

Photos placed in horizontal position
with even amount of this space
between photos and header

SpaND: An Algebraic Sparsified Nested Dissection Algorithm Using Low-Rank Approximations

Leopold Cambier, Chao Chen, Erik Boman, Siva
Rajamanickam, Ray Tuminaro, Eric Darve

Preconditioning'19, July 1-3 2019

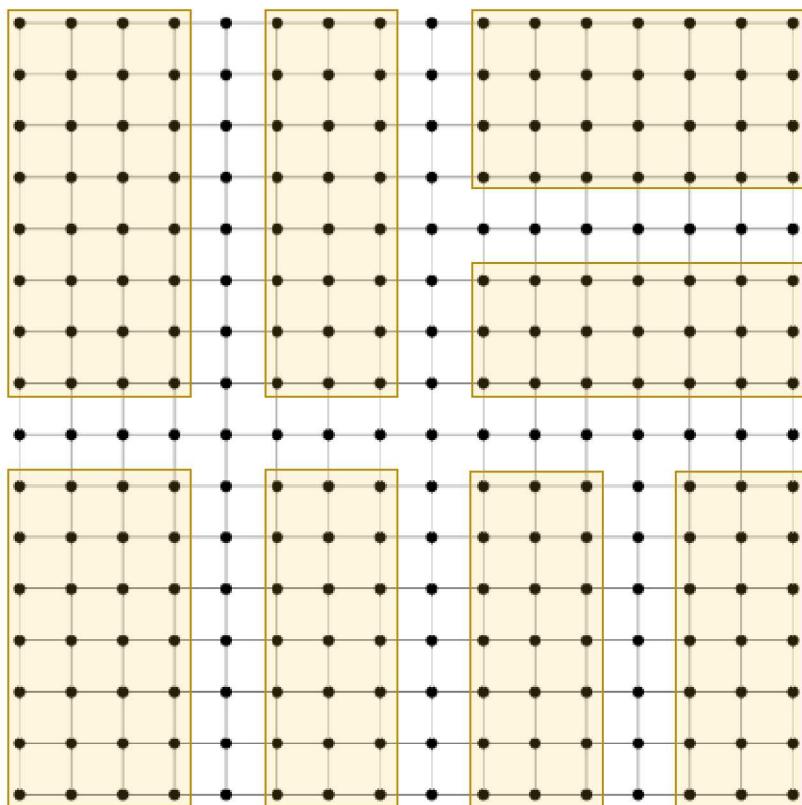
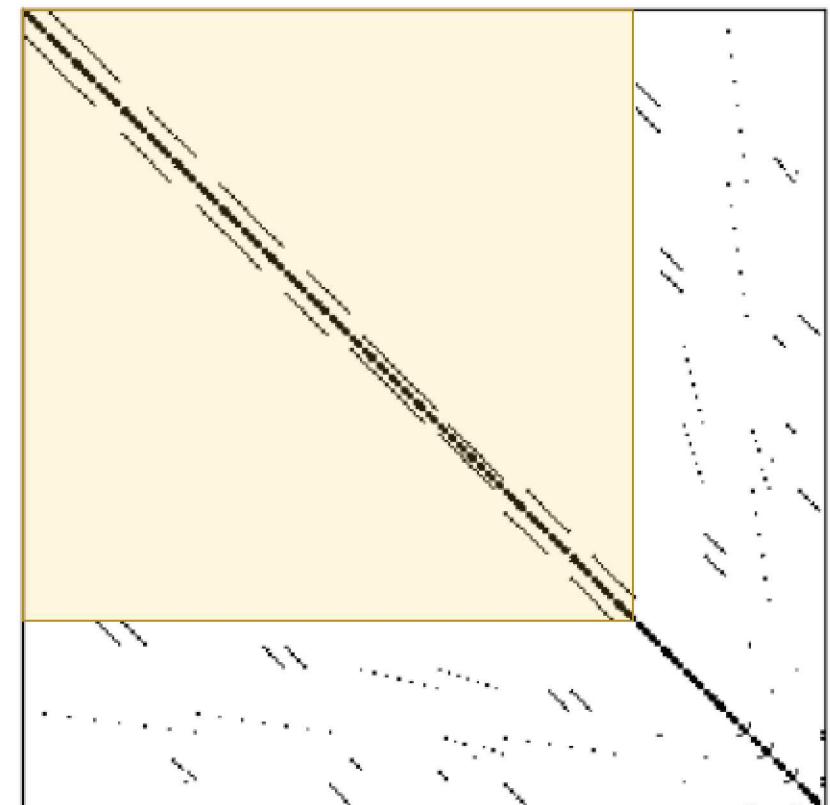
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

