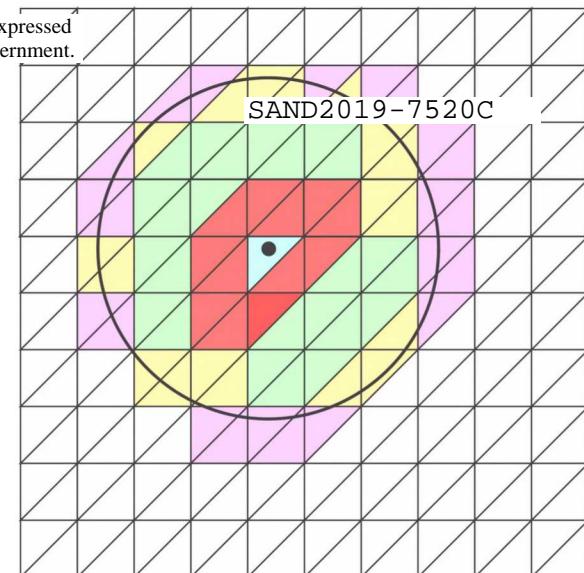


NONLOCAL MODELS with APPROXIMATE NONLOCAL NEIGHBORHOODS: towards fast FEM



Marta D'Elia, Sandia National Laboratories

M. Gunzburger, *Florida State University, FL*

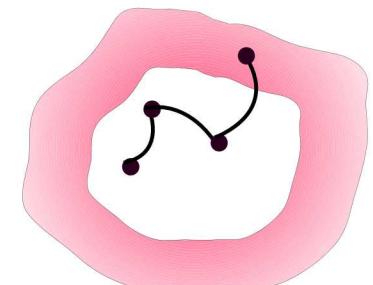
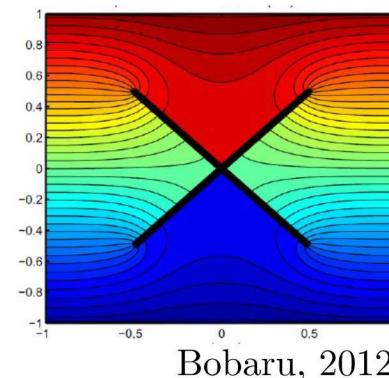
C. Vollman, *University of Trier, Germany*

Sandia National Labs, NM – Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

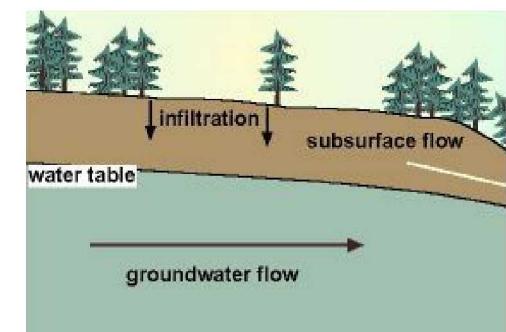
NONLOCAL MODELS AND RELATED CHALLENGES

APPLICATIONS

- nonlocal models for continuum mechanics
- stochastic jump processes
- nonlocal heat conduction
- subsurface flow/porous media
- image processing



Bobaru, 2012

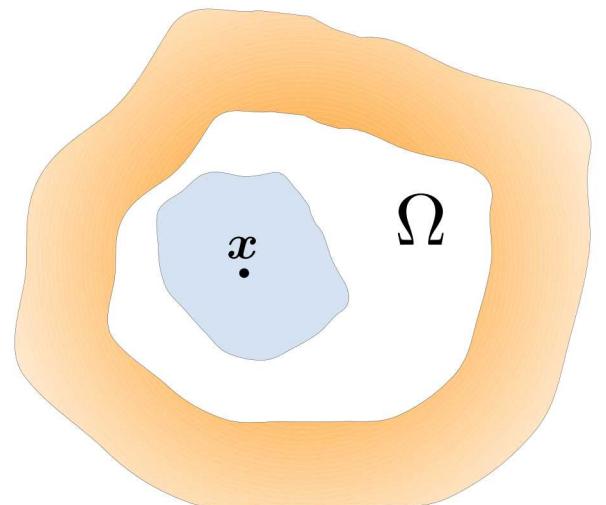


Buades, 2010

NONLOCAL DIFFUSION OPERATORS

how do they look?

$$\mathcal{L}u(\mathbf{x}) = \int_{\mathbb{R}^n} (u(\mathbf{y}) - u(\mathbf{x})) \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$



what do we want to solve?

$$\mathcal{L}u = f$$

+ volume constraints

NONLOCAL DIFFUSION OPERATORS

how do they look?

$$\mathcal{L}u(\mathbf{x}) = \int_{\mathbb{R}^n} (u(\mathbf{y}) - u(\mathbf{x})) \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

what do we want to solve?

$$\mathcal{L}u = f$$

+ volume constraints

“standard” model



CHALLENGES

Modeling: • prescription of volume constraints

- choice of kernel functions
- modeling of nonlocal interfaces

Computations: • numerical solution can be prohibitively expensive

- implementation is troublesome

CHALLENGES

Modeling: • prescription of volume constraints

- choice of kernel functions
- modeling of nonlocal interfaces

Computations: • numerical solution can be prohibitively expensive

- implementation is troublesome

- design of efficient nonlocal solvers
- design of efficient quadrature rules/approximations

CHALLENGES

Modeling:

- prescription of volume constraints
- choice of kernel functions
- modeling of nonlocal interfaces

Computations:

- numerical solution can be prohibitively expensive
- implementation is troublesome

- design of efficient nonlocal solvers
- design of efficient quadrature rules/approximations

FEM FOR NONLOCAL MODELS

Meshfree methods: popular means for discretizing nonlocal equations

Variational methods:

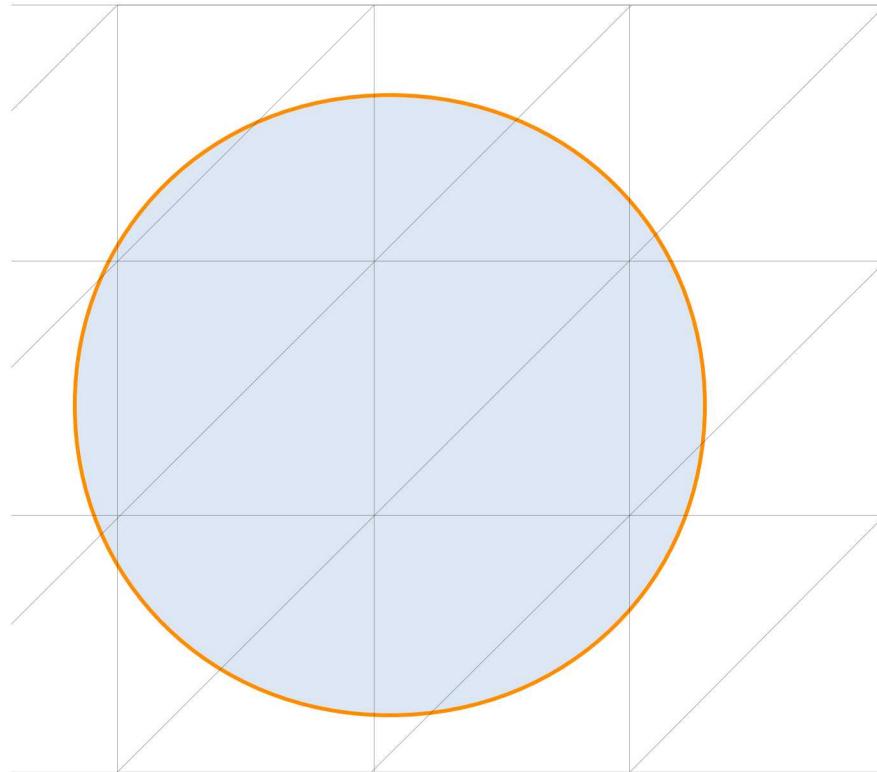
- ease in dealing with complicated domains
- higher-order convergence rates
- adaptive meshing methods (for the treatment of, e.g., discontinuities)
- rigorous mathematical treatment of operator and solution properties (convergence, stability, ...)

however... additional challenges

BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations

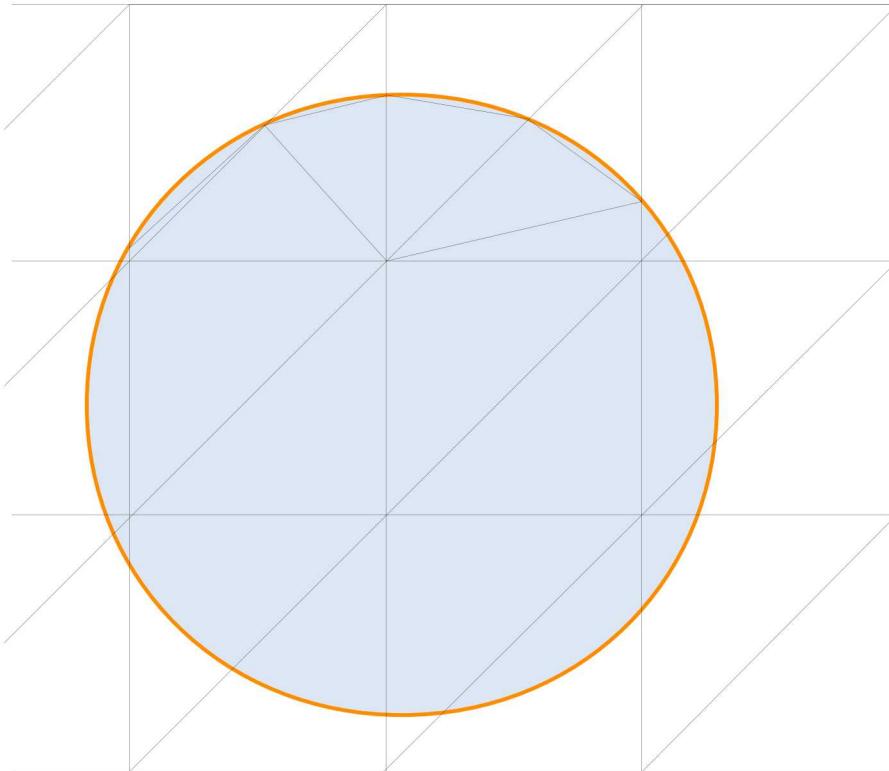
- determining intersections
- computing integrals of round domains
- find appropriate quadrature rules



BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations

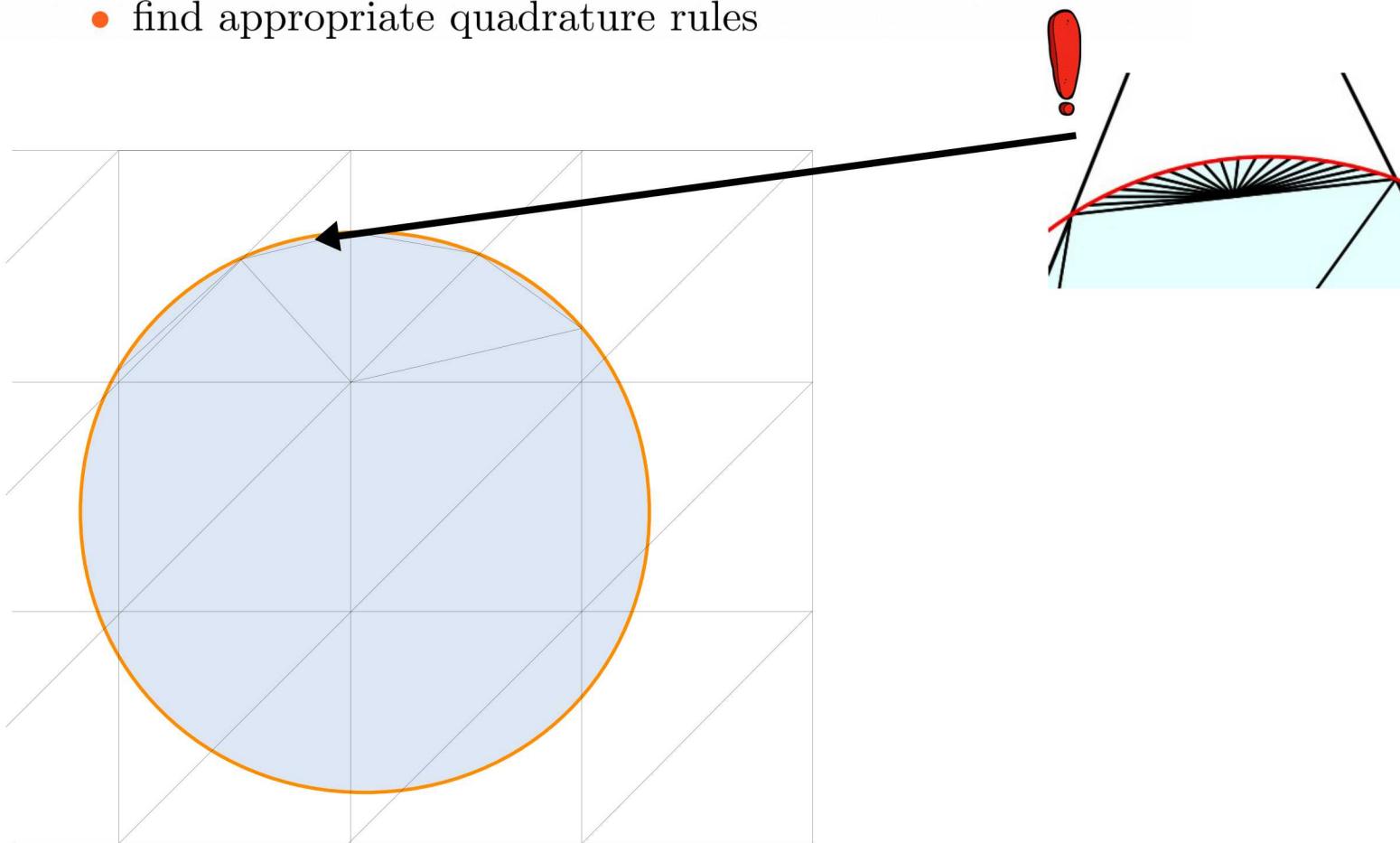
- determining intersections
- computing integrals of round domains
- find appropriate quadrature rules



BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations

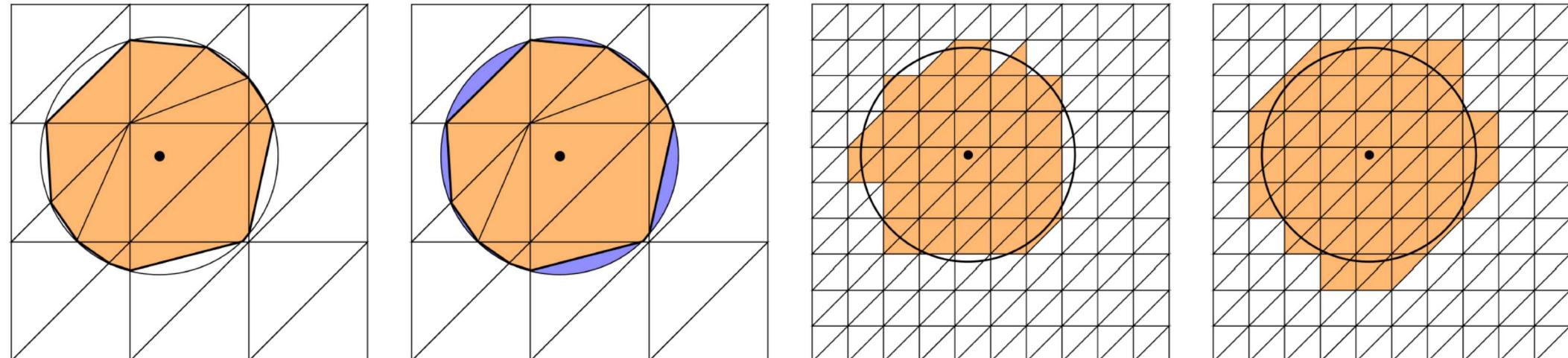
- determining intersections
- computing integrals of round domains
- find appropriate quadrature rules



CURRENT STRATEGIES

triangles: • triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

- approximation of the ball with a polygon (Bond, SNL)
- inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)

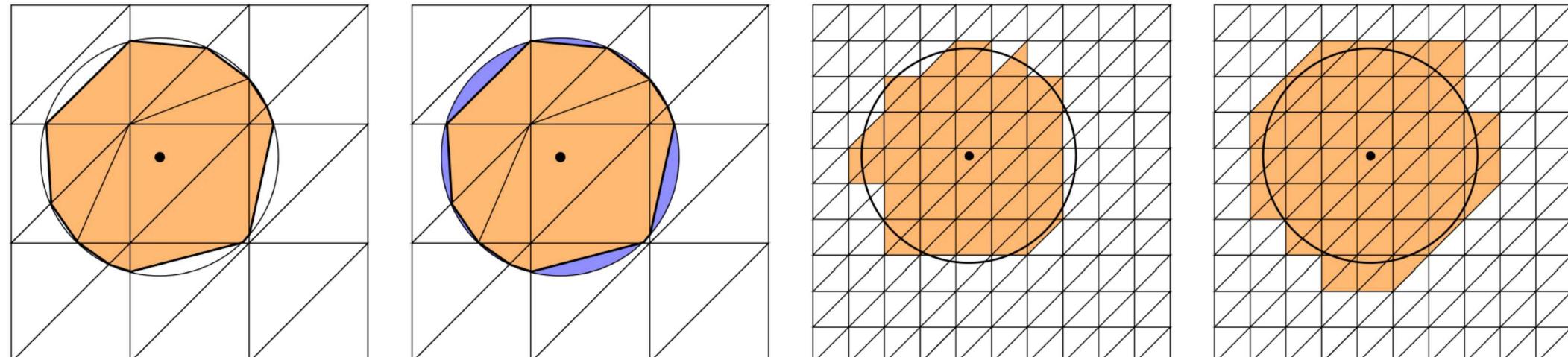


CURRENT STRATEGIES

triangles: • triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

- approximation of the ball with a polygon (Bond, SNL)
- inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)

these may be unnecessary, inaccurate or inefficient!



CONTRIBUTIONS OF THIS WORK

- introduce **approximate neighborhoods** that facilitate the assembly procedure and mitigate the computational effort
- quantify the **approximation error** and its contribution to the overall accuracy
- provide guidance on the choice of quadrature rules
- introduce a **cheap and easy-to-implement** approximation that
 - preserves **optimal accuracy**
 - **improves** the computational performance

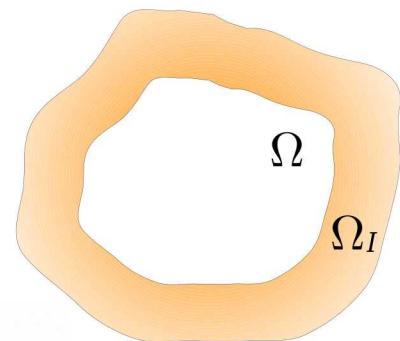
CONTRIBUTIONS OF THIS WORK

- introduce **approximate neighborhoods** that facilitate the assembly procedure and mitigate the computational effort
- quantify the **approximation error** and its contribution to the overall accuracy
- provide guidance on the choice of quadrature rules
- introduce a **cheap and easy-to-implement** approximation that
 - preserves **optimal accuracy**
 - **improves** the computational performance

making variational methods a preferable alternative?

