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NONLOCAL MODELS AND RELATED CHALLENGES



APPLICATIONS

• nonlocal models for continuum mechanics

• stochastic jump processes

nonlocal heat conduction

• subsurface flow/porous media

• image processing
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NONLOCAL DIFFUSION OPERATORS

how do they look?

Lu(x) = 16 (u(y) — u(x)) -y (x , y) dy
Rn

what do we want to solve?

ru = f

+ volume contraints
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NONLOCAL DIFFUSION OPERATORS

how do they look?

Lu(x) = (u(y) — u(x)) -y (x , y) dy
IRn

what do we want to solve?

ru = f

+ volume contraints

"standard" model
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CHALLENGES

Modeling: • prescription of volume constraints

• choice of kernel functions

• modeling of nonlocal interfaces

Computations: • numerical solution can be prohibitively expensive

• implementation is troublesome
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FEM FOR NONLOCAL MODELs

Meshfree methods: popular means for discretizing nonlocal equations

Variational methods:

• ease in dealing with complicated domains

• higher-order convergence rates

• adaptive meshing methods (for the treatment of, e.g., discontinuities)

• rigorous mathematical treatment of operator and solution properties
(convergence, stability, ...)

however... additional challenges
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BALLS AND MESHES

Challenge: matrix assembling using FEM in 2D and 3D simulations

• determining intersections

• computing integrals of round domains

• find appropriate quadrature rules
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CURRENT STRATEGIES

triangles: • triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

• approximation of the ball with a polygon (Bond, SNL)

• inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)
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CURRENT STRATEGIES

triangles: • triangulation of caps (Xu, Google Inc., Stoyanov, ORNL)

• approximation of the ball with a polygon (Bond, SNL)

• inclusion of partial triangles based on barycenters (Borthagaray, U. Maryland)

[these may be unnecessary, inaccurate or inefficient!
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CONTRIBUTIONS OF THIS WORK

introduce approximate neighhorhoods that facilitate the assembly procedure
and mitigate the computational effort

quantify the approximation erro= and its contribution to the overall accuracy

provide guidance on the choice of quadrature rules

introduce a cheap and easy-to-implement approximation that

preserves optimal accuracy

— improves the computational performance
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CONTRIBUTIONS OF THIS WORK

• introduce approximate neighborhoods that facilitate the assembly procedure
and mitigate the computational effort

quantify the approximation error and its contribution to the overall accuracy

• provide guidance on the choice of quadrature rules

introduce a cheap and easy-to-implement approximation that

— preserves optimal accuracy

— improves the computational performance

making variational methods a preferable alternative?
•
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WEAK FORM AND ITS DISCRETIZATION



FEM FOR NONLOCAL MODELS

\

Weak form: for u = 0 in Qi

0 = I (— ,Cu— f)v dx = f f (u(y) —u(x)) (v (y) — v (x))7(x , y)dydx — f fv dx

s-2 Qus-2, Qus -2, s-2

A(u, v) = F (v) , V v E Ve(Q U Qi)

Energy norm and spaces:

"energy norm": Illwill — -VA(w, w) (norm on 17,(Q U Qi-))

— energy space: V(Q U Qi) = {w E L2(Q U S-2/) : 1 w 1 1 < Do}

Q

QI

nonlocal Green's identity [Du et al., 2012]

— constrained energy space: Ve(Q U Q/) = {w E V : w=0 on Qi-}
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FEM FOR NONLOCAL MODELS

Weak form: for u = 0 in SZI

0 = I (—,Cu— f)v dx = (u(y) —u(x)) (y(y) —y (x))7 (x , y)cly dx — fy dx

SZ QuQ, QuQi

A(u, = F (y), b v E Ve(Q U S-2/-)

Energy norm and spaces:

"energy norm": lilwW = A(w, , w) (norm on VC(Q U Qi))

— energy space: V(Q U Qi) = {w E L2 (Q U Qi) : 1 w 1 1 <

nonlocal Green's identity [Du et al.. 2012]

constrained energy space: VC(Q U Q/) = {w E V : w=0 on S-2/}

Kernels: -y (x , y) = 11)(x , y) X B o (x)(y)
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FEM FOR NONLOCAL MODELS

FEM nodes and basis

— {--i}-3!_1: set of nodes, with {--j}iJL21 c SZ and {--j};!__ jc,+1 c SZI

{0j(x)}3L1: piecewise-polynomial functions such that 0j(ki,) = 6jj, for j' 1 , . . . , J

— FEM spaces: Vh = span{0j(x)}j_1 c V(Q U Qi) of dimension J

Veh = span{q5j(x)}.121 c Ve(Q U Qi) of dimension JQ
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FEM FOR NONLOCAL MODELS

