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NONLOCAL MODELS AND RELATED CHALLENGES



APPLICATIONS

e nonlocal models for continuum mechanics

e stochastic jump processes

e nonlocal heat conduction

e subsurface flow/porous media R

e image processing

Buades, 2010
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NONLOCAL DIFFUSION OPERATORS

how do they look?

Lul@) = [ (uly) - u(@)) 2(@.y) dy

what do we want to solve?

Lu=f

+ volume contraints
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what do we want to solve?

Lu=f

+ volume contraints
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CHALLENGES

Modeling: e prescription of volume constraints
e choice of kernel functions

e modeling of nonlocal interfaces

Computations: e numerical solution can be prohibitively expensive

e implementation is troublesome
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FEM FOR NONLOCAL MODELS

Meshfree methods: popular means for discretizing nonlocal equations

Variational methods:

e ease in dealing with complicated domains

e higher-order convergence rates

o adaptive meshing methods (for the treatment of, e.g., discontinuities)

e rigorous mathematical treatment of operator and solution properties
(convergence, stability, ...)

however... additional challenges
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BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations
e determining intersections
e computing integrals of round domains

e find appropriate quadrature rules

M. D'Elia — mdelia@sandia.gov @ Sandia National Laboratories



BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations
e determining intersections
e computing integrals of round domains

e find appropriate quadrature rules

M. D'Elia — mdelia@sandia.gov @ Sandia National Laboratories



BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations
e determining intersections
e computing integrals of round domains

e find appropriate quadrature rules '

M. D'Elia — mdelia@sandia.gov @ Sandia National Laboratories



CURRENT STRATEGIES

triangles: e triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

e approximation of the ball with a polygon (Bond, SNL)

e inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)

/
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CURRENT STRATEGIES

triangles: e triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

e approximation of the ball with a polygon (Bond, SNL)

e inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)

[these may be unnecessary, inaccurate or inefﬁcient!]

74

7
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CONTRIBUTIONS OF THIS WORK

e introduce approximate neighborhoods that facilitate the assembly procedure
and mitigate the computational effort

e quantify the approximation error and its contribution to the overall accuracy
e provide guidance on the choice of quadrature rules

e introduce a cheap and easy-to-implement approximation that
— preserves optimal accuracy

— improves the computational performance
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CONTRIBUTIONS OF THIS WORK

e introduce approximate neighborhoods that facilitate the assembly procedure
and mitigate the computational effort

e quantify the approximation error and its contribution to the overall accuracy
e provide guidance on the choice of quadrature rules

e introduce a cheap and easy-to-implement approximation that
— preserves optimal accuracy

— improves the computational performance

' making variational methods a preferable alternative?
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WEAK FORM AND ITS DISCRETIZATION



FEM FOR NONLOCAL MODELS

Weak form: for u =0 in Qj

0:/(—£u—f)vda:: / / (u(y)—u(m))(v(y)—fu(:c))'y(zc,y)dydw—/fvd:c
Q QU QU Q

A(u, fu) = F(’U), Ve Vc(Q U QI) nonlocal Green’s identity [Du et al., 2012]

Energy norm and spaces:

— “energy norm”: |||w||| = v/A(w,w) (norm on V.(2U Qj))
— energy space: V(QUQ;) ={w e L*(QU Q) : |||lw||] < oo}

— constrained energy space: V.(QU Q) ={w eV : w=0on Q}
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FEM FOR NONLOCAL MODELS

Weak form: for u =0 in Qj ”Id 4
0= [ (—Lu—flvdx = (u(y)—u(z)) (v(y)—v(x))y(z, y)dyde— | fodx
| Jod, |

A(u, fu) = F(’U), Ve Vc(Q U QI) nonlocal Green’s identity [Du et al., 2012]

Energy norm and spaces:
— “energy norm”: |||w||| = v/A(w,w) (norm on V.(2U Qj))
— energy space: V(QUQ;) ={w e L*(QU Q) : |||lw||] < oo}

— constrained energy space: V.(QU Q) ={w eV : w=0on Q}

Kernels: v(x,y) = ¢(way)XBa(w)(y)
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FEM FOR NONLOCAL MODELS