WEAK FORM AND ITS DISCRETIZATION

FEM FOR NONLOCAL MODELS



Weak form: for $u = 0$ in Ω_I

$$0 = \int_{\Omega} (-\mathcal{L}u - f)v \, d\mathbf{x} = \int_{\Omega \cup \Omega_I} \int_{\Omega \cup \Omega_I} (u(\mathbf{y}) - u(\mathbf{x})) (v(\mathbf{y}) - v(\mathbf{x})) \gamma(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} \, d\mathbf{x} - \int_{\Omega} f v \, d\mathbf{x}$$

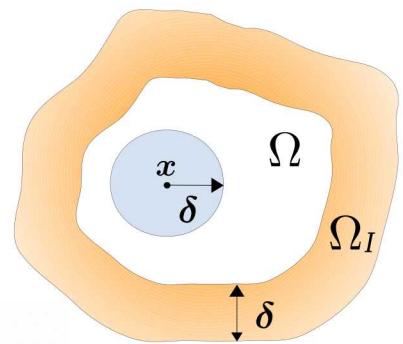
$$A(u, v) = F(v), \quad \forall v \in V_c(\Omega \cup \Omega_I)$$

nonlocal Green's identity [Du et al., 2012]

Energy norm and spaces:

- “energy norm”: $|||w||| = \sqrt{A(w, w)}$ (norm on $V_c(\Omega \cup \Omega_I)$)
- energy space: $V(\Omega \cup \Omega_I) = \{w \in L^2(\Omega \cup \Omega_I) : |||w||| < \infty\}$
- constrained energy space: $V_c(\Omega \cup \Omega_I) = \{w \in V : w = 0 \text{ on } \Omega_I\}$

FEM FOR NONLOCAL MODELS



Weak form: for $u = 0$ in Ω_I

$$0 = \int_{\Omega} (-\mathcal{L}u - f)v \, dx = \int_{\Omega \cup \Omega_I} \int_{\Omega \cup \Omega_I} (u(\mathbf{y}) - u(\mathbf{x})) (v(\mathbf{y}) - v(\mathbf{x})) \gamma(\mathbf{x}, \mathbf{y}) \, dy \, dx - \int_{\Omega} f v \, dx$$

$$A(u, v) = F(v), \quad \forall v \in V_c(\Omega \cup \Omega_I)$$

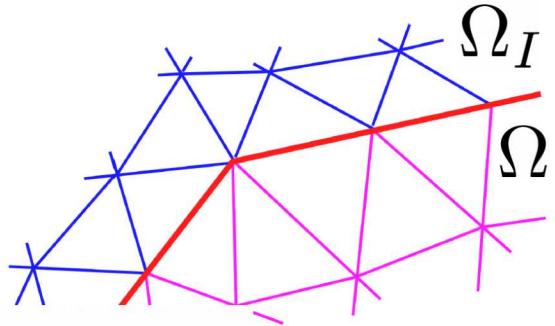
nonlocal Green's identity [Du et al., 2012]

Energy norm and spaces:

- “energy norm”: $|||w||| = \sqrt{A(w, w)}$ (norm on $V_c(\Omega \cup \Omega_I)$)
- energy space: $V(\Omega \cup \Omega_I) = \{w \in L^2(\Omega \cup \Omega_I) : |||w||| < \infty\}$
- constrained energy space: $V_c(\Omega \cup \Omega_I) = \{w \in V : w = 0 \text{ on } \Omega_I\}$

Kernels: $\gamma(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}, \mathbf{y}) \chi_{B_\delta(\mathbf{x})(\mathbf{y})}$

FEM FOR NONLOCAL MODELS

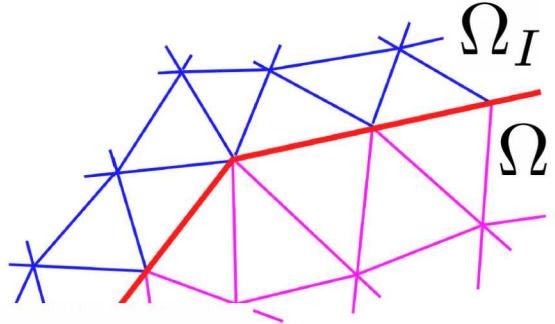


FEM nodes and basis

- $\{\tilde{\mathbf{x}}_j\}_{j=1}^J$: set of nodes, with $\{\tilde{\mathbf{x}}_j\}_{j=1}^{J_\Omega} \subset \Omega$ and $\{\tilde{\mathbf{x}}_j\}_{j=J_\Omega+1}^J \subset \overline{\Omega}_I$
- $\{\phi_j(\mathbf{x})\}_{j=1}^J$: piecewise-polynomial functions such that $\phi_j(\tilde{\mathbf{x}}_{j'}) = \delta_{jj'}$ for $j' = 1, \dots, J$
- FEM spaces: $V^h = \text{span}\{\phi_j(\mathbf{x})\}_{j=1}^J \subset V(\Omega \cup \Omega_I)$ of dimension J

$$V_c^h = \text{span}\{\phi_j(\mathbf{x})\}_{j=1}^{J_\Omega} \subset V_c(\Omega \cup \Omega_I) \text{ of dimension } J_\Omega$$

FEM FOR NONLOCAL MODELS



FEM nodes and basis

- $\{\tilde{\mathbf{x}}_j\}_{j=1}^J$: set of nodes, with $\{\tilde{\mathbf{x}}_j\}_{j=1}^{J_\Omega} \subset \Omega$ and $\{\tilde{\mathbf{x}}_j\}_{j=J_\Omega+1}^J \subset \overline{\Omega}_I$
- $\{\phi_j(\mathbf{x})\}_{j=1}^J$: piecewise-polynomial functions such that $\phi_j(\tilde{\mathbf{x}}_{j'}) = \delta_{jj'}$ for $j' = 1, \dots, J$
- FEM spaces: $V^h = \text{span}\{\phi_j(\mathbf{x})\}_{j=1}^J \subset V(\Omega \cup \Omega_I)$ of dimension J
 $V_c^h = \text{span}\{\phi_j(\mathbf{x})\}_{j=1}^{J_\Omega} \subset V_c(\Omega \cup \Omega_I)$ of dimension J_Ω

FEM solution and projection

$$u_h(\mathbf{x}) = \sum_{j=1}^J U_j \phi_j(\mathbf{x})$$

discrete weak formulation: projection of the weak form onto V^h , i.e.

$$\text{find } u_h(\mathbf{x}) \in V^h \text{ such that } A(u_h, \phi_j) = F(\phi_j) \quad \forall j = 1, \dots, J_\Omega$$

FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

$$\sum_{j=1}^J A(\phi_{j'}, \phi_j) U_j = F(\phi_{j'}) \quad \text{for } j' = 1, \dots, J,$$

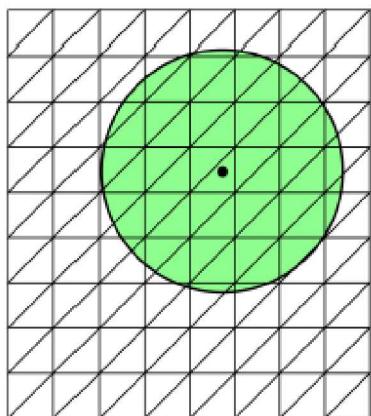
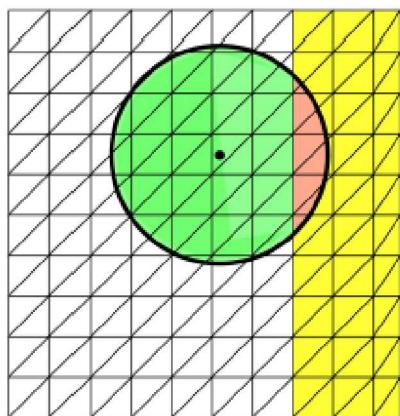
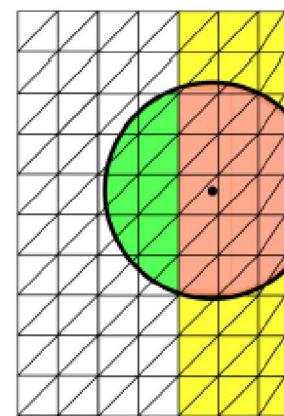
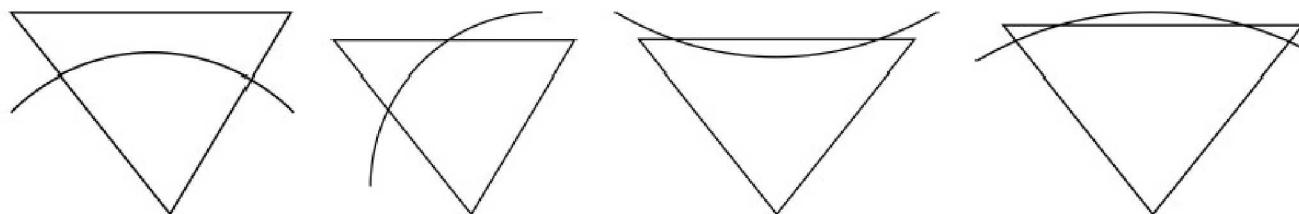
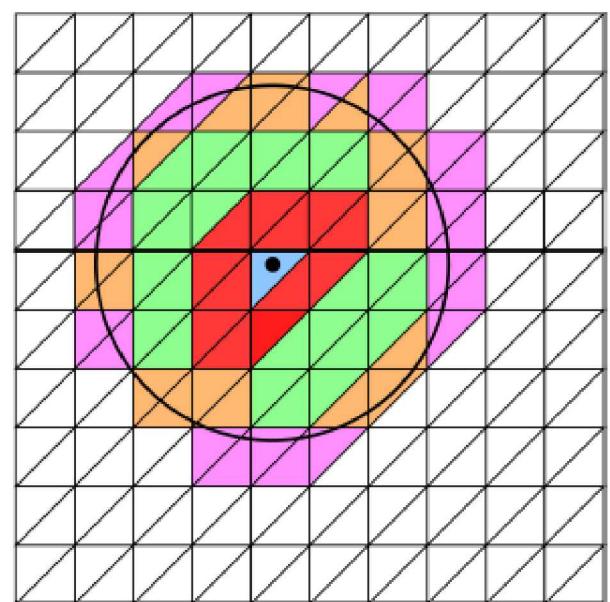
$$A(\phi_{j'}, \phi_j) = \sum_{k=1}^K \int_{\mathcal{E}_k} \int_{\overline{\Omega} \cap B_\delta(\mathbf{x})} (\phi_j(\mathbf{x}) - \phi_j(\mathbf{y})) (\phi_{j'}(\mathbf{x}) - \phi_{j'}(\mathbf{y})) \psi(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad j = 1, \dots, J, j' = 1, \dots, J_\Omega$$

FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

$$\sum_{j=1}^J A(\phi_{j'}, \phi_j) U_j = F(\phi_{j'}) \quad \text{for } j' = 1, \dots, J,$$

$$A(\phi_{j'}, \phi_j) = \sum_{k=1}^K \int_{\mathcal{E}_k} \int_{\overline{\Omega} \cap B_\delta(\mathbf{x})} (\phi_j(\mathbf{x}) - \phi_j(\mathbf{y})) (\phi_{j'}(\mathbf{x}) - \phi_{j'}(\mathbf{y})) \psi(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad j = 1, \dots, J, j' = 1, \dots, J_\Omega$$

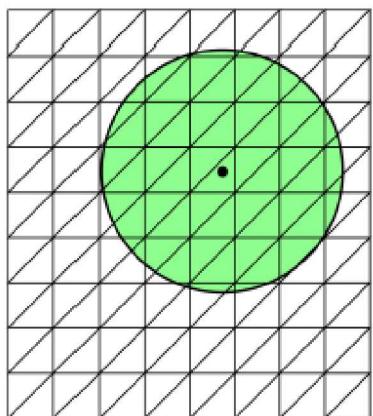
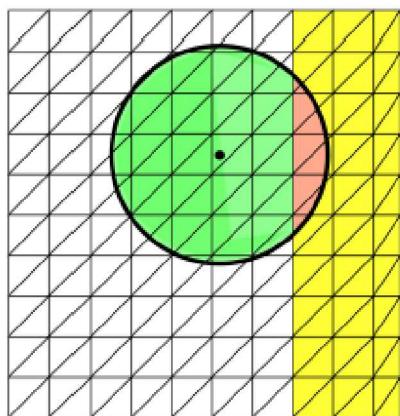
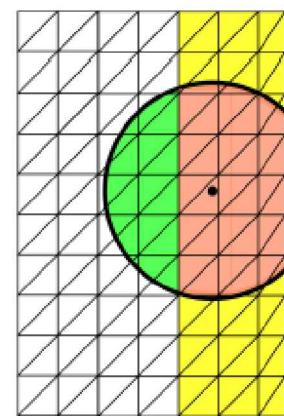
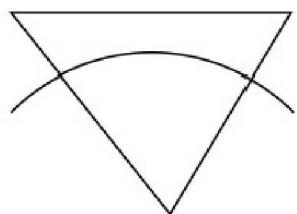
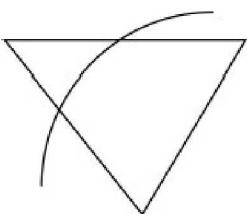
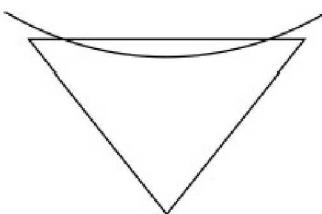
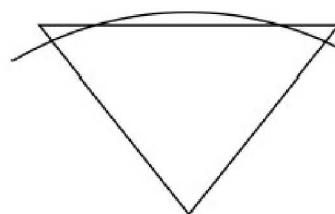
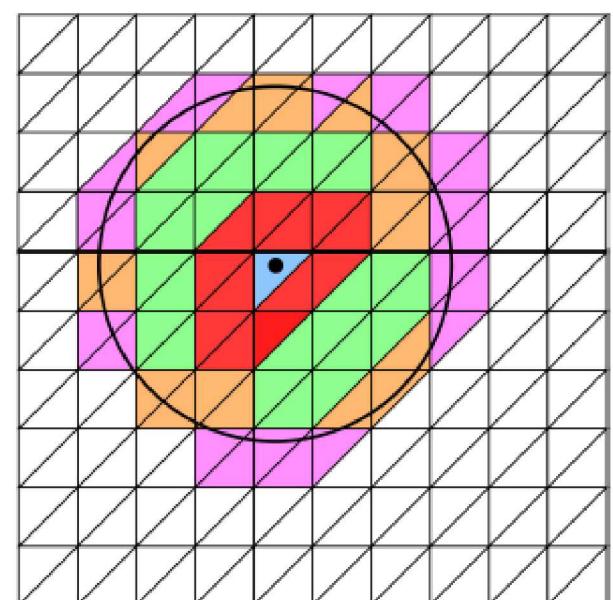


FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

$$\sum_{j=1}^J A(\phi_{j'}, \phi_j) U_j = F(\phi_{j'}) \quad \text{for } j' = 1, \dots, J,$$

$$A(\phi_{j'}, \phi_j) = \sum_{k=1}^K \int_{\mathcal{E}_k} \int_{\overline{\Omega} \cap B_\delta(\mathbf{x})} (\phi_j(\mathbf{x}) - \phi_j(\mathbf{y})) (\phi_{j'}(\mathbf{x}) - \phi_{j'}(\mathbf{y})) \psi(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad j = 1, \dots, J, j' = 1, \dots, J_\Omega$$



FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

$$\sum_{j=1}^J A(\phi_{j'}, \phi_j) U_j = F(\phi_{j'}) \quad \text{for } j' = 1, \dots, J,$$

$$A(\phi_{j'}, \phi_j) = \sum_{k=1}^K \int_{\mathcal{E}_k} \int_{\overline{\Omega} \cap B_\delta(\mathbf{x})} (\phi_j(\mathbf{x}) - \phi_j(\mathbf{y})) (\phi_{j'}(\mathbf{x}) - \phi_{j'}(\mathbf{y})) \psi(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad j = 1, \dots, J, j' = 1, \dots, J_\Omega$$

$$A_q(\phi_{j'}, \phi_j) = \sum_{k=1}^K \sum_{q=1}^Q w_{k,q} \int_{\overline{\Omega} \cap B_\delta(\mathbf{x}_{k,q})} (\phi_j(\mathbf{x}_{k,q}) - \phi_j(\mathbf{y})) (\phi_{j'}(\mathbf{x}_{k,q}) - \phi_{j'}(\mathbf{y})) \psi(\mathbf{x}_{k,q}, \mathbf{y}) d\mathbf{y}$$

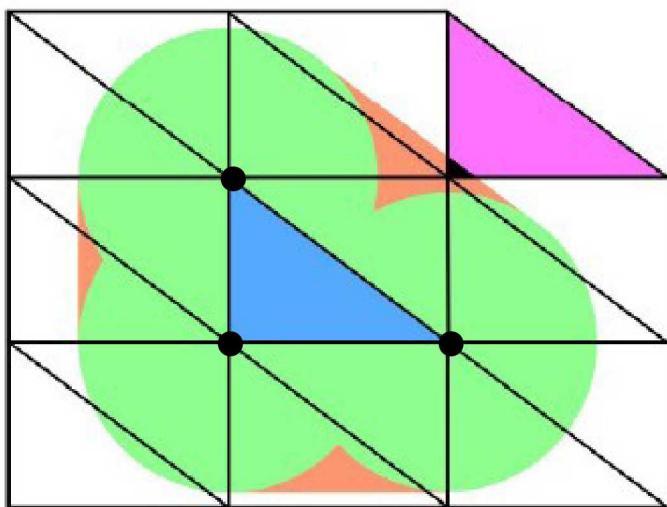
FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

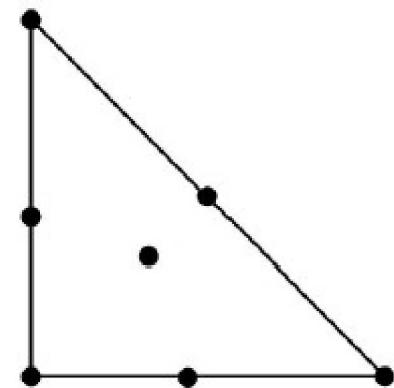
$$\sum_{j=1}^J A(\phi_{j'}, \phi_j) U_j = F(\phi_{j'}) \quad \text{for } j' = 1, \dots, J,$$

$$A(\phi_{j'}, \phi_j) = \sum_{k=1}^K \int_{\mathcal{E}_k} \int_{\overline{\Omega} \cap B_\delta(\mathbf{x})} (\phi_j(\mathbf{x}) - \phi_j(\mathbf{y})) (\phi_{j'}(\mathbf{x}) - \phi_{j'}(\mathbf{y})) \psi(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad j = 1, \dots, J, j' = 1, \dots, J_\Omega$$

$$A_q(\phi_{j'}, \phi_j) = \sum_{k=1}^K \sum_{q=1}^Q w_{k,q} \int_{\overline{\Omega} \cap B_\delta(\mathbf{x}_{k,q})} (\phi_j(\mathbf{x}_{k,q}) - \phi_j(\mathbf{y})) (\phi_{j'}(\mathbf{x}_{k,q}) - \phi_{j'}(\mathbf{y})) \psi(\mathbf{x}_{k,q}, \mathbf{y}) d\mathbf{y}$$



- outer triangle \mathcal{E}_k
- interaction region of \mathcal{E}_k
- interaction region of the vertexes
- a triangle intersected by $B_\delta(\tilde{\mathbf{x}})$



quadrature points for \mathcal{E}_k :
integrates cubics exactly and
takes care of missing triangles

FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

$$\sum_{j=1}^J A(\phi_{j'}, \phi_j) U_j = F(\phi_{j'}) \quad \text{for } j' = 1, \dots, J,$$

$$A(\phi_{j'}, \phi_j) = \sum_{k=1}^K \int_{\mathcal{E}_k} \int_{\overline{\Omega} \cap B_\delta(\mathbf{x})} (\phi_j(\mathbf{x}) - \phi_j(\mathbf{y})) (\phi_{j'}(\mathbf{x}) - \phi_{j'}(\mathbf{y})) \psi(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad j = 1, \dots, J, j' = 1, \dots, J_\Omega$$

$$A_q(\phi_{j'}, \phi_j) = \sum_{k=1}^K \sum_{q=1}^Q w_{k,q} \int_{\overline{\Omega} \cap B_\delta(\mathbf{x}_{k,q})} (\phi_j(\mathbf{x}_{k,q}) - \phi_j(\mathbf{y})) (\phi_{j'}(\mathbf{x}_{k,q}) - \phi_{j'}(\mathbf{y})) \psi(\mathbf{x}_{k,q}, \mathbf{y}) d\mathbf{y}$$

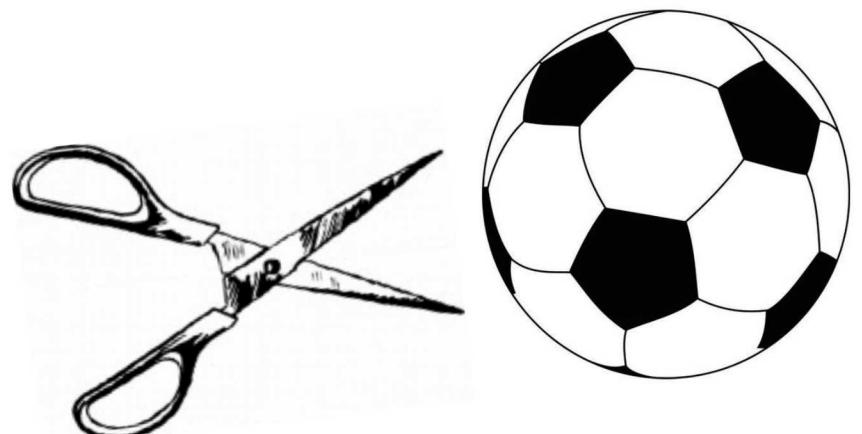
Note! Inner quadrature rules are also needed

(way too messy, not reported)

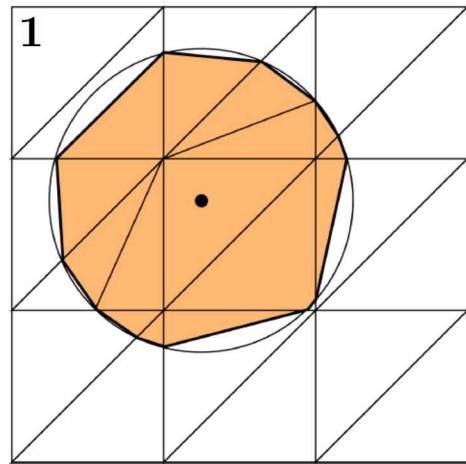
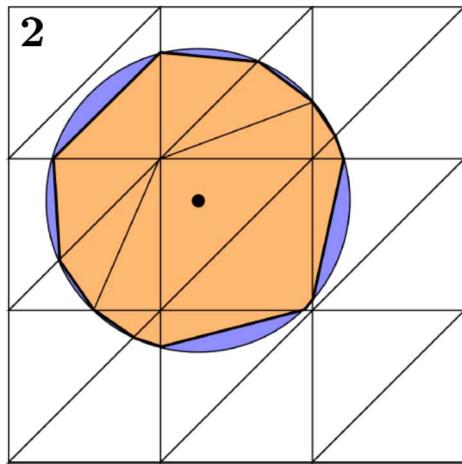
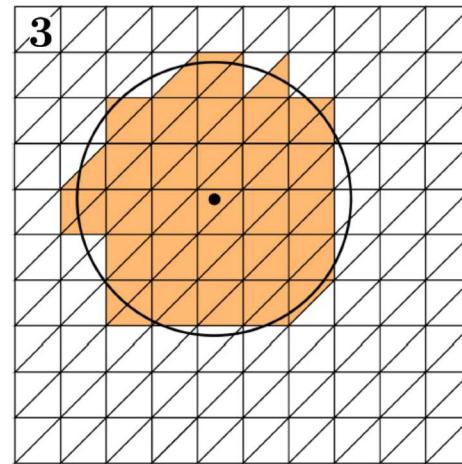
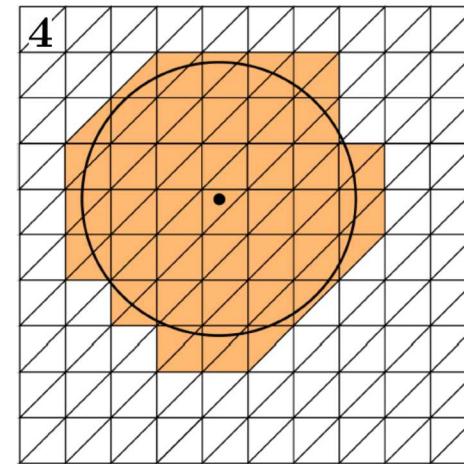
but luckily not as troublesome

APPROXIMATE BALLS

– C. Vollman, M. D'Elia, M. Gunzburger, V. Schulz, Reducing the cost of nonlocal FEM via approximation of nonlocal neighborhoods, *in progress.*

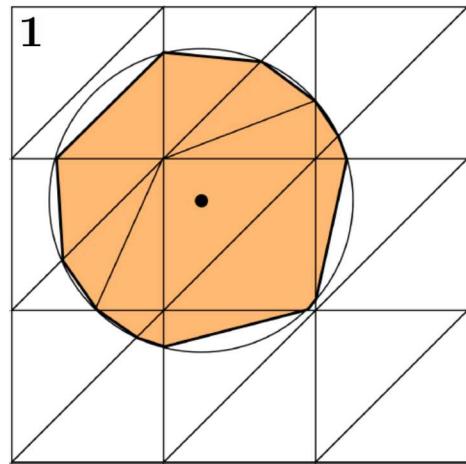
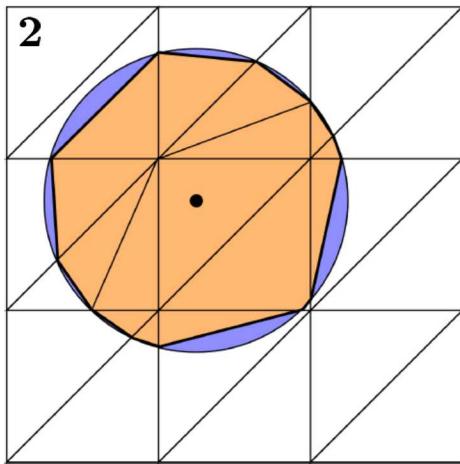
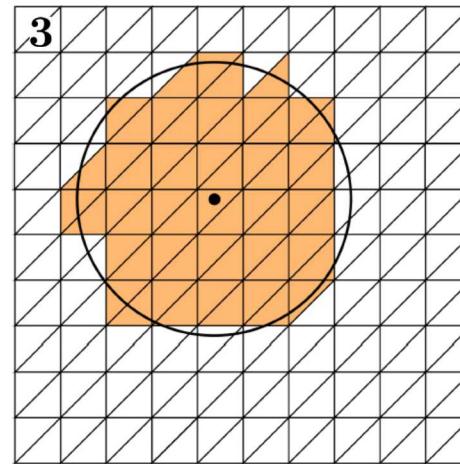
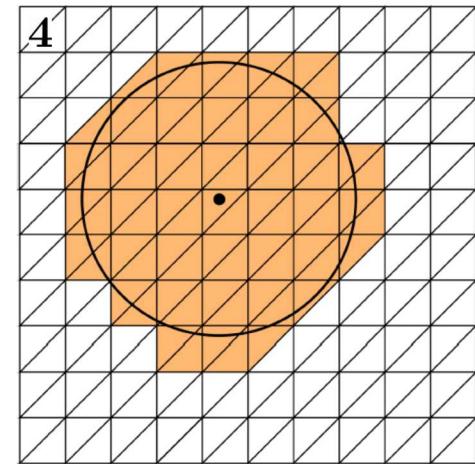


GEOMETRIC APPROXIMATION



- 1 Inscribed triangle-based **polygonal approximation** of balls
- 2 Inscribed cap-based **polygonal approximation** of balls
- 3 **Whole-triangle** approximation based on barycenter location
- 4 **Whole-triangle** approximation based on overlap with ball