FEM nodes and basis

— 1: set of nodes, with {--j}Pi c SZ and {--j};!__ jc,+1 c SZI

{0j(x)}3L1: piecewise-polynomial functions such that 0j(ki,) = 6jj, for j' 1, . . . , J

— FEM spaces: Vh = span{0j(x)}j_1 c V(Q U Qi) of dimension J

Veh = span{q5j(x)}.121 c Ve(Q U Qi) of dimension JQ

FEM solution and projection

J

Uh(X) = E ujoi(x)
j =1

discrete weak formulation: projection of the weak form onto Vh, i.e.

find uh(x) E Vh such that A(uh, 0i) = F (0 j) V j = 1, ...Jc2
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FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

E; 1 A(0 ii 1 0 i)U j = F ((pf) for j' =1,...,J,

K

A(0,1/ 1 0.1) E f f (0i(x)-0.,(y)) (of (x)-0J, (y))0(x, y)dy j — 1, ... , J, ji — 1, . . . , JQ
k=1 c -

c-k C2nB8(x)

M. D'Elia — mdelia@sandia.gov 0 Sandia National Laboratories



FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

E: 0j)uj = F(03/) for Y = 1, . . . , J ,

K r r
A(0.1110i) E (oi(x)-oi(y))(oi,(x)-of(y)wx,Y)dY j = 1, , — 1, . . . , Jc2

k=1
S-2nBå (x)

A
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FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

E:1 A(oi„ 0j)uj = F(03/) for Y = 1, . . . , J,

A(0.1' 0i) = f (03 (X)-03 (Y)) (0i1(X)-0.1' (Y))1/)(X1 Y)dY j = 1, , — 1, . . . , Jc2
k=1

E k (-1B å (X)

A
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FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

E:1 A(0i, , oi)ui = F(0i,) for ji = 1, , J,

K

A(( I' °..1) = (oi(x)—oi(y))(oi,(x)-0i1(Y))0(xl Y)dY
k=1

k S2nBS (x)

Aq (03, , 03) =
K Q

E W k ,q
q=1

3 = 1, . . . , J, 31 = 1, . . . ,

f (0j (X k ,q) — cb (y)) (0j, (X k,q) — .1' (y))0(xk,q,y)dy

~nBs(x")
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FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

A(0j,, (pi)ui = F(0i,) for ji = 1, , J,

A(0.1' 0i) = 2

k=1

Aq (03, , 03) =

ek

K Q

ElWk,q

(0.1(x)-0i (Y)) (0.1'(x)—Oit (Y))0(x Y)dY j = 1, . . . , J, = 1, . . . ,

11E4 (x)

q=1

(q5j(Xk,q) ocb (y)) (Of (xk,q) — Oji (y))0(xk,q, y)dy

C2nBå(xk,q)

• outer triangle Ek

• interaction region of Ek

interaction region of the vertexes

111 a triagle intersected by B6(i)

quadrature points for Ek:

integrates cubics exactly and

takes care of missing triangles
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FEM FOR NONLOCAL MODELS

Elements, balls and quadrature rules

A(0i, , oi)ui = F(0i,) for ji = 1, , J,

K

A(( °..1) = E (oi(x)-oi(y))(oi,(x)-of(y))o(x, y)dy j = 1, . J, = 1, . . . , J-Q
k=1, Q—ck a/36(x)

K Q

Aq(0 ji j) = E wk,,

k=1 q=1
f (0j (X k,q) — cb j(y)) (0j/(xk,q) — 0j,(y))0(xk,q,y)dy

c-2nBö(xk,q)

Note! Inner quadrature rules are also needed

(way too messy, not reported)

but luckily not as troublesome
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APPROXIMATE BALLS

— C. Vollman, M. D'Elia, M. Gunzburger, V. Schulz, Reducing the cost of nonocal

FEM via approximation of nonlocal neighborhoods, in progress.



GEOMETRIC APPROXIMATION

( 

1 Inscribed triangle-based polygonal approximation of balls

2 Inscribed cap-based polygonal approximation of balls

3 Whole-triangle approximation based on barycenter location

4 Whole-triangle approximation based on overlap with ball

,..y

/
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GEOMETRIC APPROXIMATION

1 Inscribed triangle-based polygonal approximation of balls

2 Inscribed cap-based polygonal approximation of balls

3 Whole-triangle approximation based on barycenter location

4 Whole-triangle approximation based on overlap with ball

( 

,..y

/

2.1 quadrature rules for caps

2.2 re-triangulation of caps
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GEOMETRIC APPROXIMATION

1 Inscribed triangle-based polygonal approximation of balls

2 Inscribed cap-based polygonal approximation of balls

3 Whole-triangle approximation based on barycenter location

4 Whole-triangle approximation based on overlap with ball

Are we losing accuracy?

