

Single-Event Characterization of the 16 nm FinFET Xilinx UltraScale+™ RFSoC Field Programmable Gate Array under Proton Irradiation

P. C. Davis, Sandia National Laboratories, David S. Lee, Sandia National Laboratories, Mark Learn, Sandia National Laboratories, and Doug Thorpe, Sandia National Laboratories

This study examines the single-event upset and single-event latch-up susceptibility of the Xilinx 16nm FinFET Zynq UltraScale+ RFSoC FPGA in proton irradiation. Results for SEU in configuration memory, BlockRAM memory, and device SEL are given.

INTRODUCTION

- Determine the flight-worthiness and feasibility of utilizing Xilinx UltraScale+ RFSoC parts in low Earth orbit (LEO) space environments.
- The device under test (DUT) was irradiated with protons with energies ranging from 60 MeV to 200 MeV at the Northwestern Medicine Chicago Proton Facility in Warrenville, IL.
- Proton effects on the DUT were recorded for
 - Single-event upset (SEU) for the FPGA configuration memory
 - Block random-access memory (BlockRAM™)
 - Single-event latch-up (SEL) results

ZYNQ ULTRASCALE+ RFSOC DEVICE OVERVIEW

- RFSoC similar to Xilinx UltraScale+ MPSoC family line.
- Incorporates high speed analog-to-digital converters (ADC) and digital-to-analog converters (DAC) into the programmable logic (PL).
- Ideal for software defined radio and other high-speed radio frequency applications.
- Processing Subsystem:
 - Quad-core ARM Cortex-A53 Application Processing Unit
 - Dual-core ARM Cortex-R5 Real-Time Processing Unit
 - 256 KB on-chip memory with ECC
 - ARM Mali-400 GPU
- Programmable Logic:
 - 8 12-bit, 4.096GSPS RF-ADC w/ DDC
 - 8 14-bit, 6.554GSPS RF-DAC w/ DUC
 - 930,300 System Logic Cells
 - 850,560 Flip-flops
 - 425,280 Look-up tables for combinatorial logic
 - 1080 BlockRAM modules

Modified RFSoC ZCU111 DUT at Test Facility

TEST HARDWARE SETUP

- ZCU111 dev board modified to mitigate potential destructive latch-up events during proton tests.
- Power regulators disconnected from the part to allow monitoring and online current limits during tests.
 - Voltage regulators for the 0.85V, 1.2V, 3.3V, 2.5V, 1.8V, 0.925V, and 0.6V supplies bypassed and provided externally using two Keysight power supplies.
 - Power supply force and sense connections utilized to maintain voltage levels.
- JTAG Configuration Manager (JCM), located 12° from the DUT in beam testing room, was used to monitor and correct bit flips in configuration memory during testing [2].
- Board modifications more complicated due to the additional components for the ADC/DAC.
 - ADC/DAC PLLs were not receiving power after these modifications and the PLLs were not retrievable.
 - Due to this, custom SDR PL application was not testable during irradiation.
- Custom python script used to monitoring and controlling the power supplies.
- SEL sensitivity on the VCCAUX supply rail was expected from previous UltraScale+ family tests.
- Monitoring and mitigating current spikes while testing was crucial to mitigate any SEL events.
- High current state causing a channel to deliver current near the limit was flagged as a SEL event.
 - When observed, the channel was lowered to a voltage below the holding voltage of the SEL site.
 - Voltage was held there for 0.75 seconds, then returned to the nominal level, which cleared the SEL site.