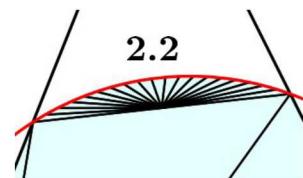
GEOMETRIC APPROXIMATION



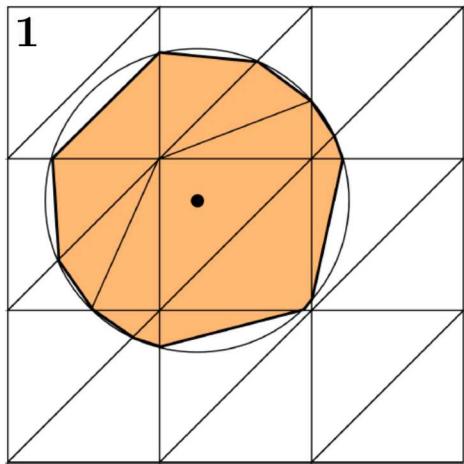
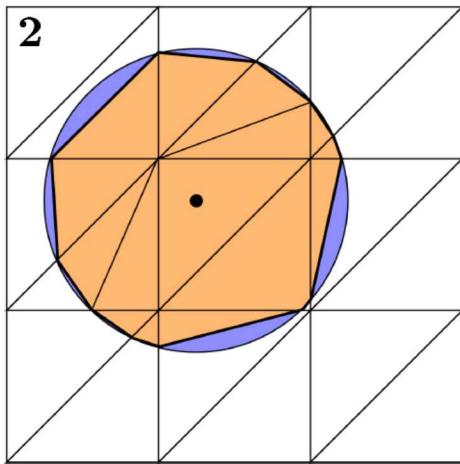
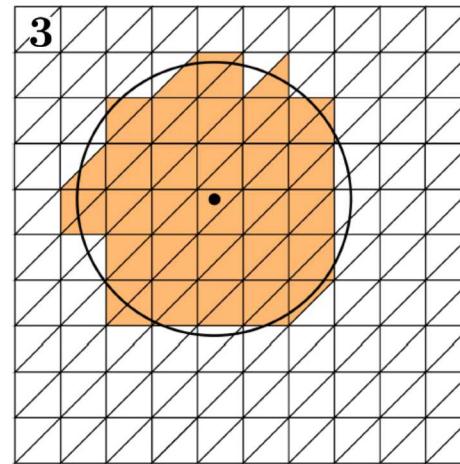
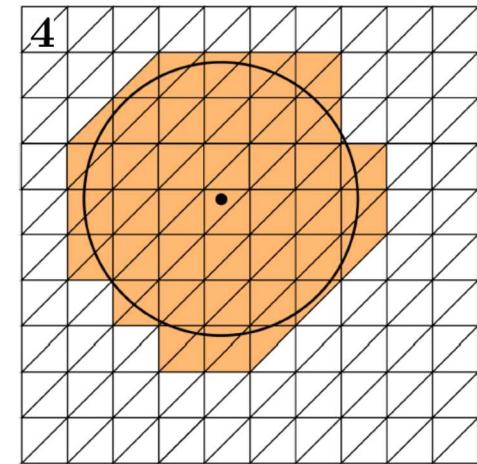
- 1 Inscribed triangle-based **polygonal approximation** of balls
- 2 Inscribed cap-based **polygonal approximation** of balls
- 3 **Whole-triangle** approximation based on barycenter location
- 4 **Whole-triangle** approximation based on overlap with ball

2.1 quadrature rules for caps

2.2 re-triangulation of caps

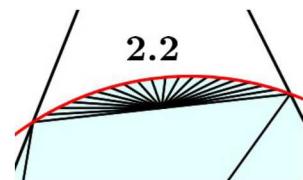


GEOMETRIC APPROXIMATION



- 1 Inscribed triangle-based **polygonal approximation** of balls
- 2 Inscribed cap-based **polygonal approximation** of balls
- 3 **Whole-triangle** approximation based on barycenter location
- 4 **Whole-triangle** approximation based on overlap with ball

- 2.1 quadrature rules for caps
- 2.2 re-triangulation of caps



Are we losing accuracy?

ACCURACY OF THE APPROXIMATION

Lemma:

Let $B_\delta(\mathbf{x})$ be the ℓ^2 ball and $B_{\delta,h}(\mathbf{x})$ be an approximation, and let u_h and \tilde{u}_h be the corresponding finite element solutions. Then, for exact outer and inner quadrature rules,

$$|||u_h - \tilde{u}_h||| \leq K |\Delta B_\delta(\bar{\mathbf{x}})| |||_{L^2(\Omega \cup \Omega_I)},$$

where K is a positive constant independent of δ and h , $\bar{\mathbf{x}} \in \Omega$ and ΔB_δ is the “difference ball”:

$$\Delta B_\delta = (B_\delta \setminus (B_\delta \cap B_{\delta,h})) \cup (B_{\delta,h} \setminus (B_\delta \cap B_{\delta,h}))$$

ACCURACY OF THE APPROXIMATION

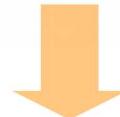
Lemma:

Let $B_\delta(\mathbf{x})$ be the ℓ^2 ball and $B_{\delta,h}(\mathbf{x})$ be an approximation, and let u_h and \tilde{u}_h be the corresponding finite element solutions. Then, for exact outer and inner quadrature rules,

$$|||u_h - \tilde{u}_h||| \leq K |\Delta B_\delta(\bar{\mathbf{x}})| |||_{L^2(\Omega \cup \Omega_I)},$$

where K is a positive constant independent of δ and h , $\bar{\mathbf{x}} \in \Omega$ and ΔB_δ is the “difference ball”:

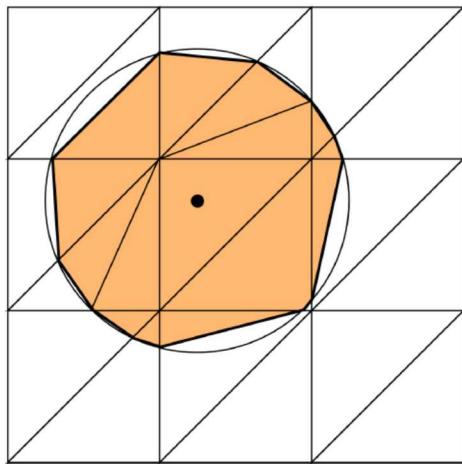
$$\Delta B_\delta = (B_\delta \setminus (B_\delta \cap B_{\delta,h})) \cup (B_{\delta,h} \setminus (B_\delta \cap B_{\delta,h}))$$



the overall accuracy depends on the volume of the difference ball !

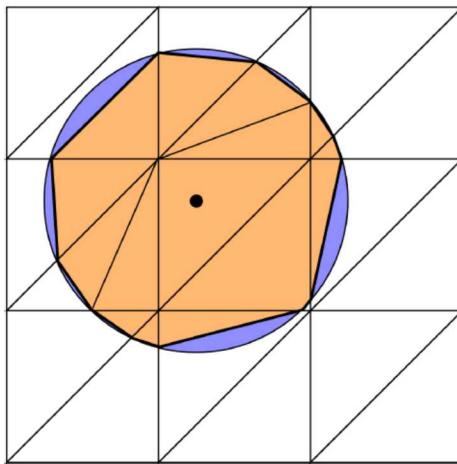
APPROXIMATION ERROR

Discretization: piecewise linear FEM spaces, optimal accuracy (h^2)



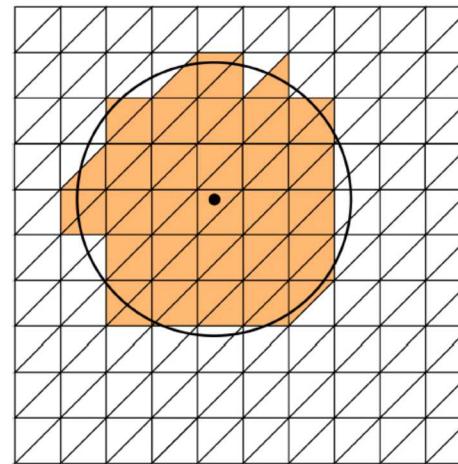
no caps

$$|\Delta B_\delta| = \mathcal{O}(h^2)$$



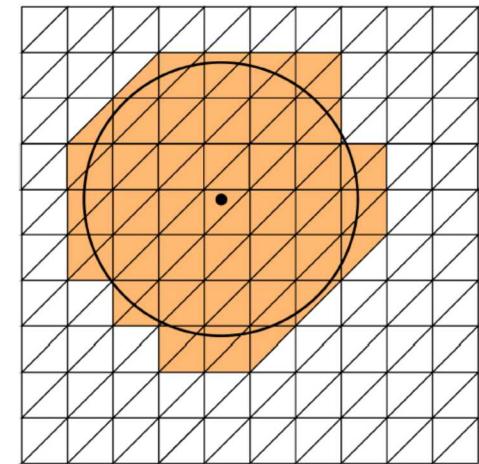
quad rules for caps
or retriangulation

$$|\Delta B_\delta| = \mathcal{O}(h^2)$$



whole triangles
based on barycenters

$$|\Delta B_\delta| = \mathcal{O}(h)$$

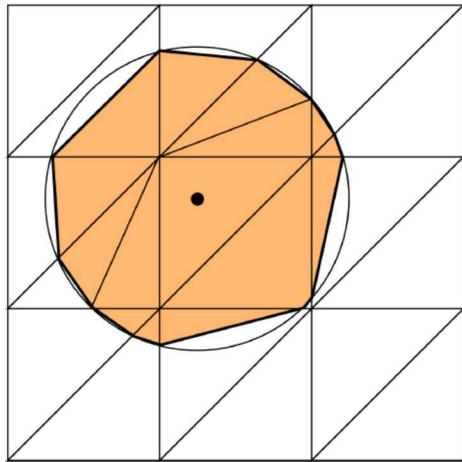


whole triangles
based on overlap

$$|\Delta B_\delta| = \mathcal{O}(h)$$

APPROXIMATION ERROR

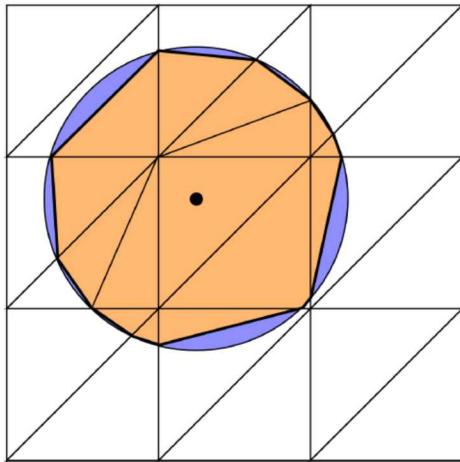
Discretization: piecewise linear FEM spaces, optimal accuracy (h^2)