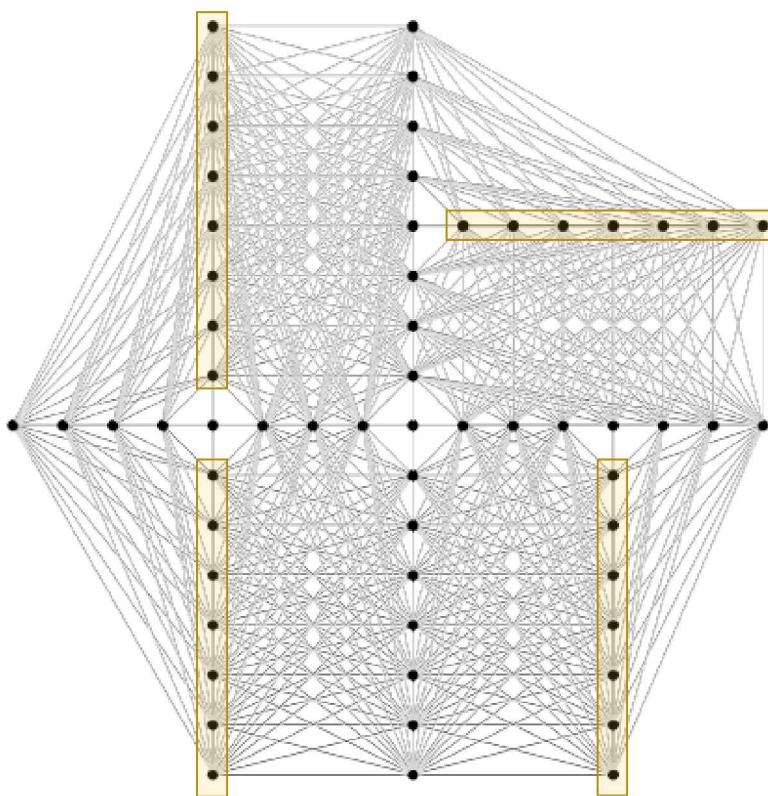
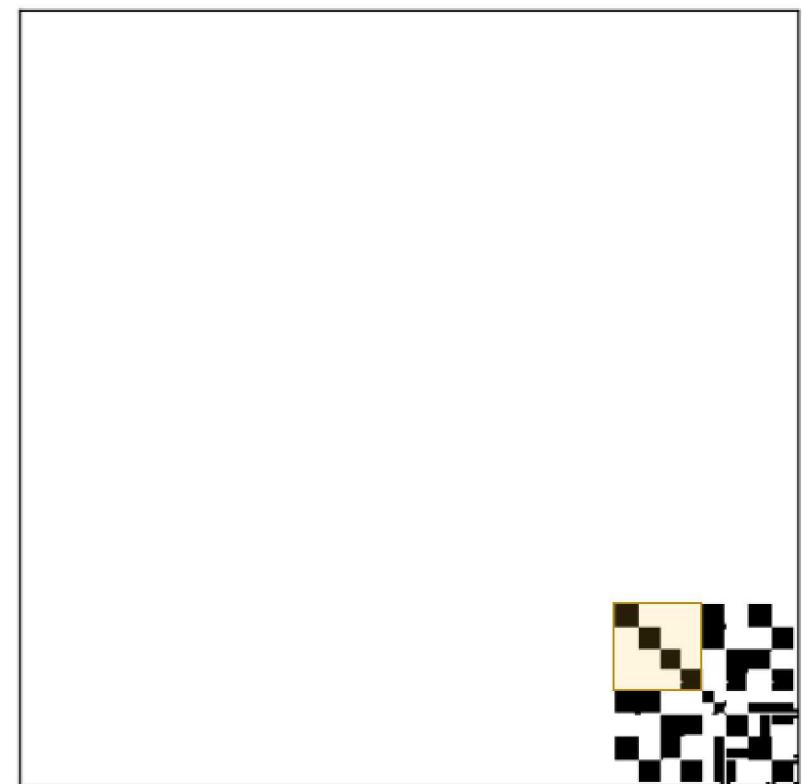
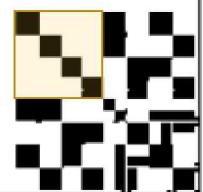
Motivation

- Sparse direct factorization is too expensive in 3D
- Want robust “black-box” approximate factorization
 - Use as preconditioner
 - Allow trade-off fill versus quality
- Current methods are not scalable or not robust
 - Incomplete factorizations
 - Schur complement methods
 - Sparse approximate inverses
- SpaND: Collaboration with Stanford (Darve, Cambier, Chen)
 - Similar to HIF method (Ho & Ying)

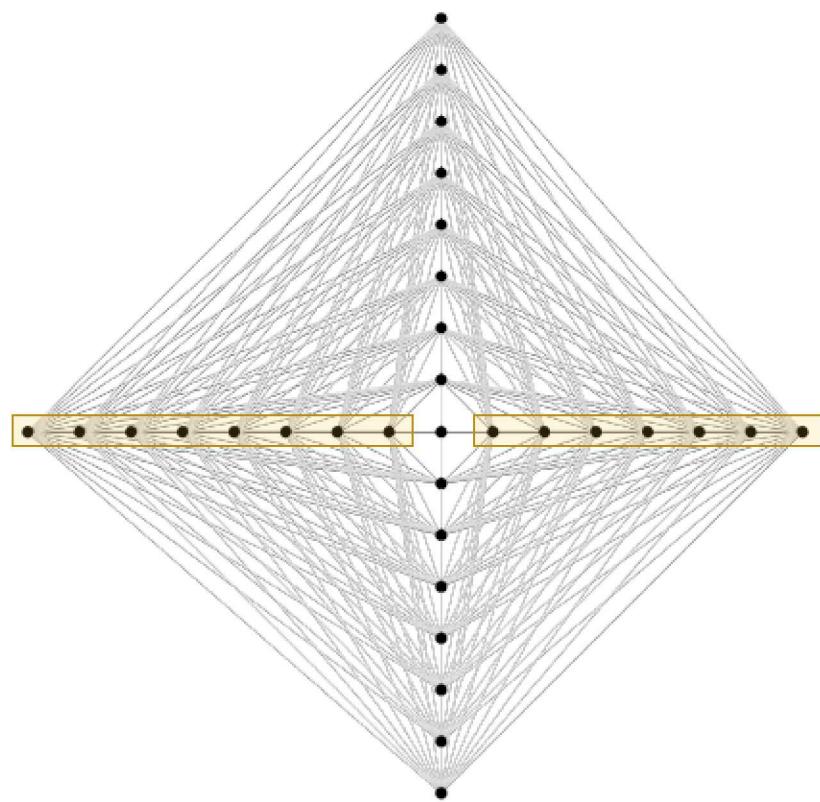
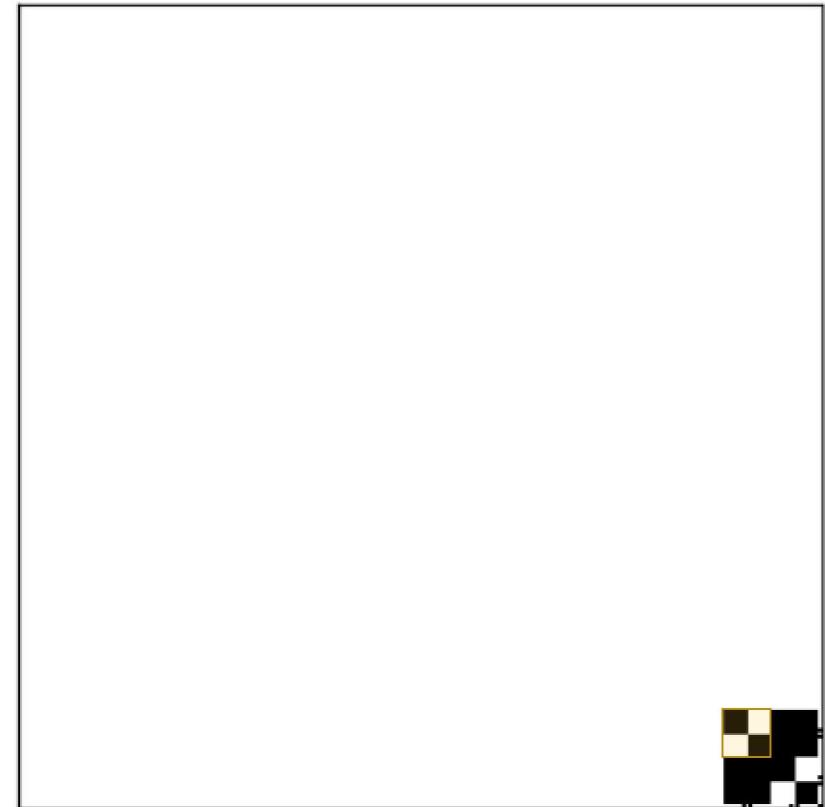
Sparse Factorization (1)



