

On Sampling the Background Indoor Particulate Resuspension Factor

SAND2019-7493C

Shaun Marshall*, Charles Potter**, David Medich*

*Worcester Polytechnic Institute, Worcester, MA 01609

**Sandia National Laboratories, Albuquerque, NM 87185

64th Annual Meeting of the Health Physics Society
Hilton Orlando, Orlando, FL – July 9, 2017

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

I. INTRODUCTION

- Resuspension, Inhalation Dosimetry, and Current Model

II. METHODOLOGY

- Catenary Kinetic Resuspension Model
- Indoor Resuspension Chamber
- Neutron Activation Analysis

III. RESULTS

- Resuspension factor measurements

IV. DISCUSSION AND FUTURE WORK

- Dose implications and model recommendations

I. INTRODUCTION

Inhalation Exposure Pathway and Resuspension

- Radionuclides released into environment undergo complex series of transports
- Internal dose from inhalation depends upon available pathways of exposure from site
- Particulate resuspension must be considered when predicting future air quantity for risk assessment

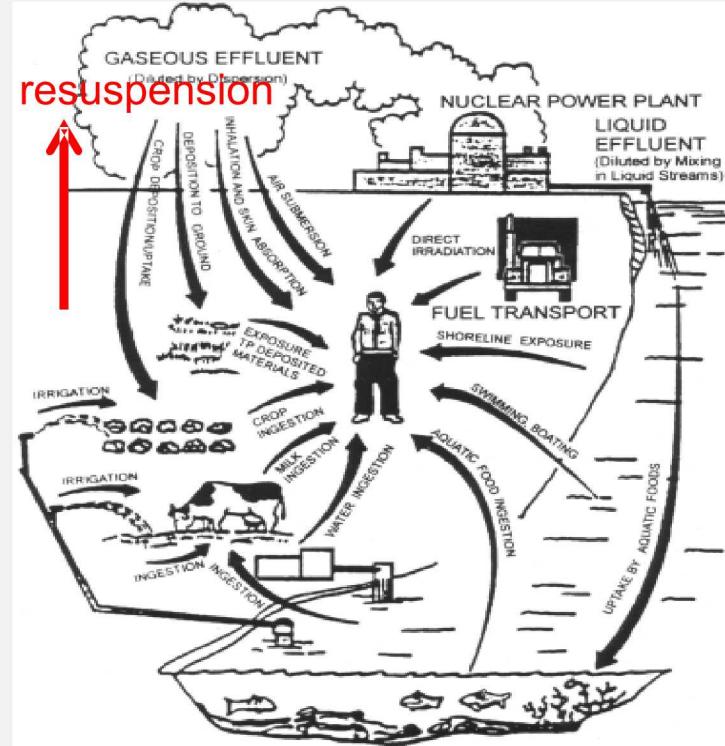


Fig 1. Potential exposure pathways in the event of a radionuclide release.*

Resuspended Inhalation Dose Prediction Model

- Dose due to inhalation of resuspended radionuclides*:

$$D_{inh} = C_{D,inh} \times \bar{f}_B \times KP,$$
$$KP = \int_{TP} Dp \times e^{-\lambda t} \times S_f(t) dt$$

Table 1. Formulaic breakdown of dose from inhalation of radionuclides.

Term	Description (units)
$C_{D,inh}$	inhalation committed dose coefficient (Sv Bq ⁻¹)
\bar{f}_B	activity-averaged human breathing rate (~0.92 m ³ h ⁻¹)
KP	resuspension parameter during time phase (TP) (Bq s m ⁻³)
Dp	initial areal deposition (Bq m ⁻²)
λ	radionuclide decay constant (s ⁻¹)
$S_f(t)$	empirical resuspension factor (m ⁻¹)

Resuspension Factor Development

- Current FRMAC model*:

$$S_f(t) = 10^{-9} + 7 \times 10^{-9} e^{-0.002t} + 5 \times 10^{-6} e^{-0.07t}$$