( 

,..y

/

2.1 quadrature rules for caps

2.2 re-triangulation of caps
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ACCURACY OF THE APPROXIMATION

Lemma:

Let B6(x) be the £2 ball and B6,h(x) be an approximation, and let uh and iih be the corresponding
finite element solutions. Then, for exact outer and inner quadrature rules,

uh — Ill G K IAB6(x)1111 L2 (Q U Q 1 ) ,

where K is a positive constant independent of 6 and h, E C2 and AB6 is the "difference ball":

AB6 = (B6\ (B6 n B6,0) U (-136,h \ (B6 n B6,1))

M. D'Elia — mdelia@sandia.gov 0 Sandia National Laboratories



ACCURACY OF THE APPROXIMATION

Lemma:

Let B6(x) be the £2 ball and B6,h(x) be an approximation, and let uh and iih be the corresponding
finite element solutions. Then, for exact outer and inner quadrature rules,

uh — Ill G K IAB6(x)1111 L2 (Q U Q 1 ) ,

where K is a positive constant independent of 6 and h, E C2 and AB6 is the "difference ball":

AB6 = (B6\ (B6 n B6,0) u (B6,h \ (B6 n B6,1))

the overall accuracy depends on the volumeof the difference ball
o
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APPROXIMATION ERROR

Discretization: piecewise linear FEM spaces, optimal accuracy (h2)

no caps quad rules for caps
or retriangulation

IAN = 0(h2) LAN = 0(h2)

/ 
Jf

/

whole triangles
based on barycenters

IAN= 0(h)

/
whole triangles
based on overlap

LAN = 0(h)
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APPROXIMATION ERROR

Discretization: piecewise linear FEM spaces, optimal accuracy (h2)

no caps quad rules for caps
or retriangulation

/ 
Jf

/

/
whole triangles whole triangles

based on barycenters based on overlap

IAN = 0(h2) LAN = 0(h2) 1A1361 = 0(h) LAN = 0(h)

HO = O(h2) WO = O(h2) NO = 0(h) Weill = 0(h)

M. D'Elia — mdelia@sandia.gov 0 Sandia National Laboratories



APPROXIMATION ERROR

Discretization: piecewise linear FEM spaces, optimal accuracy (h2)

no caps quad rules for caps
or retriangulation

IAN = O(h2) LAN = O(h2)

HeW = O(h2)

/ 
Jf

/

/
whole triangles whole triangles

based on barycenters based on overlap

I AB61 = 0(h2) ??

IlleW = O(h2) Wel = 0(h)

LAN = O(h)

Weill = 0(h)
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APPROXIMATION ERROR

h L2

1 No caps 3 Barycenter

"sr
rate energy rate h L2

ri

7 

rate

/i
/ 

r

uEl 
energy ,u1

0 . 1 2.75e-2 1.29e-1 0.1 1.71e-1 7.8e-1

0.05 6.00e-2 1.51 2.64e-1 1.560.05 3.86e-3 2.83 1.88e-2 2.77

0.025 1.51e-2 1.99 6.85e-2 1.940.025 4.00e-4 3.26 3.37e-3 2.48

0.0125 2.30e-3 2.71 1.07e-2 2.680.0125 2.60e-4 0.61 1.20e-3 1.48

0.00625 7.00e-5 1.86 3.20e-4 1.92 0.00625 4.60e-4 2.33 2.19e-3 2.29

2.09 2.13 2.17 2.15

Note 1: rate seem erratic, an adaptive quad rule for the outer integral fixes this issue

Note 2: CPU(no caps) ,,, 3><CPU(barycenter)
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APPROXIMATION ERROR

no caps

= (h2)

quad rules for caps
or retriangulation

1114 = (h2)

/

whole triangles
based on barycent

mFiii = (9(h)

( (h2)

/

whole triangles
based on overlap

ell = (9(h)
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RELATED WORK

C. Vollman, M. D'Elia, M. Gunzburger, V. Schulz,

Nonlocal Continuum Models with Nonstandard Interaction Domains, Book in progress.



USING DIFFERENT BALLS

what if we consider a different ball?

triangulation w/o geometry errors

> much easier re-triangulation!
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this can be a modeling choice!

• when even round balls
are not required by physics

• when the nature of the
problem calls for square balls
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triangulation w/o geometry errors

> much easier re-triangulation!

this can be a modeling choice!

• when even round balls
are not required by physics

• when the nature of the
problem calls for square balls

Important questions

O. does the nonlocal calculus still apply?

1. do we recover local operators as 6 —> 0?

2. do we recover fractional operators as 6 —> co?

3. are there applications?
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problem calls for square balls
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O. does the nonlocal calculus still apply?

1. do we recover local operators as 6 —> 0? a
2. do we recover fractional operators as 6 —> co? a
3. are there applications? a
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Thank you