Sparse Factorization (2)

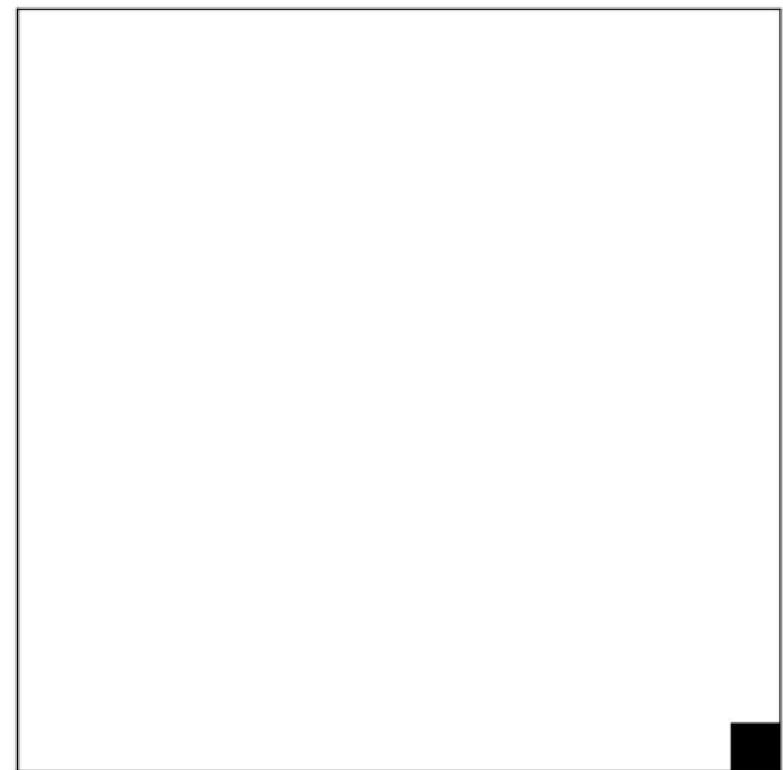


Sparse Factorization (3)