TEST PROCEDURE

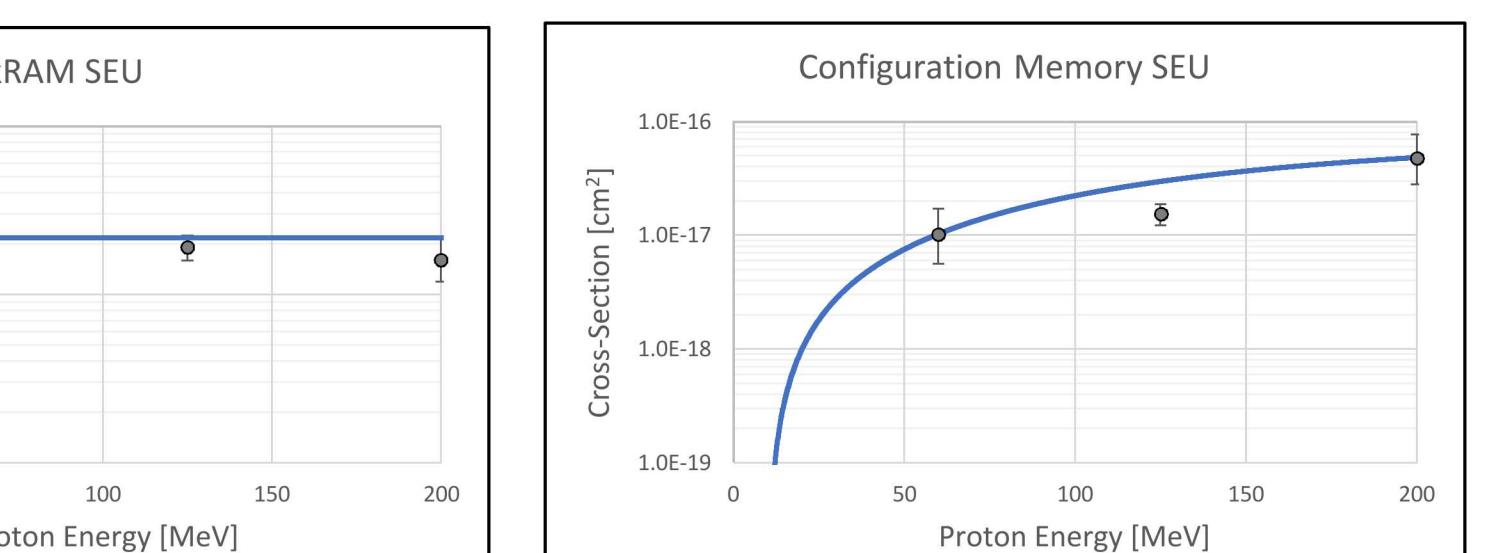
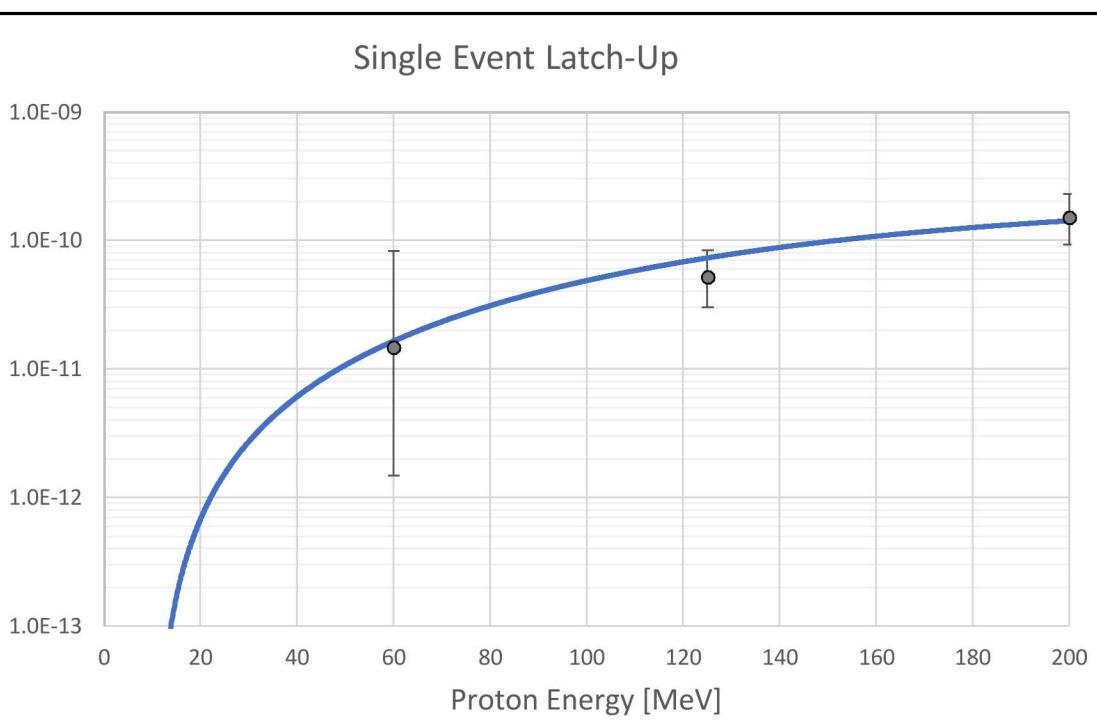
- 10 minute runs if no latch-up detected.
- Run ended if
 - Power cycle did not return PL heartbeat possibly caused by device encountering Single-Event Functional Interrupt (SEFI)
 - Loss of communication with processor indicating possible SEU to bus or fabric.
- BRAM upset rates were measured by monitoring changes to stored test pattern.
- Configuration memory upset rates were measured by comparing memory content after each irradiation trial with the original “golden” copy.
- SEL runs performed at 70 degrees C with voltage rails at nominal biases
 - Current limited to prevent destructive latch-up.