- Semi-empirical model based on data ranging orders of magnitude
 - Did not differentiate nuclide, environment, or conditions
- Motivated $S_f(t)$ reassessment**

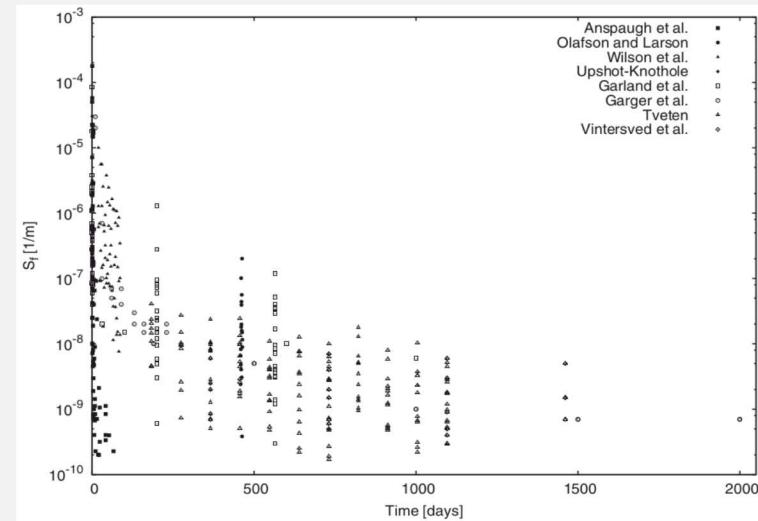


Fig 2. Historical resuspension factors from real/synthetic particle releases.*

*Maxwell and Anspaugh, 2011; **Marshall et al, 2018

II. METHODOLOGY

Catenary Kinetic Resuspension Model

- Fractional population of air (A), surface (S), ground (G) compartments:

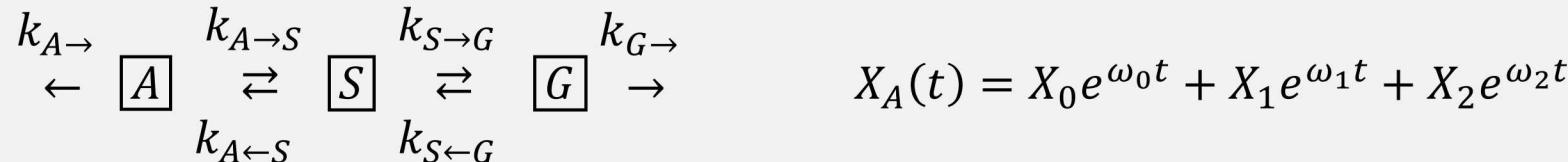


Table 2. Kinetic rate constant (s^{-1}) definitions for three-compartment catenary model.

Term	Description
$k_{A \rightarrow}$	Weathering rate: local removal via dispersion and sampling
$k_{A \rightarrow S}$	Settling rate: gravitational enhanced by wet deposition
$k_{A \leftarrow S}$	Resuspension rate: electrostatic drift enhanced by meteorology
$k_{S \rightarrow G}$	Infiltration rate: based on ground porosity and colloidal properties
$k_{S \leftarrow G}$	(Bio)turbation rate: mixing by decontamination, biota or long-term geology
$k_{G \rightarrow}$	Migration rate: local removal via infiltration enhanced by wet deposition

Air Sampling Chamber

- Corresponds to model: $\begin{array}{c} k_{A \rightarrow} \\ \leftarrow [A] \rightleftarrows [S] \\ k_{A \leftarrow S} \end{array}$
- Release mass m_0 of $1 \mu\text{m}$ Eu_2O_3 particles
- Sampled with low-volume sample rate f , exchanged at regular intervals t_s

Table 3. Experimental parameters for measuring indoor air samples.