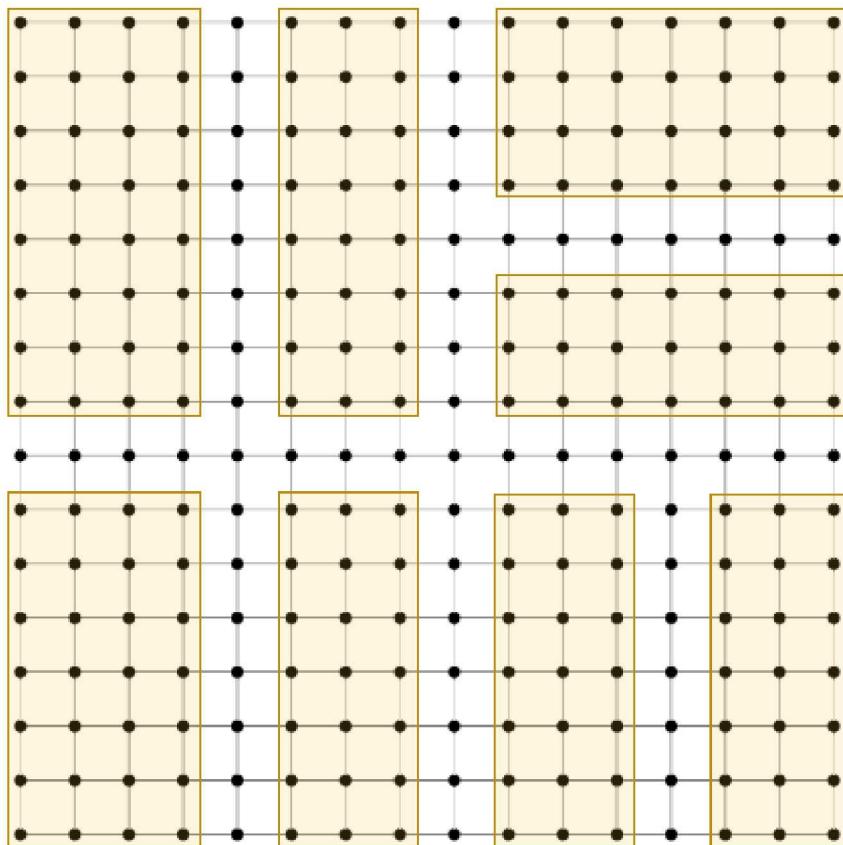
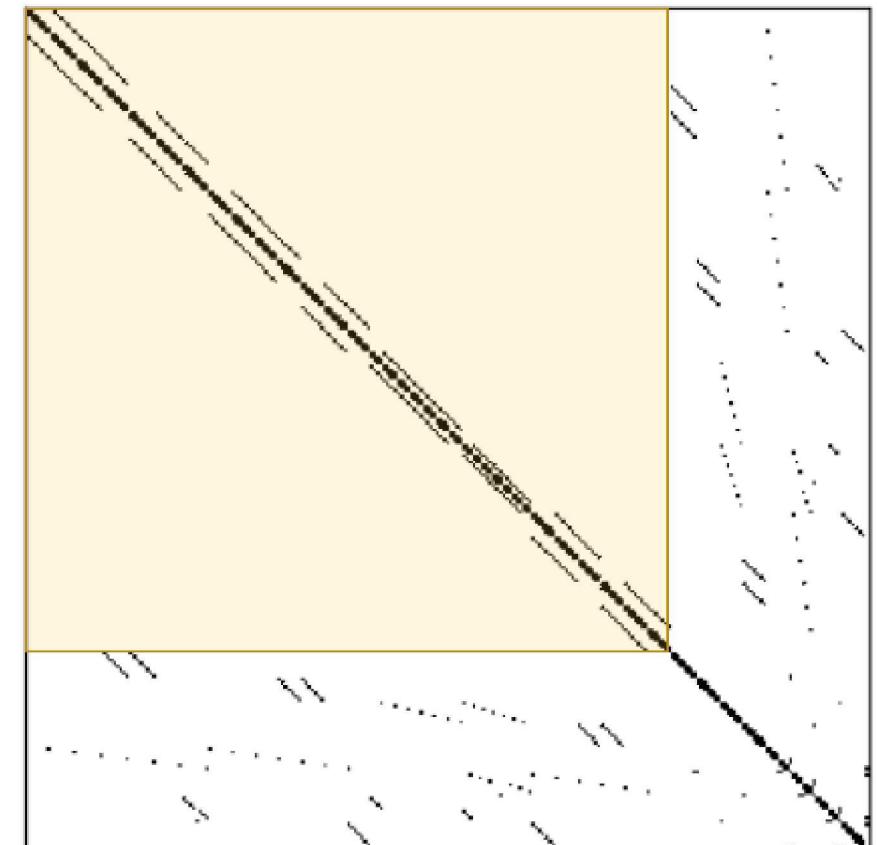


Sparse Factorization (4)

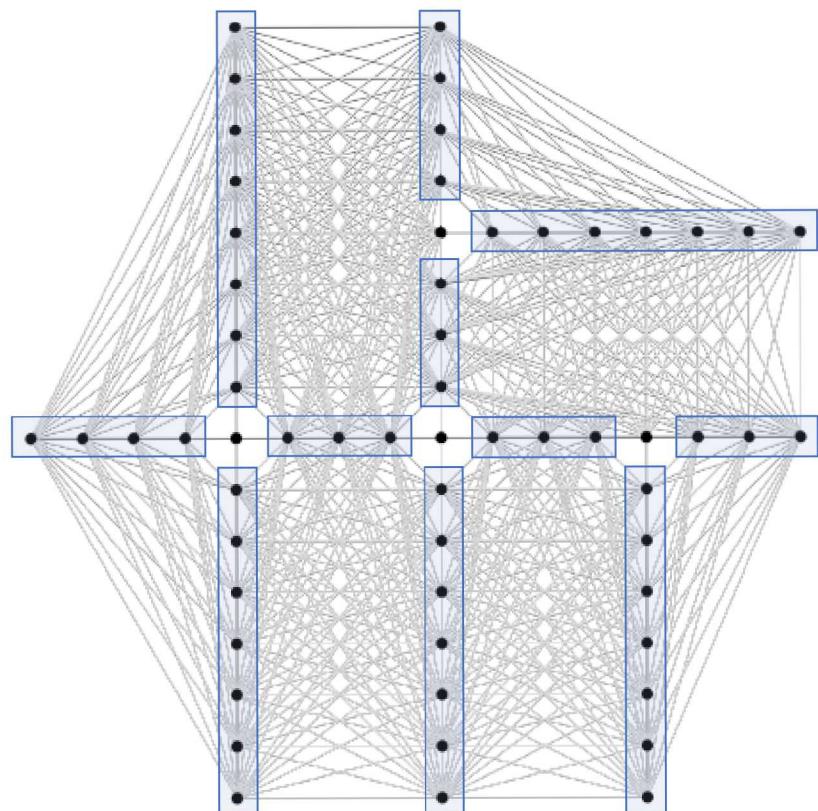
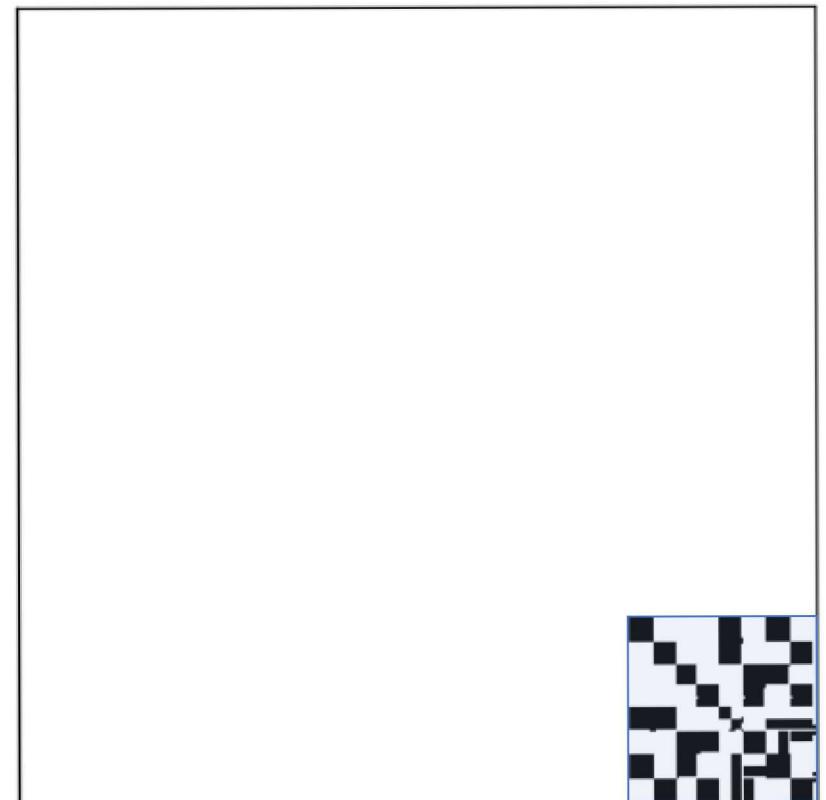
• • • • • • • • • • • • • • • •