Proton Energy (MeV)	Total Fluence (particles)
60	6.8×10^{10}
125	4.1×10^{12}
200	2.3×10^{12}

Proton Beam Energies and Fluences for SEU and SEL Testing

RESULTS

- SEU results reported for the configuration memory and BlockRAM as well as the number of latch-up events
- The Cross-sections results calculated based on the data obtained from irradiation.
 - The cross-section is a measure of susceptibility of a given resource with lower numbers corresponding to better performance.
 - Configuration and BRAM cross-sections are per bit and SEL cross-section is per device.
- Several elevated temperature trials resulted in no SEL events
 - Two runs at 60 MeV proton energy at 81 degrees C to a total fluence of $\sim 1.8 \times 10^{10}$ particles.
 - One run at 60 MeV and 100 degrees C (above specified part max rating) to a fluence of 1.8×10^{10} .
- Elevated temperature data was combined with the remainder of the data taken at 70 degrees C to obtain final cross-sections for SEL events.
- Weibull curves fitted to the data cross-sections.
 - Statistical error bars shown with two standard deviations (2-sigma).
- Low-energy proton results were not available, so curves were estimated by extrapolating down to ~ 10 MeV energies since 10 MeV was estimated as a threshold to approximate shielding effectiveness.
- The Cosmic Ray Effects on Micro-Electronics 1996 revision (CREME96) software was used to estimate the on-orbit event rates of the RFSoC when operating on-orbit.



CREME96 Orbital Parameters

550km altitude at apogee & perigee
45 degree orbital inclination
AP8MIN average proton models
Solar minimum conditions
100 mils of aluminum shielding

Orbital parameters used in CREME96 calculations for RFSoC.

Cross-Section	Event Rate (Average)
BRAM (38.9 Mbit)	$\sim 260K$ years/upset/bit 2.39 days/upset/device
Configuration Memory (202 Mbit)	$\sim 23M$ years/upset/bit 41.58 days/upset/device
Latch-up	~ 90 years/event

Event rates calculated using cross-section data and orbital parameters.

SEL event cross-section per device, BlockRAM SEU cross-section per bit, and Configuration memory SEU per bit with corresponding Weibull curves.

CONCLUSION

- The Xilinx RFSoC opens the possibility of having an almost fully SDR digital front end that could operate in low earth orbit.
- Testing indicates that the part will rarely see latch-ups at LEO, with about 90 years per event at an average flux.
- Mitigation of SEU events should be possible with correct monitoring.
- Future evaluation of the ADC and DAC component of the chip in a radiation environment is still required.
- A custom board for this testing is highly recommended for this future testing due to the complexity of modifying the existing development board.

REFERENCES

- Zynq UltraScale+ RFSoC Data Sheet: Overview (v1.6) [Online]. Available: https://www.xilinx.com/support/documentation/data_sheets/ds889-zynq-usp-rfsooc-overview.pdf, last accessed January 14, 2018.
- A. Gruwell, P. Zabriskie and M. Wirthlin, "High-speed FPGA configuration and testing through JTAG," 2016 IEEE AUTOTESTCON, Anaheim, CA, 2016, pp. 1-8.
- D. M. Hiemstra, V. Kirischian and J. Brelsik, "Single Event Upset Characterization of the Zynq UltraScale+ MPSOC Using Proton Irradiation," 2017 IEEE Radiation Effects Data Workshop (REDW), New Orleans, LA, 2017, pp. 1-4.
- P. Maillard, M. Hart, J. Barton, J. Arver and C. Smith, "Neutron, 64 MeV Proton & Alpha Single-event Characterization of Xilinx 16nm FinFET Zynq® UltraScale+™ MPSoC," 2017 IEEE Radiation Effects Data Workshop (REDW), New Orleans, LA, 2017, pp. 1-5.
- J. Karp, M. J. Hart, P. Maillard, G. Hellings and D. Linten, "Single-Event Latch-Up: Increased Sensitivity From Planar to FinFET," in *IEEE Transactions on Nuclear Science*, vol. 65, no. 1, pp. 217-222, Jan. 2018.