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Motivation

= Sparse direct factorization is too expensive in 3D
= Want robust “black-box” approximate factorization

= Use as preconditioner

= Allow trade-off fill versus quality

= Current methods are not scalable or not robust
= [ncomplete factorizations
= Schur complement methods

= Sparse approximate inverses

= SpaND: Collaboration with Stanford (Darve, Cambier, Chen)
= Similar to HIF method (Ho & Ying)
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Sparse Factorization (1)
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Sparse Factorization (2)




Sparse Factorization (3)




Sparse Factorization (4)




Sparsified Approx. Factorization (1)
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’ Sparsified Approx. Factorization (2)
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Sparsified Approx. Factorization (3)




Sparsified Approx. Factorization (4)




Sparsified Approx. Factorization (5)
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Sparsified Approx. Factorization (6)




SpaND Summary

= Sparsify separators (low-rank compression) during elimination
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Different from fast-algebra on dense

= Common approach: Fast algebra (H/HSS/BLR) on dense blocks
= Ex: Strumpack, MUMPS, PasTix, etc.

= |nstead we reduce the size of the separator blocks!
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Sparsification Step

= Block scaling, low-rank elimination, drop negligible blocks
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Sparsification via Low-rank Approx.

We need low-rank approximation of off-diagonal (rectangular) block.

1. Interpolative decomposition (ID)
= Use RRQR (QRCP)
=  Aka skeletonization

2. Orthogonal transform

=  More stable, but more expensive
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Sparsification 1:

(1) We start with
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(3) We end up with
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(2) We then approximate
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Sparsification 2: Orthogonal

(1) We start with (2) We then approximate
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(3) We end up with
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Results: 2D Laplacians
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Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling
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Results: SuiteSparse Collection

Interpolative, no scaling

: Interpolative, with scaling
SPD problems from SuiteSparse . oconal with scaling
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Results: Performance Profile

Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling

SPD problems from SuiteSparse
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Results:

Interpolative, no scaling
Interpolative, with scaling

SPD problems from SuiteSparse . oconal with scaling
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Results: SPE

Interpolative, no scaling

: Interpolative, with scaling
SPD problems from SuiteSparse o ihogonal, with scaling
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Profiling

= Most expensive part is sparsification (RRQR)
= Skip sparsification on bottom levels (no benefit)
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Conclusions

= SpaND is an approximate factorization

= combines features from sparse direct and hierarchical matrices

= Tunable trade-off factorization cost and preconditioner quality

= Observed near-linear scaling on many problems

= Based on HIF but several improvements
= We focused on SPD case (Cholesky) but

= Method can be generalized to nonsymmetric (LU)
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