no caps

$$|\Delta B_\delta| = \mathcal{O}(h^2)$$

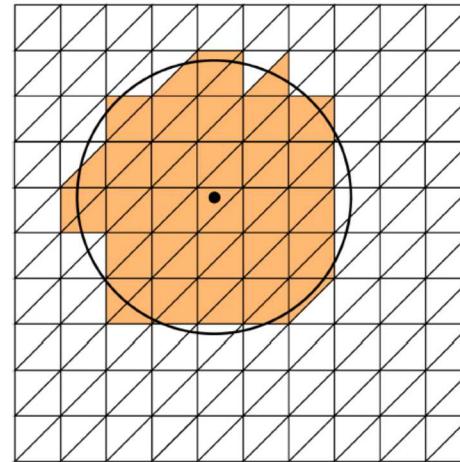
$$|||e||| = \mathcal{O}(h^2)$$



quad rules for caps
or retriangulation

$$|\Delta B_\delta| = \mathcal{O}(h^2)$$

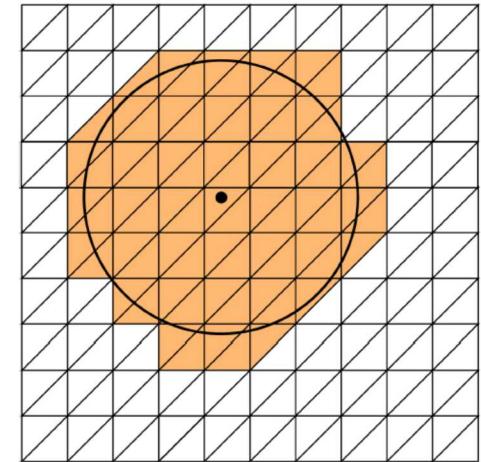
$$|||e||| = \mathcal{O}(h^2)$$



whole triangles
based on barycenters

$$|\Delta B_\delta| = \mathcal{O}(h)$$

$$|||e||| = \mathcal{O}(h)$$



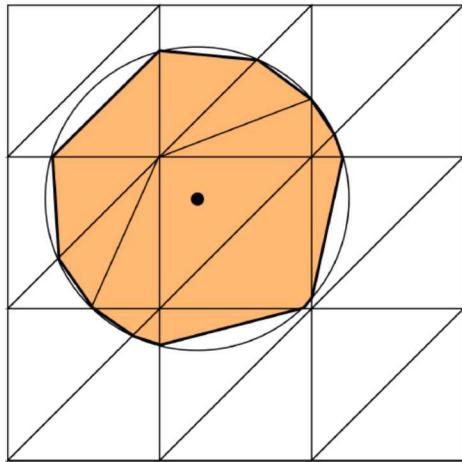
whole triangles
based on overlap

$$|\Delta B_\delta| = \mathcal{O}(h)$$

$$|||e||| = \mathcal{O}(h)$$

APPROXIMATION ERROR

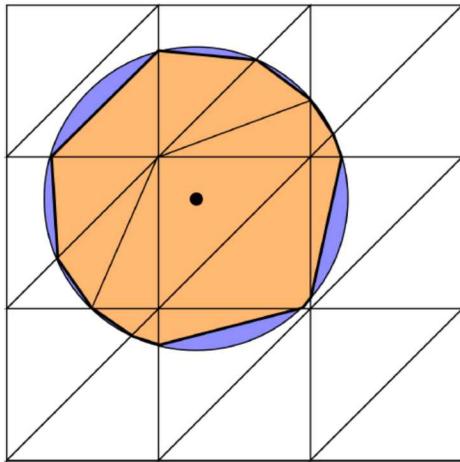
Discretization: piecewise linear FEM spaces, optimal accuracy (h^2)



no caps

$$|\Delta B_\delta| = \mathcal{O}(h^2)$$

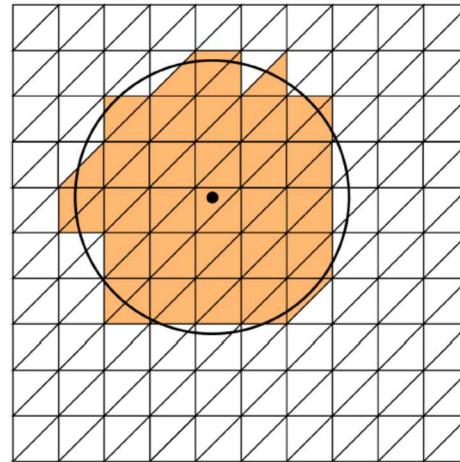
$$|||e||| = \mathcal{O}(h^2)$$



quad rules for caps
or retriangulation

$$|\Delta B_\delta| = \mathcal{O}(h^2)$$

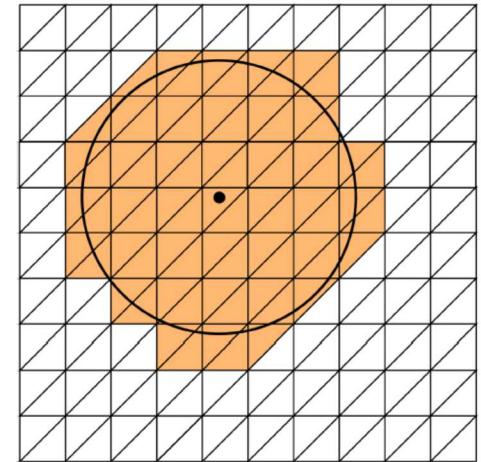
$$|||e||| = \mathcal{O}(h^2)$$



whole triangles
based on barycenters

$$|\Delta B_\delta| = \mathcal{O}(h^2) \text{ ??}$$

$$|||e||| = \mathcal{O}(h)$$

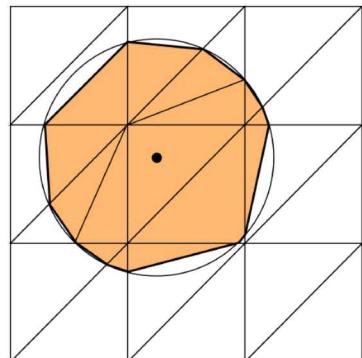


whole triangles
based on overlap

$$|\Delta B_\delta| = \mathcal{O}(h)$$

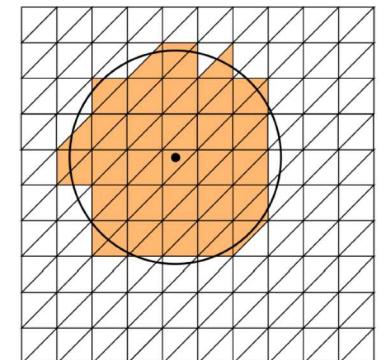
$$|||e||| = \mathcal{O}(h)$$

APPROXIMATION ERROR



1 No caps

3 Barycenter



h	L^2	rate	energy	rate
0.1	2.75e-2	-	1.29e-1	-
0.05	3.86e-3	2.83	1.88e-2	2.77
0.025	4.00e-4	3.26	3.37e-3	2.48
0.0125	2.60e-4	0.61	1.20e-3	1.48
0.00625	7.00e-5	1.86	3.20e-4	1.92

2.09

2.13

h	L^2	rate	energy	rate
0.1	1.71e-1	-	7.8e-1	-
0.05	6.00e-2	1.51	2.64e-1	1.56
0.025	1.51e-2	1.99	6.85e-2	1.94
0.0125	2.30e-3	2.71	1.07e-2	2.68
0.00625	4.60e-4	2.33	2.19e-3	2.29

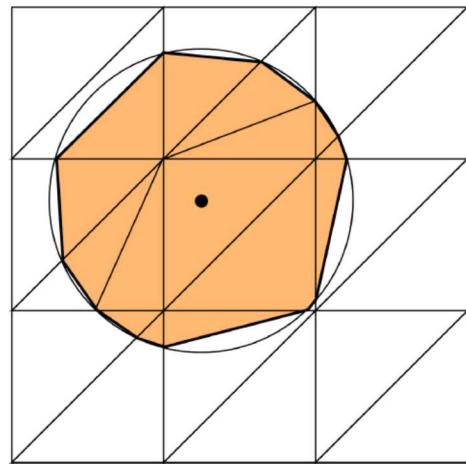
2.17

2.15

Note 1: rate seem erratic, an adaptive quad rule for the outer integral fixes this issue

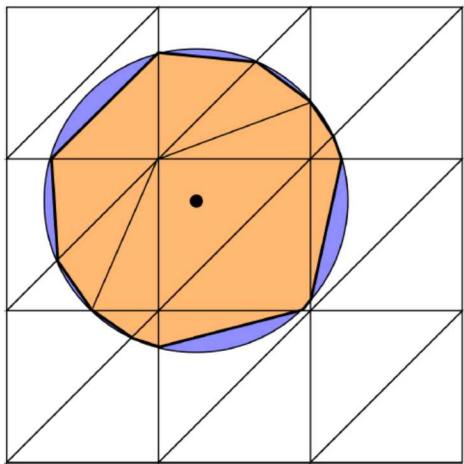
Note 2: CPU(no caps) $\sim 3 \times$ CPU(barycenter)