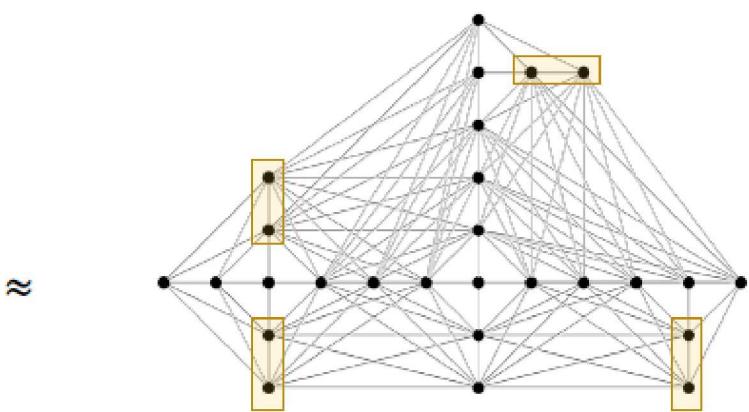
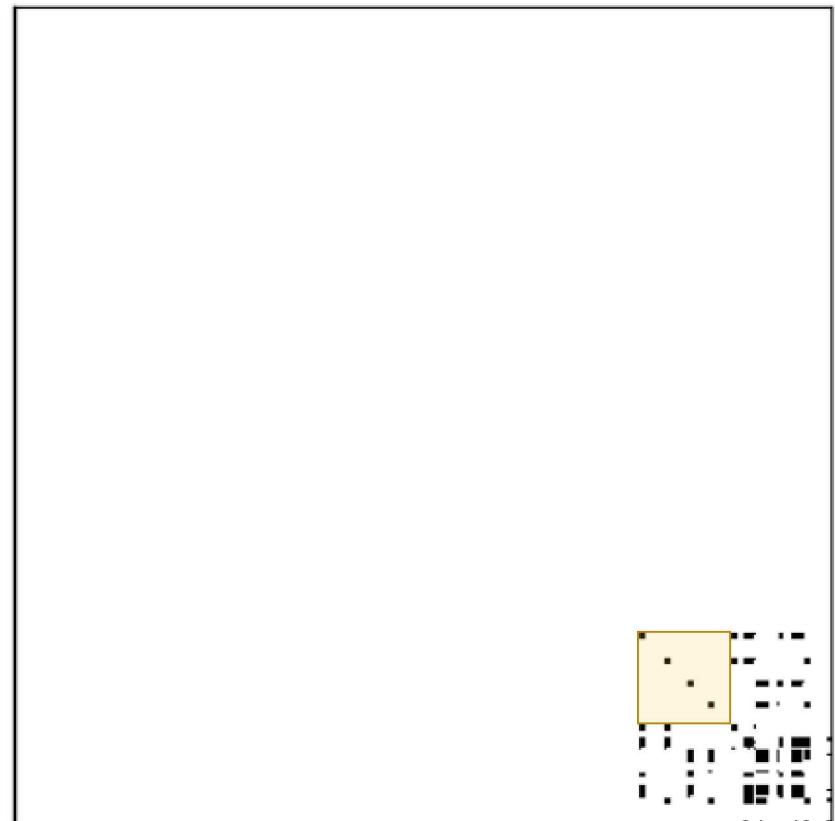
Sparsified Approx. Factorization (1)