Parameter (units)	Value
m_0 (g)	1, 5
f (m^3/s)	3.33×10^{-5}
t_s (h)	1, 24, 168

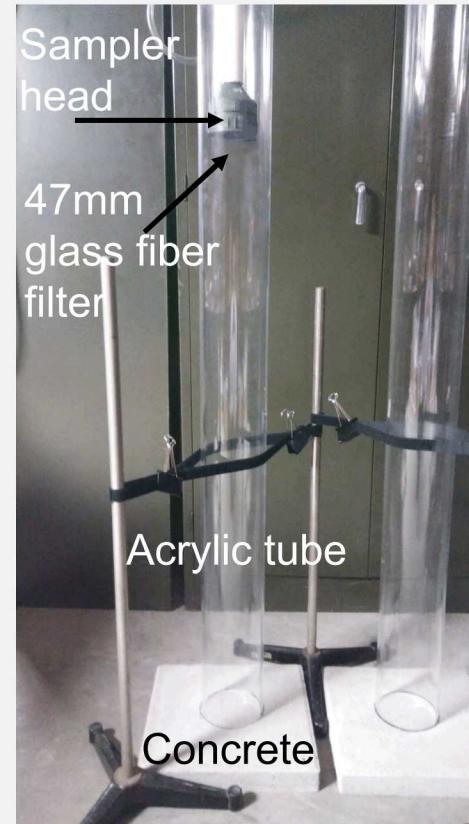


Fig 5. Resuspension chamber with vacuum pump head.

Thermal Neutron Activation

- Filters positioned at neutron beam portal and irradiated for interval τ
- Neutron flux ϕ calibrated with Au foil
- Solid water used to increase flux and decrease detection limit

Table 4. Experimental parameters for activation analysis of sampler filters.

Parameter (units)	Value
τ (h)	2, 8, 24
ϕ (n cm ⁻² s ⁻¹)	1 – 20 $\times 10^7$

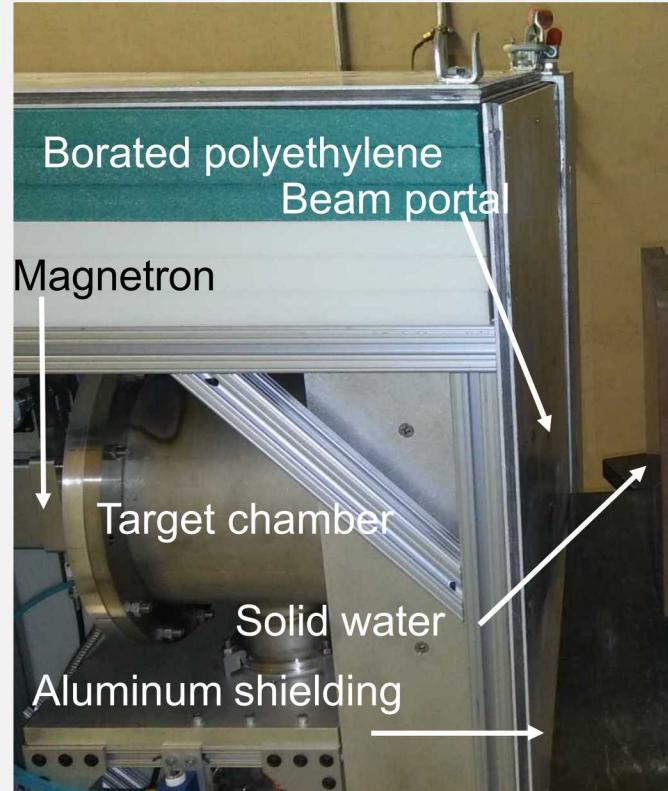


Fig 6. DD110M neutron generator beamline with solid water setup.

Gamma Acquisition and Analysis

- Activated samples placed directly on Ge detector after delay t_d
- Obtained histograms with GENIE* pulse height analysis for interval Δt
- Pb shield reduced background and thus minimum detectable activity

Table 5. Experimental parameters for spectroscopic analysis of irradiated samples.