APPROXIMATION ERROR



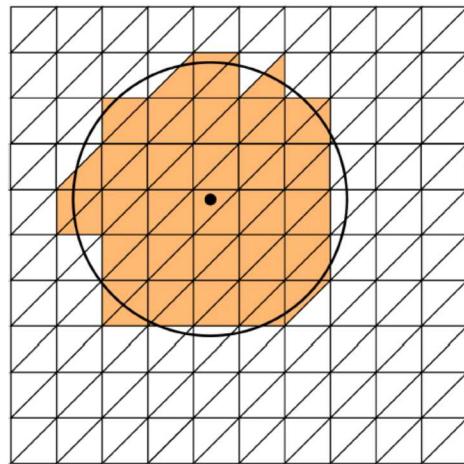
no caps

$$|||e||| = \mathcal{O}(h^2)$$



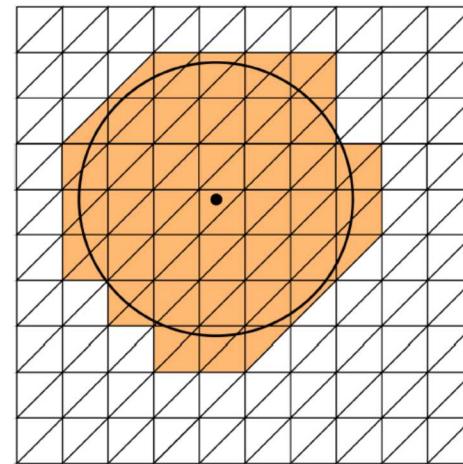
quad rules for caps
or retriangulation

$$|||e||| = \mathcal{O}(h^2)$$



whole triangles
based on barycenters

$$|||e||| = \mathcal{O}(h)$$



whole triangles
based on overlap

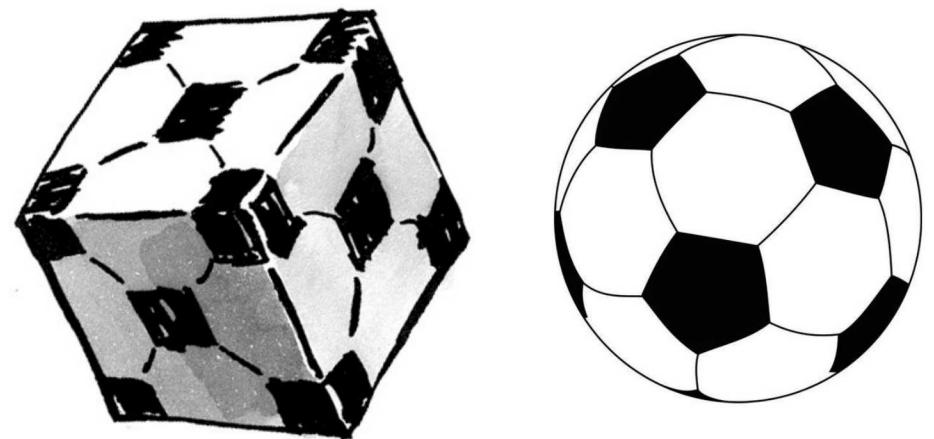
$$|||e||| = \mathcal{O}(h)$$

$$|||e||| = \mathcal{O}(h^2)$$

RELATED WORK

C. Vollman, M. D'Elia, M. Gunzburger, V. Schulz,

Nonlocal Continuum Models with Nonstandard Interaction Domains, *Book in progress.*

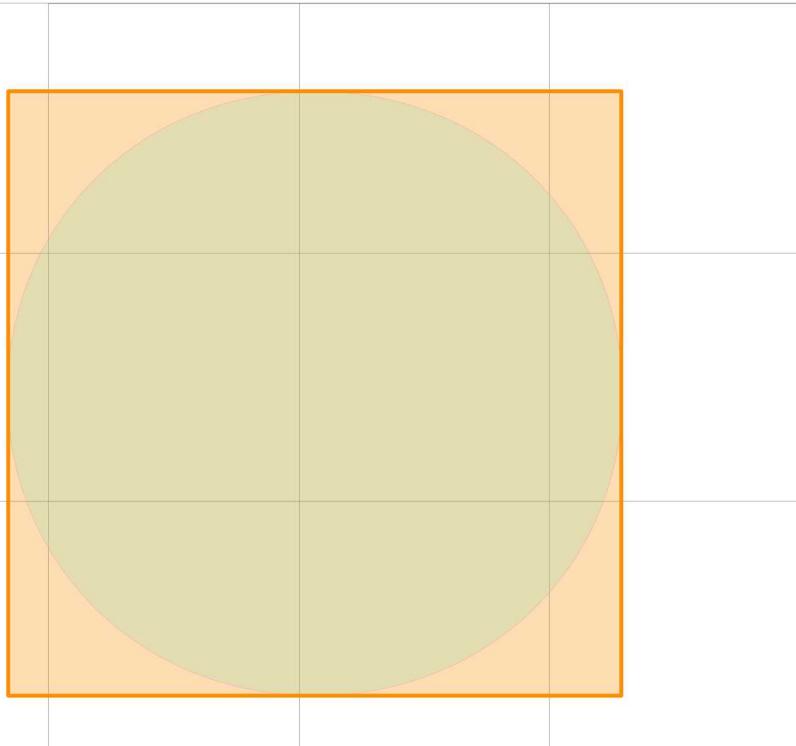


USING DIFFERENT BALLS

what if we consider a different ball?

⇒ triangulation w/o geometry errors

⇒ much easier re-triangulation!

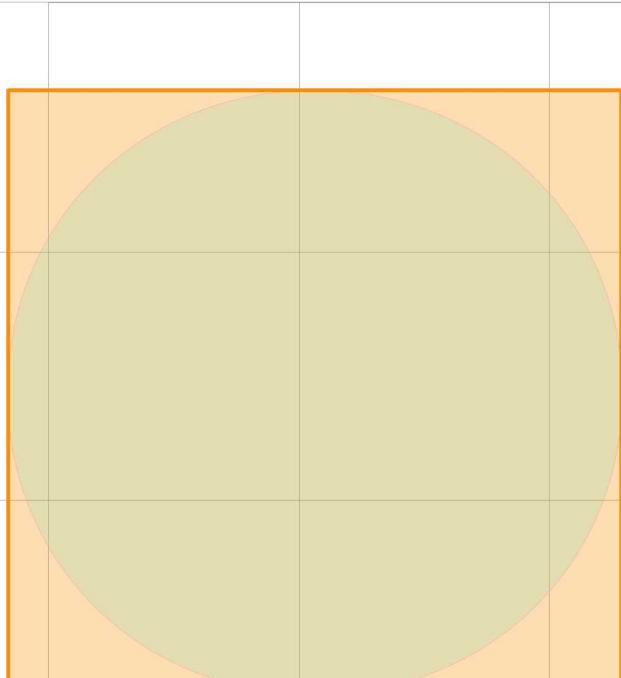


USING DIFFERENT BALLS

what if we consider a different ball?

⇒ triangulation w/o geometry errors

⇒ much easier re-triangulation!



this can be a modeling choice!

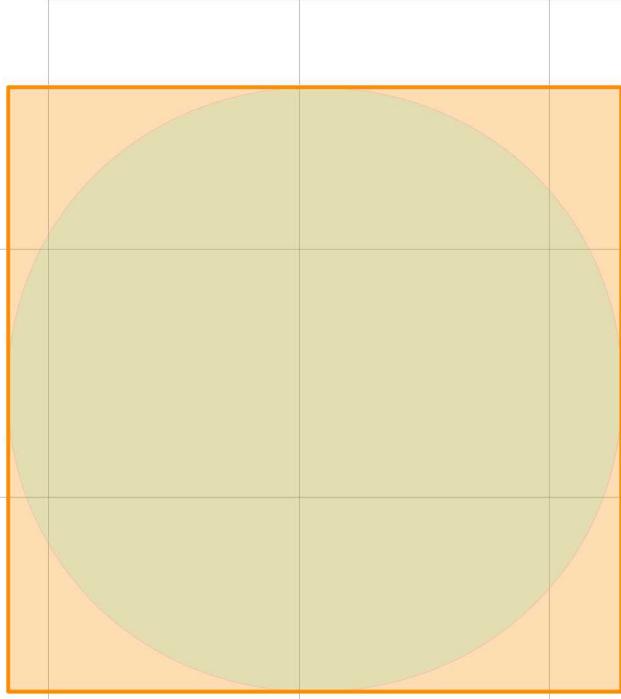
- when even round balls are not required by physics
- when the nature of the problem calls for square balls

USING DIFFERENT BALLS

what if we consider a different ball?

⇒ triangulation w/o geometry errors

⇒ much easier re-triangulation!



this can be a modeling choice!

- when even round balls are not required by physics
- when the nature of the problem calls for square balls

Important questions

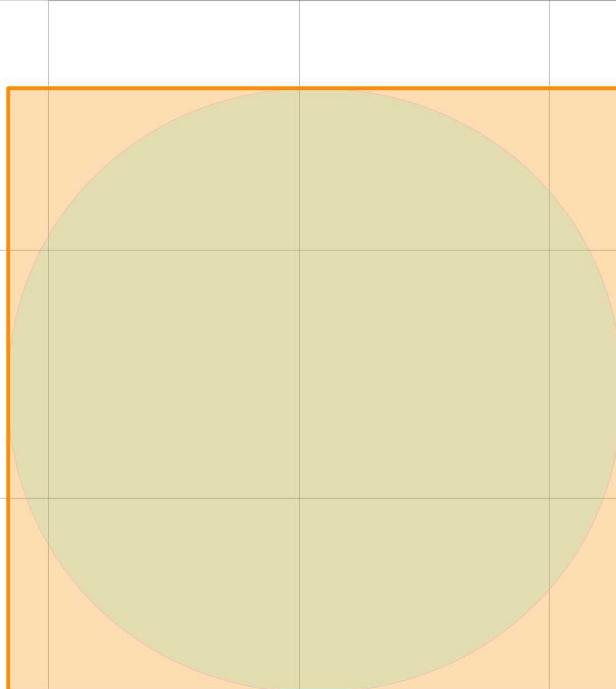
0. does the nonlocal calculus still apply?
1. do we recover local operators as $\delta \rightarrow 0$?
2. do we recover fractional operators as $\delta \rightarrow \infty$?
3. are there applications?

USING DIFFERENT BALLS

what if we consider a different ball?

⇒ triangulation w/o geometry errors

⇒ much easier re-triangulation!



this can be a modeling choice!

- when even round balls are not required by physics
- when the nature of the problem calls for square balls

Important questions

0. does the nonlocal calculus still apply?
1. do we recover local operators as $\delta \rightarrow 0$?
2. do we recover fractional operators as $\delta \rightarrow \infty$?
3. are there applications?

Thank you