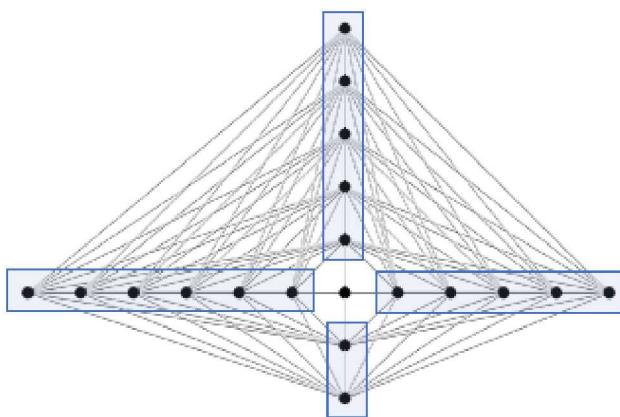
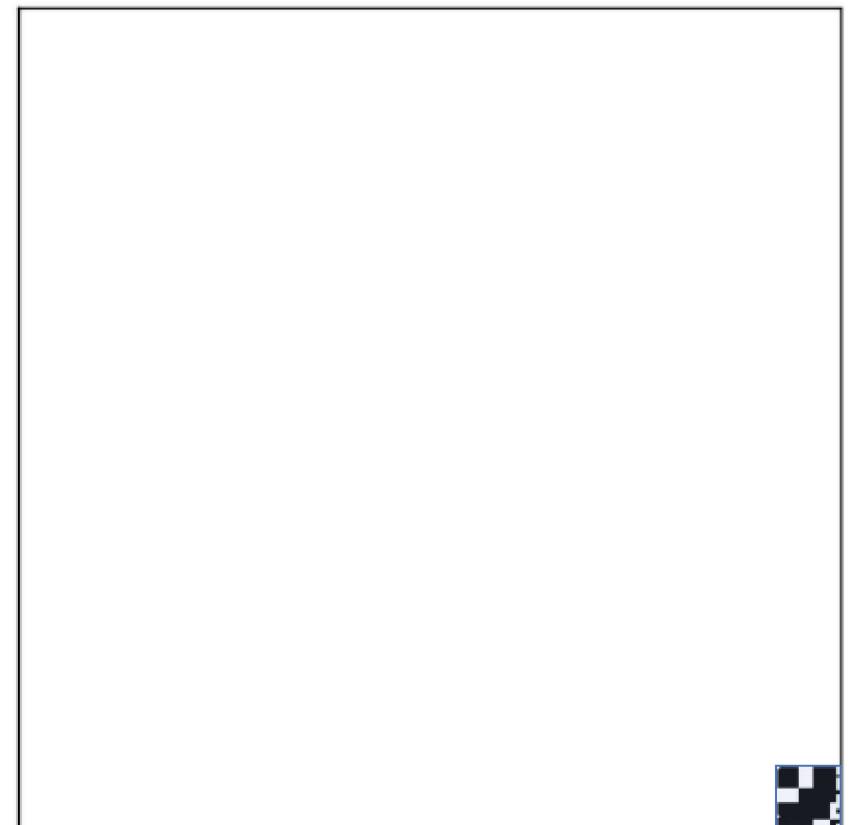
Sparsified Approx. Factorization (2)



Sparsified Approx. Factorization (3)

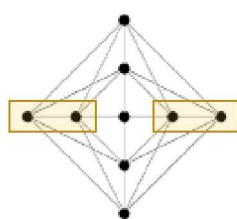
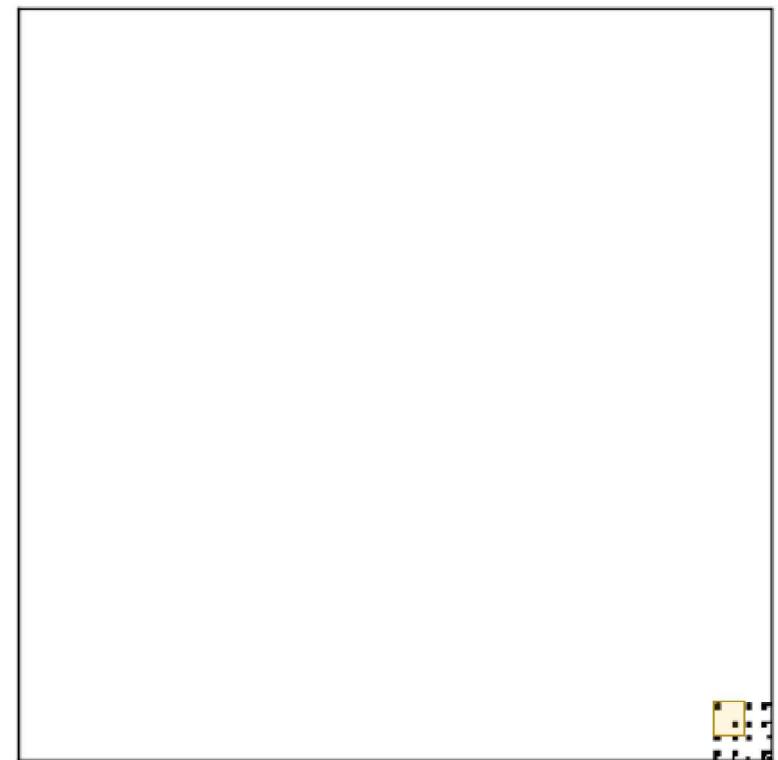


Sparsified Approx. Factorization (4)



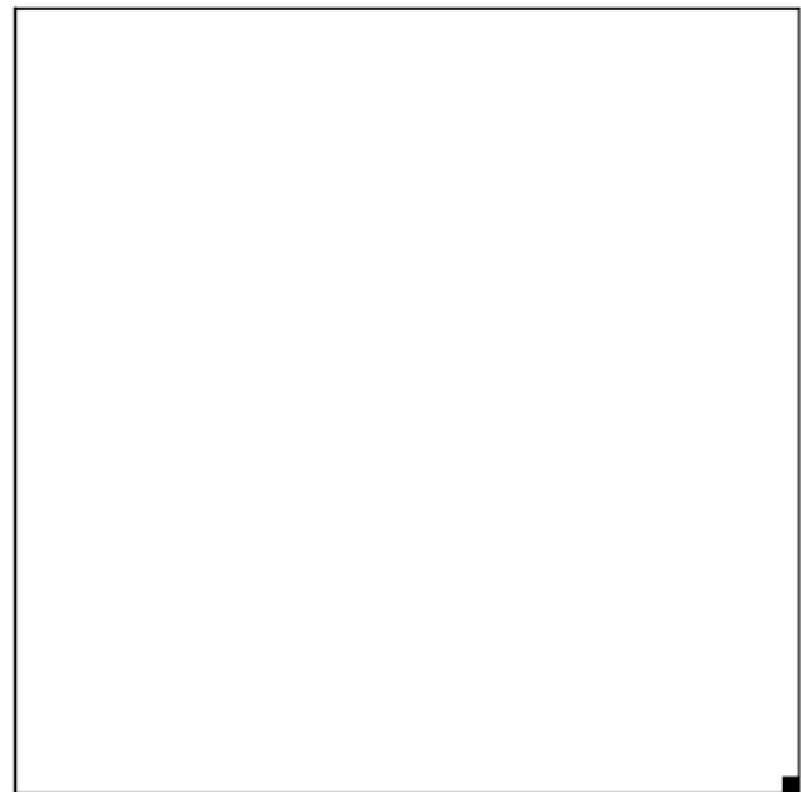
Sparsified Approx. Factorization (5)