Parameter (units)	Value
t_d (h)	0.1
Δt (h)	2, 8, 24

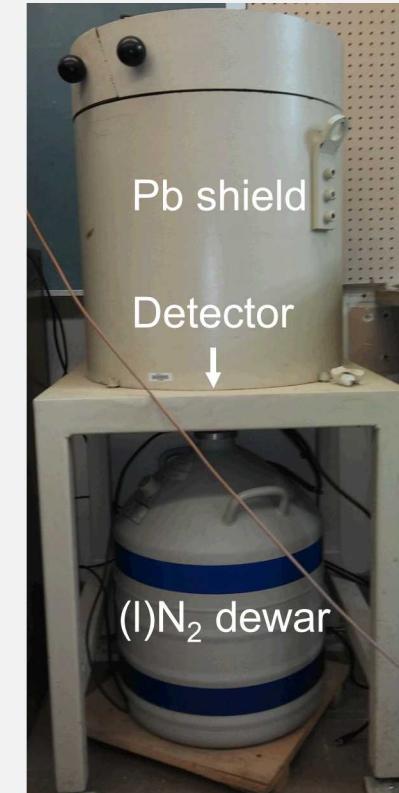


Fig 7. Ge(Li) gamma detector system with Pb shielding setup.

III. RESULTS

Resuspension Factor Measurements

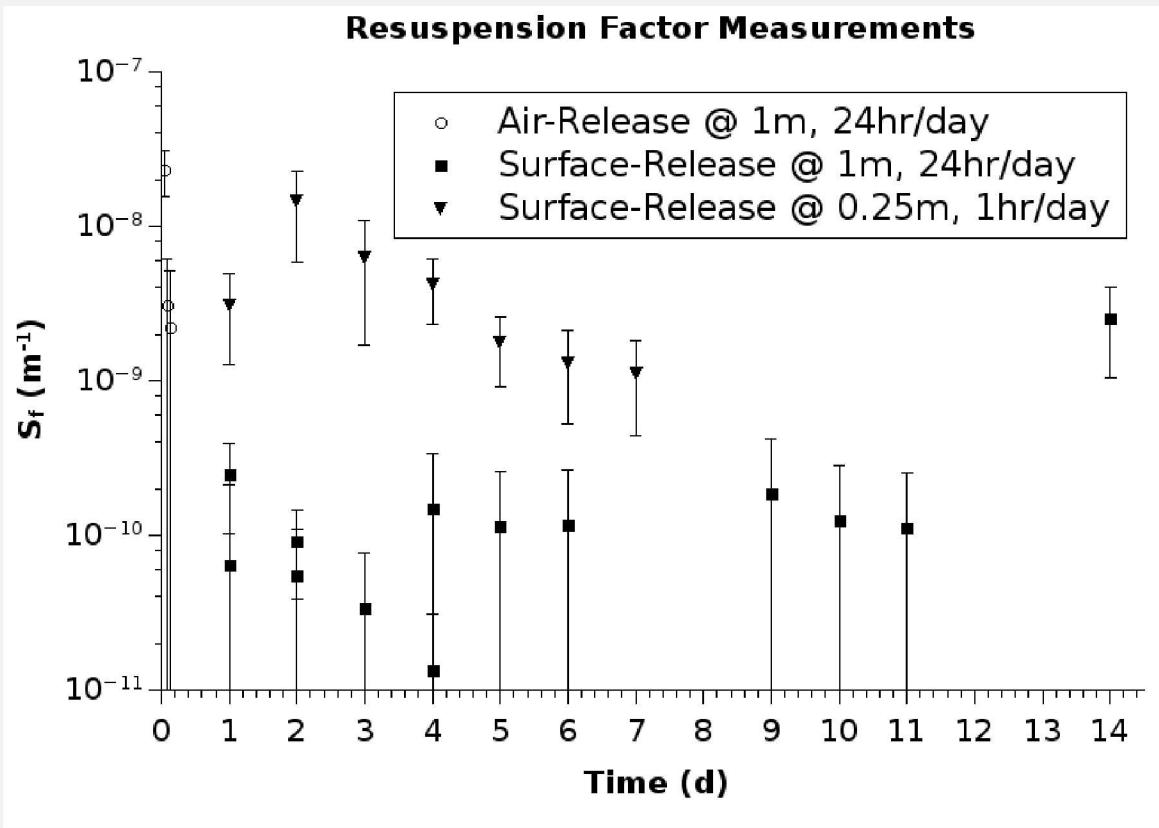


Fig 7. Measured resuspension factors from air and surface releases. The surface release datum at 14 d was sampled for two full weeks.

