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4 Areas of concern with BNN
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I Main Points

1. BNN give UQ providing a means to lower false alarm |
rates (among others) |

2. There are currenty multiple problems with
implementing BNN which directly affects the usefulness
of (1)

Executive Summary: BNN have potential in l
applications of high stakes prolems, but they are
not ready for deployment |



I What is a Bayesian Neural Network?

For those of you who “do machine learning, not statistics”:
BNNs are simply NNs that have an implied loss function (you
don’t have to choose and you get UQ for free!)

For those of you who “do statistics, not machine learning”:
BNNs are simply a highly nonlinear model where you put a prior
on your parameters (and a Bernoulli likelihood for our binary
data)



I An Example BNN m

Y; ~ Bernoulli(n;)

™ = fa(221) wie % N(0,1),Vj, k
id

2 p
by~ N(0,1),l1=1,2,3
=5 (2 bt (E Tpwy + bj) wa; + bg) ¢ 0,2)
ji=1 k=1

fiz11) = vy
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‘ fi(z12) = v, ‘ . @




I Estimating (or Training) BNNs m

In traditional statistics, Bayesians sample their posterior
distributions via MCMC
But this can be slowwww

Enter Variational Inference:
. Instead approximate posterior with ¢(#) by solving:

argmin KL(q"(0)||p(w,bly))
q*

= argqr*nin KL(q*(@)Hp(W, b,y))

. Put restrictions on set of ¢*

. Result is a loss function we can do gradient descent as usual
on



I Hyperspectral Images (HSI)

. Airborne spectrometers construct a (z, y, 2) tensor

. x and y describe the spatial dimension
. z describes the spectrum at a single pixel (z, y)

. Specific materials are identified by their reflectance spectrum

. The target object might be smaller than the projection of a
pixel on the ground




I Mixing in HSI
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I Megascene

. Simulated scene using

DIRSIG model

. Green discs inserted as
ta rgets

. 3 environments, and 3 times of
day each

. 125 targets in each scene

. Targets range from large to
subpixel (radius of 0.1m to 4m)

. Some targets only partially
visible




I FPCA on Input Eﬂq

. Pixel level input is o
reflectance measured g
at 107 channels §%?

. Use functional PCAto =9

treat as functional o 25 S0 75 160
Channel
. 25 PCs were used "




I BNN on Megascene m

. Architecture: Input-10-5-2-Output

. Activations: Hyperbolic tan between hidden
layers, inverse logit for output

. Priors: Standard normal on all weights and
biases

. Variational Distributions: Independent
normal l




I Leveraging UQ When Assessing Performance m

We will evaluate test set performance in two cases:

1. Using the full test set
2. Using a “high confidence” set

The “high confidence” set contains all pixels such that their

80% credible interval for = € (0,0.2) U (0.8,1)

80% Credible Intervals

0.8

High_Confidence_Set
. FALSE
== TRUE




I Test Set Performance
Full test set. High confidence set.

roc curve for SAS 1545 test set
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I Test Set Performance-Constant False Alarm m
Rate

A: Abundance of target in pixel

A< 025 025<A <075 A>075
Full Set 0.471 0.964 0.992
High Confidence 0.726 0.994 1.0

Table: Probability of detection for FAR = 0.05




I Main Points

1. BNN give UQ providing a mean to lower false alarm |
rates (among others) |

2. There are currenty multiple problems with
implementing BNN which directly affects the usefulness
of (1)

Executive Summary: BNN have potential in l
applications of high stakes prolems, but they are
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I High Stakes Application

Many of problems Sandia (and others) works on are high
stakes in nature

Please Stop Explaining Black Box Models for .
High-Stakes Decisions

Cynthia Rudin
Duke University
cynthia@cs.duke.edu

Abstract

Black box machine learning models are currently being used for high stakes
decision-making throughout society, causing problems throughout healthcare, crim-
inal justice, and in other domains. People have hoped that creating methods for
explaining these black box models will alleviate some of these problems, but trying
to explain black box models, rather than creating models that are interpretable
in the first place, is likely to perpetuate bad practices and can potentially cause
catastrophic harm to society. There is a way forward — it is to design models that



I Areas of Concern when Implementing BNN ED#

1. Posterior approximation via VI
2. Starting values
3. Difficulty of training




I Problem 1: VI

MCMC is generally superior to VI for posterior |
estimation, computation aside |

Asymptotically, MCMC and Full Rank VI will give
the same answer, the true posterior

. Problems | work on do not have big data by l
any standard

. Full Rank VI is not very fast !



I Problem 1: VI

Mean Field VI with Normal variational |
distributions is common

. Often much faster |
. Relatively easy to implement
. No chain convergence checking

. Asymptotic convergence of marginal posterior |
distributions

THIS IS A UQ WORKSHOP, WE KNOW THAT IS NOT |
ENOUGH I



I Problem 1: VI m

What does “good” UQ mean?

If you're Bayesian, when your approximation to
the posterior is “good”




I Problem 1: VI

4ilB,0%, x ~ N(Bo + Bz + Bain,02),i=1,...,50
0% ~ IG(a, b)
Blo? ~ N(m,a?V)

Posterior
—MCMC

~— Mean Field VI
— True

B2




Problem 1: VI
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I Problem 1: VI

Another example of a bad posterior approximation...

Quality of Uncertainty Quantification for Bayesian Neural Network Inference

Jiayu Yao"' Weiwei Pan"' Soumya Ghosh” Finale Doshi-Velez '
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I Problem 2: Starting Values

There are well established ways to generate starting values

for general NN, but not for BNN

Good Initializations of Variational Bayes for Deep Models

Simone Rossi' Pietro Michiardi' Maurizio Filippone '

Abstract

Stochastic variational inference is an established
way to carry out approximate Bayesian inference
for deep models. While there have been effec-
tive proposals for good initializations for loss
minimization in deep learning, far less attention
has been devoted to the issue of initialization
of stochastic variational inference. We address
this by proposing a novel layer-wise initializa-
tion strategy based on Bayesian linear models.

AFTER POOR INITIALIZATION AFTER OUR INITIALIZATION
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Figure 1: Due to poor initialization (left) Sv1 fails to converge
even after 600+ epochs (RMSE = 0.613, MNLL = 29.4) while
with our I-BLM (right) SVI easily recovers the function after few

. . " epochs (RMSE = 0.315, MNLL = —5.8). The architecture has
The pmpolsed method s e)flenswely .Vahd“‘md three hidden layers with 500 neurons each, and uses the TANH
on regression and class on tasks, including ivation function.




I Problem 3: Difficulty of Training

BNN are known to be difficult to train

Possible reasons
include:

. Poor estimation
algorithm

. Poor starting values
. Poor priors :

This results in using lower fidelity models



I Conclusions

1. BNN provide a powerful UQ framework
to approach high risk applications

2. BNN are not off-the-shelf ready for
high risk applications
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Thank you for listening!

dries@sandia.gov