\approx



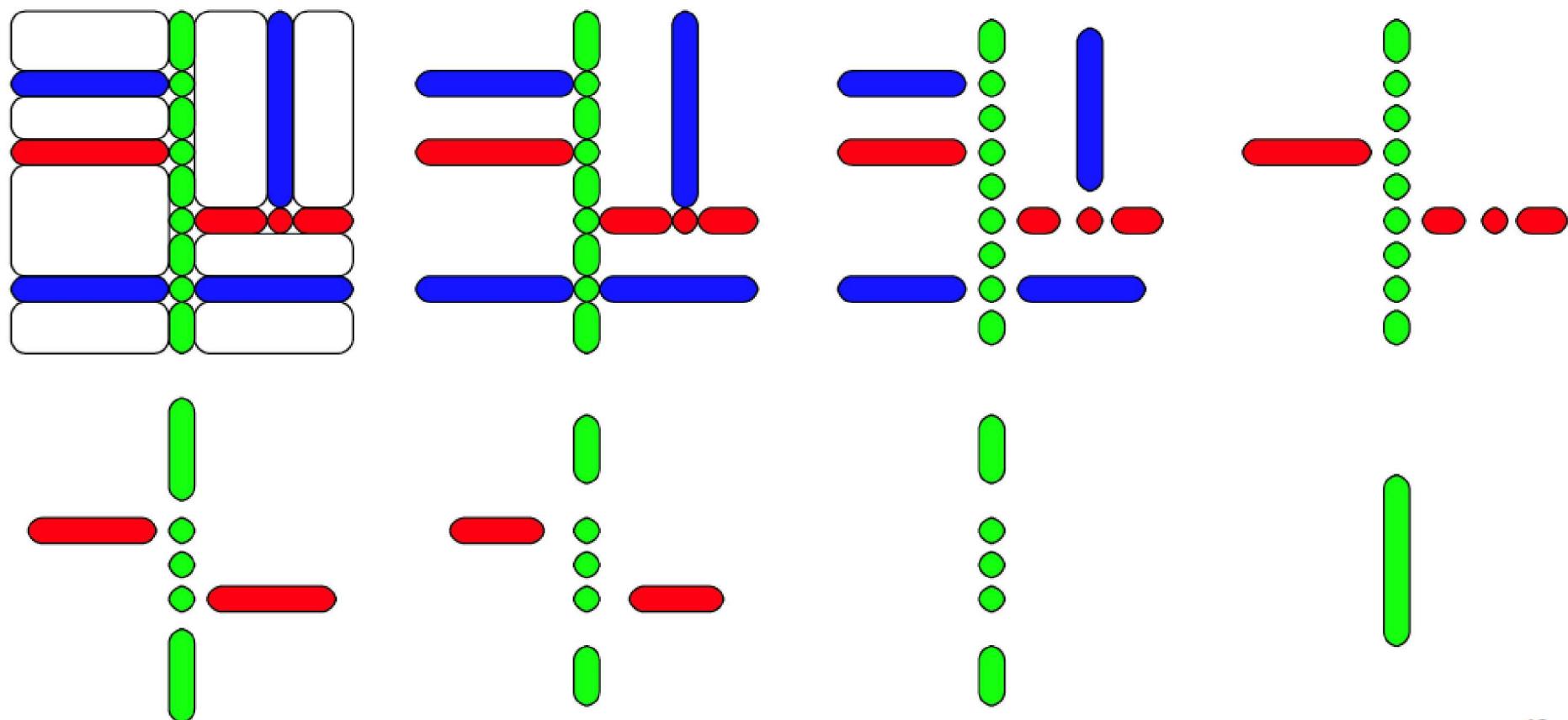
Sparsified Approx. Factorization (6)

•
•
•
•
•



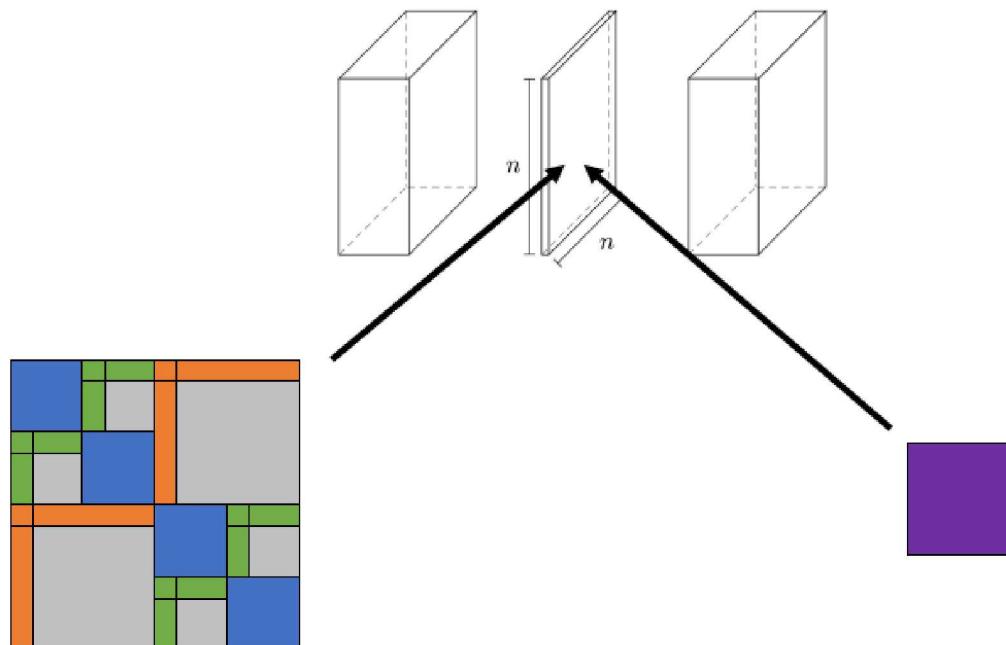
SpaND Summary

- Sparsify separators (low-rank compression) during elimination



Different from fast-algebra on dense

- Common approach: Fast algebra (H/HSS/BLR) on dense blocks
 - Ex: Strumpack, MUMPS, PasTix, etc.
- Instead we reduce the size of the separator blocks!