FEM nodes and basis =
—{®;}/_,: set of nodes, with {ij}jgl C Q and {ij}}‘]:JQH C Qr
—{¢j(x) ‘j]:l: piecewise-polynomial functions such that ¢;(x;/) =, for j' =1,...,J

~ FEM spaces: V" = span{¢;(x)}/_; C V(QU Q) of dimension .J

Vi = span{@(zc)}jﬁl C V.(QU Q) of dimension Jgq
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FEM FOR NONLOCAL MODELS Q

FEM nodes and basis =
—{®;}/_,: set of nodes, with {ij}jgl C Q and {ij}}‘]:JQH C Qr
—{¢j(x) ‘j]:l: piecewise-polynomial functions such that ¢;(x;/) =, for j' =1,...,J

— FEM spaces: V" = span{¢;(z)}/_, C V(QUQr) of dimension J

Vi = span{@(:c)}jﬁl C V.(QU Q) of dimension Jgq

FEM solution and projection

J
up () = ; Uj¢;(x)

discrete weak formulation: projection of the weak form onto V", i.e.

find up(x) € V" such that  A(un, ¢;) = F(¢;) Vi=1,..Jq
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FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

S 1 Al ¢))U; = F(¢y) forj' =1,...,J,

Ay, ;) Z//@ by ()= (1)) (=

k=1
€k QNBs(x
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FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

Z;jzl A(qu/,(,bj)Uj — F(gbjl) for j/ = 1, “oae oy J,

Moo= [ [ (e b1 @)~y @) b@ )y T=L S =1

k=lg, QNBs(x)
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FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

Sy Al )U; = F(¢y) forj' =1,...,J,

A(dy, ;) Z/ / CT O TR S S e DR N R U

k=l QnB;s(x)

Ay(65, ) Zzwk,q / (65 (e = (o (e ol = () o ool

k=1 qg=1
QﬂBg(mk,q)

I outer triangle &,

interaction region of &

[ L

interaction region of the vertexes .
quadrature points for &:

I a triagle intersected by Bs(T) integrates cubics exactly and
takes care of missing triangles
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FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

Sy Al )U; = F(¢y) forj' =1,...,J,

A(dy, ;) Z/ / (6:(2)—6;@)) Bir@—bs @)@ )y F=1....07 =1,....Ja

b=l GnBs(a)

Note! Inner quadrature rules are also needed

(way too messy, not reported)

but luckily not as troublesome
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APPROXIMATE BALLS

— C. Vollman, M. D'Elia, M. Gunzburger, V. Schulz, Reducing the cost of nonocal

FEM via approximation of nonlocal neighborhoods, in progress.




GEOMETRIC APPROXIMATION

i | 2 3

4 7

2 XV

1 Inscribed triangle-based polygonal approximation of balls
2 Inscribed cap-based polygonal approximation of balls
3 Whole-triangle approximation based on barycenter location

4 Whole-triangle approximation based on overlap with ball
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A,

1 Inscribed triangle-based polygonal approximation of balls
2 Inscribed cap-based polygonal approximation of balls
3 Whole-triangle approximation based on barycenter location

4 Whole-triangle approximation based on overlap with ball
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2.2 re-triangulation of caps

2.2
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GEOMETRIC APPROXIMATION

i |

4

2

7

A,

1 Inscribed triangle-based polygonal approximation of balls
2 Inscribed cap-based polygonal approximation of balls
3 Whole-triangle approximation based on barycenter location

4 Whole-triangle approximation based on overlap with ball

Are we losing accuracy? ‘i

M. D'Elia — mdelia@sandia.gov

2.1 quadrature rules for caps

2.2 re-triangulation of caps

2.2
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ACCURACY OF THE APPROXIMATION

Lemma:

Let Bs(x) be the £2 ball and Bs () be an approzimation, and let up and uy, be the corresponding
finite element solutions. Then, for exact outer and inner quadrature rules,

lun — ||| < K [ABs(@)] [|[[22(0u01);
where K s a positive constant independent of § and h, ® € Q and ABgy is the “difference ball”:

