fidelity (low, high)
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Figure: The training data, the Gaussian process mean and the 99% confidence intervals

for the mapping between the low- and high-fidelity models for the linear elastic example

(left). The push-forward of the initial density through the low-fidelity model and through
the multi-fidelity model (right).
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Stochastic Inversion Results Using Multi-fidelity Framework
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Figure: Samples from the updated density using the MFMC framework (left) and the
comparison of the push-forwards of the initial and updated densities with the observed
density (right) for the linear elastic example.
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Conclusions

]

Our goal is to develop data-informed physics-based models.

Many approaches exist for incorporating data into a model.
o Deterministic optimization, Bayesian methods, OUU, data assimilation, etc.

[

Our approach provides a solution to a specific stochastic inverse problem.

Main computational expense is the forward UQ problem to obtain the
push-forward of the initial density.

@ We demonstrated that a multi-fidelity Monte Carlo approach can be
utilized within this framework.

Numerical results indicate that this combination works well for problems with
well-correlated hierarchy of models.
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Thanks! Questions?

@ SIP interactive lecture materials:
https://github.com/eecsu/SIAM-AN18-Tutorial

@ SIP combined with multifidelity framework:
https://github.com/TimWildey/CBayes-MLMF
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Thank you for your attention!

Questions?
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