IV. DISCUSSION AND FUTURE WORK

Discussion

- NAA offers precise measure of resuspension factor S_f
 - S_f was 100x lower than current model prediction for indoors
- Initial release height drastically affects S_f
 - Defining “resuspension” and “initial suspension” is critical for accurate dose predictions

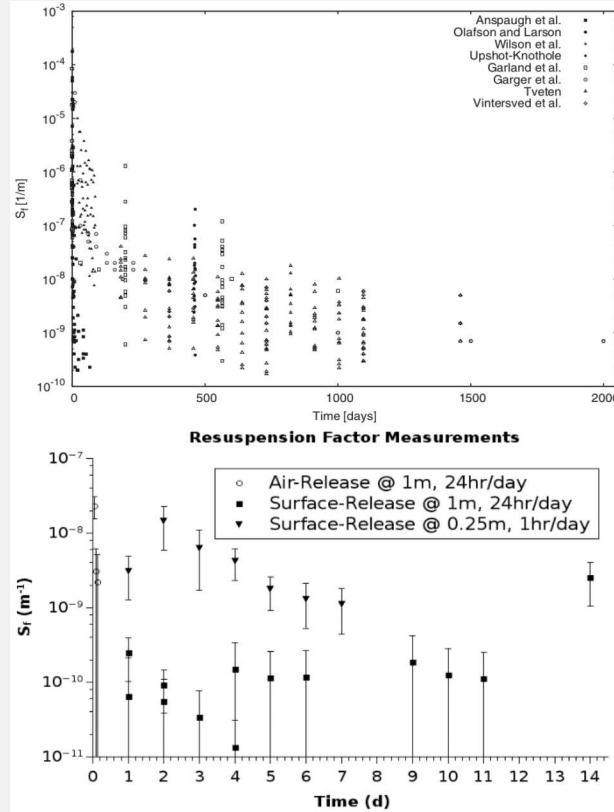


Fig 8. Comparison of historic dataset (above) and newly measured S_f (below).

Discussion (continued)

- Sampler height dramatically affects S_f measurements
 - Required two-weeks of sampling for first surface-release datum @ 1m
 - S_f highly sensitive to sampling time within time-phase window
- S_f measurements point to possible “undersaturation” conditions
 - Depending on circumstances, agencies using current model may be overcounting dose

Future Work

- Assess resuspension perturbation from contributing sources
 - Wind speed and gust frequency, other atmospheric conditions
 - Ground chemical identities and roughness
- Resuspension of other elements/isotopes
- (Initial) particle size distribution analysis

References

NRC (2012). Air Sampling Equations. <https://www.nrc.gov/docs/ML1122/ML11229A714.pdf>

SNL (2015). *FRMAC Assessment Manual Volume 1 – Overview and Methods*. Sandia National Laboratories.

R. Maxwell and L.R. Anspaugh. (2011). An Improved Model for Prediction of Resuspension. *Health Physics*, 101(6):722-730.

S. Marshall, et al. (2018). Reassessment of Resuspension Factor Following Radionuclide Dispersal: Towards a General-Purpose Rate Constant. *Health Physics*, 114(5):500-506.

J. Garland. (1983). Some Recent Studies of the Resuspension of Deposited Material From Soil and Grass. *Precipitation Scavaging, Dry Deposition, and Resuspension*, pp.1087-1097.

U. Tveten. (1990). Environmental Consequences of Releases from Nuclear accidents, a Nordic Perspective. *Kjeller, Norway: Institute for Energy Technology*: AKTU-200.

E. Garger, et al. (1997). Measurement of Resuspended Aerosol in the Chernobyl Area I. Discussion of Instrumentation and Estimation of Measurement Uncertainty. *Radiation Environmental Biophysics*.