AB(S — (B(s \ (B5 M B(g,h)) U (B(g,h \ (35 M Bg,h))
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ACCURACY OF THE APPROXIMATION

Lemma:

Let Bs(x) be the £2 ball and Bs () be an approzimation, and let up and uy, be the corresponding
finite element solutions. Then, for exact outer and inner quadrature rules,

lun — ||| < K [ABs(@)] [|[[22(0u01);
where K s a positive constant independent of § and h, ® € Q and ABgy is the “difference ball”:

AB(S — (B(s \ (B5 M B(g’h)) U (B(g,h \ (B(s M Bg,h))

the overall accuracy depends on the volumeof the difference ball g
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APPROXIMATION ERROR

Discretization: piecewise linear FEM spaces, optimal accuracy (h?)

/ 474 v
ﬁ // //
_/ % %
no caps quad rules for caps whole triangles whole triangles
or retriangulation based on barycenters based on overlap
ABs| = O(h?)  |ABs| = O(h?) ABs| = O(h) |ABs| = O(h)
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APPROXIMATION ERROR

Discretization: piecewise linear FEM spaces, optimal accuracy (h?)

/ - -
/] /
) ,/ ,,
y % /
— 7 4
no caps quad rules for caps whole triangles whole triangles
or retriangulation based on barycenters based on overlap
|ABs| = O(h?) |ABs| = O(h?) |AB;s| = O(h?) 77 |ABs| = O(h)
lell] = O(h?) llel|| = O(R?) llefll = O(h) [lle]l] = O(h)
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APPROXIMATION ERROR

1 No caps 3 Barycenter

7. /

_— %
h 12 rate  energy  rate h L? rate  energy  rate
0.1 2.75e-2 - 1.29e-1 - 0.1 1.71e-1 |- Z.6es18
0.05 3.86e-3 2.83  1.88e2 2.77 0.05 6.00e-2  1.51 2.64e-1  1.56
0.025  4.00e-4 3.26  3.37e-3 2.48 0.025 1.5le-2 199  6.85e-2 194
0.0125 2.60e-4 0.61  1.20e-3 1.48 0.0125  2.30e-3 2.71 1.07e-2  2.68
0.00625 7.00e-5 1.86  3.20e-4 1.92 0.00625 4.60e-4 2.33  2.19e-3  2.29
2.09 2.13 2.17 2.15

Note 1: rate seem erratic, an adaptive quad rule for the outer integral fixes this issue

Note 2: CPU(no caps) ~ 3xCPU(barycenter)
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APPROXIMATION ERROR

/L v 4 7 )
o a0

g g 7 2

no caps quad rules for caps whole triangles whole triangles
or retriangulation based on barycen@ based on overlap
lell] = O(h?) llell] = O(h?) [lle]l] = O(h) llel]] = O(h)

@ [lelll = O(R?)
v
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RELATED WORK

C. Vollman, M. D'Elia, M. Gunzburger, V. Schulz,

Nonlocal Continuum Models with Nonstandard Interaction Domains, Book in progress.




USING DIFFERENT BALLS

what if we consider a different ball?
= triangulation w/o geometry errors

= much easier re-triangulation!
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what if we consider a different ball?
= triangulation w/o geometry errors

= much easier re-triangulation!

this can be a modeling choice!

e when even round balls
are not required by physics

e when the nature of the
problem calls for square balls
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= triangulation w/o geometry errors

= much easier re-triangulation!
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this can be a modeling choice!

e when even round balls
are not required by physics

e when the nature of the

problem calls for square balls

Important questions

0. does the nonlocal calculus still apply?

1. do we recover local operators as § — 07

2. do we recover fractional operators as 6 — 007

3. are there applications?
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this can be a modeling choice!

e when even round balls
are not required by physics

e when the nature of the
problem calls for square balls

Important questions
0. does the nonlocal calculus still apply? @
1. do we recover local operators as § — 07 @

2. do we recover fractional operators as § — o0o0? a

3. are there applications? m
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Thank you






