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I Main Points

1. BNN give UQ providing a means to lower false alarm
rates (among others)

2. There are currenty multiple problems with
implementing BNN which directly affects the usefulness
of (1)

Executive Summary: BNN have potential in
applications of high stakes prolems, but they are
not ready for deployment
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I What is a Bayesian Neural Network?

For those of you who "do machine learning, not statistics":
BNNs are simply NNs that have an implied loss function (you
don't have to choose and you get UQ for free!)

For those of you who "do statistics, not machine learnine:
BNNs are simply a highly nonlinear model where you put a prior
on your parameters (and a Bernoulli lihelihood for our binary
data)



I An Example BNN
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I Estimating (or Training) BNNs

In traditional statistics, Bayesians sample their posterior
distributions via MCMC
But this can be slowwww

Enter Variational Inference:

. Instead approximate posterior with q(0) by solving:

argmin KL( q* (0 ) l 1 13 (w , bIY))
q*

= argrnin KL( q* (0 ) il 13 (w , b, y))
q*

. Put restrictions on set of q*

. Result is a loss function we can do gradient descent as usual
on



I Hyperspectral Images (HSI)

. Airborne spectrometers construct a (x, y, z) tensor
. x and y describe the spatial dimension
. z describes the spectrum at a single pixel (x,

. Specific materials are identified by their reflectance spectrum

. The target object might be smaller than the projection of a
pixel on the ground
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I Mixing in HSI
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I Megascene

. Simulated scene using
DIRSIG model

. Green discs inserted as
ta rgets
. 3 environments, and 3 times of

day each
. 125 targets in each scene
. Targets range from Large to

subpixel (radius of 0.1m to 4m)
. Some targets only partially

visible



I FPCA on Input

. Pixel level input is
0.3

reflectance measured
i-.3 0.2

at 107 channels ,),1\4\
cc 0.1. Use functional PCA to

treat as functional 25 50 75 100
Channel

. 25 PCs were used



I BNN on Megascene

. Architecture: Input-10-5-2-Output

. Activations: Hyperbolic tan between hidden
layers, inverse logit for output

. Priors: Standard normal on all weights and
biases

. Variational Distributions: I ndependent
normal

I
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Leveraging UQ When Assessing Performance

We will evaluate test set performance in two cases:

Using the full test set

Using a "high confidence" set

0

The "high confidence" set contains all pixels such that their
80% credible interval for 7 e (0, 0.2) U (0.8, 1)
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Test Set Performance

Full test set.
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Test Set Performance-Constant False Alarm
Rate

A: Abundance of target in pixel

A< 0.25 0.25 < A < 0.75 A > 0.75
Full Set 0.471 0.964 0.992
High Confidence 0.726 0.994 1.0

Table: Probability of detection for FAR = 0.05
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I High Stakes Application

Many of problems Sandia (and others) works on are high
stakes in nature

Please Stop Explaining Black Box Models for
High-Stakes Decisions

Cynthia Rudin
Duke University

cynthia@cs.duke.edu

Abstract

Black box machine leaming models are currently being used for high stakes
decision-making throughout society, causing problems throughout healthcare, crim-
inal justice, and in other domains. People have hoped that creating methods for
explaining these black box models will alleviate some of these problems, but trying
to explain black box models, rather than creating models that are interpretable
in the first place, is likely to perpetuate bad practices and can potentially cause
catastrophic harm to society. There is a way forward — it is to design models that



I Areas of Concern when Implementing BNN

1. Posterior approximation via VI

2. Starting values

3. Difficulty of training
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I Problem 1: VI

MCMC is generally superior to VI for posterior
estimation, computation aside

Asymptotically, MCMC and Full Rank VI will give
the same answer, the true posterior

. Problems I work on do not have big data by
any standard

. Full Rank VI is not very fast 1



I Problem 1: VI

Mean Field VI with Normal variational
distributions is common

. Often much faster

. Relatively easy to implement

. No chain convergence checking

. Asymptotic convergence of marginal posterior
distributions

1
THIS IS A UQ WORKSHOP, WE KNOW THAT IS NOT
ENOUGH



I Problem 1: VI

What does "good" UQ mean?

If you're Bayesian, when your approximation to
the posterior is "good"

1



I Problem 1: VI
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I Problem 1: VI
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Problem 1: VI

Another example of a bad posterior approximation...

Quality of Uncertainty Quantification for Bayesian Neural Network Inference
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Problem 2: Starting Values 0
There are well established ways to generate starting values
for general NN, but not for BNN

Good Initializations of Variational Bayes for Deep Models

Simone Rossi t Pietro Michiardi 1 Maurizio Filippone

Abstract
Stochastic variational inference is an established
way to carry out approximate Bayesian inference
for deep models. While there have been effec-
tive proposals for good initializations for loss
minimization in deep learning, far less attention
has been devoted to the issue of initialization
of stochastic variational inference. We address
this by proposing a novel layer-wise initializa-
tion strategy based on Bayesian linear models.
The proposed method is extensively validated
on regression and classification tasks, including

AFTER POOR INITIALIZATION AFTER OUR INITIALIZATION

-10 -5 0 5 10 -10 10

Figure 1: Due to poor initialization (left) svt fails to converge
even after 600+ epochs (RMSE = 0.613, MNLL = 29.4) while
with our 1-BLM (right) 9T1 easily recovers the function after few
epochs (uusu = 0.315, MNLL = —5.8). The architecture has
three hidden layers with 500 neurom each, and uses the TANH
activation function.



I Problem 3: Difficulty of Training

BNN are known to be difficult to train

Possible reasons
include:

. Poor estimation
algorithm

. Poor starting values

. Poor priors

This results in using lower fidelity models

i



Conclusions

BNN provide a powerful UQ frameworl<
to approach high risl< applications

BNN are not off-the-shelf ready for
high risl< applications
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Thank you for listening!

dries@sandia.gov
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