Sparsification Step

- Block scaling, low-rank elimination, drop negligible blocks

$$\begin{array}{c} \left[\begin{array}{ccc} L_{ss}^{-1} & & \\ & I & \\ & & I \end{array} \right] \left[\begin{array}{ccc} A_{ss} & & A_{sn} \\ & A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{array} \right] \left[\begin{array}{ccc} L_{ss}^{-\top} & & \\ & I & \\ & & I \end{array} \right] \\ \downarrow \\ \left[\begin{array}{ccc} Q^\top & & \\ & I & \\ & & I \end{array} \right] \left[\begin{array}{ccc} I & & A_{sn} \\ & A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{array} \right] \left[\begin{array}{ccc} Q & & \\ & I & \\ & & I \end{array} \right] \\ \downarrow \\ \left[\begin{array}{ccc} I & & \varepsilon \\ & I & \\ & & W_{cn} \end{array} \right] \\ \left[\begin{array}{cccc} \varepsilon & W_{cn}^\top & A_{nw} & A_{nn} \end{array} \right] \end{array}$$

Sparsification via Low-rank Approx.

We need low-rank approximation of off-diagonal (rectangular) block.

1. Interpolative decomposition (ID)

- Use RRQR (QRCP)
- Aka skeletonization

2. Orthogonal transform

- More stable, but more expensive

Sparsification 1: ID

(1) We start with

$$\begin{bmatrix} A_{ss} & & A_{sn} \\ & A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix}$$

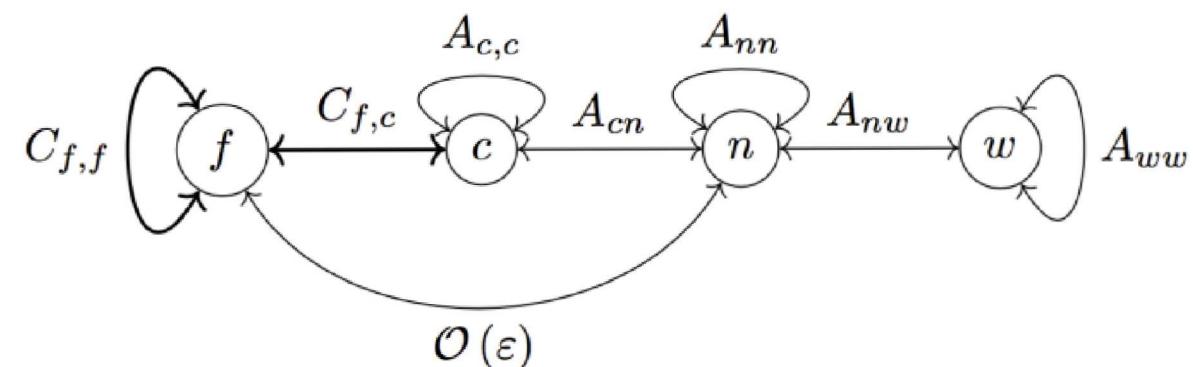
(2) We then approximate

$$A_{sn} = \begin{pmatrix} T_{fc} \\ I \end{pmatrix} A_{cn} + \varepsilon$$

$$s = f \cup c$$

(3) We end up with

$$\begin{bmatrix} C_{ff} & C_{fc} & & \varepsilon \\ C_{cf} & A_{cc} & & A_{cn} \\ & & A_{ww} & A_{wn} \\ \varepsilon & A_{nc} & A_{nw} & A_{nn} \end{bmatrix}$$



Sparsification 2: Orthogonal

(1) We start with

$$\begin{bmatrix} I & & A_{sn} \\ & A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix}$$

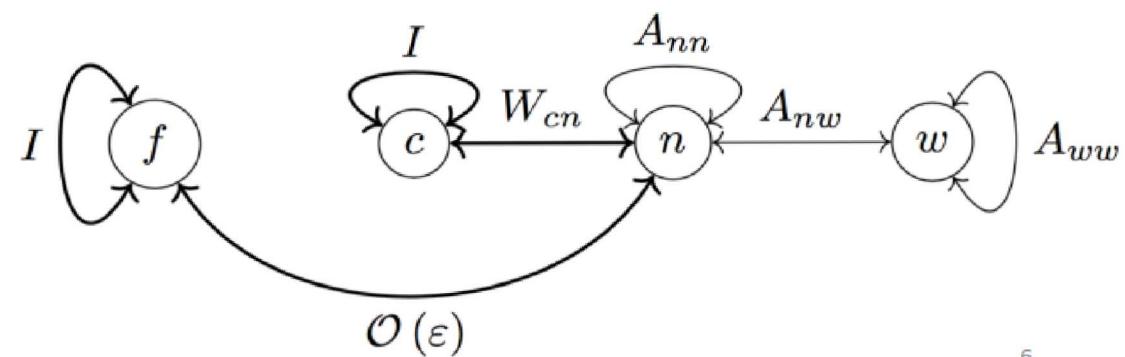
(2) We then approximate

$$A_{sn} = Q_{sc} W_{cn} + \varepsilon$$

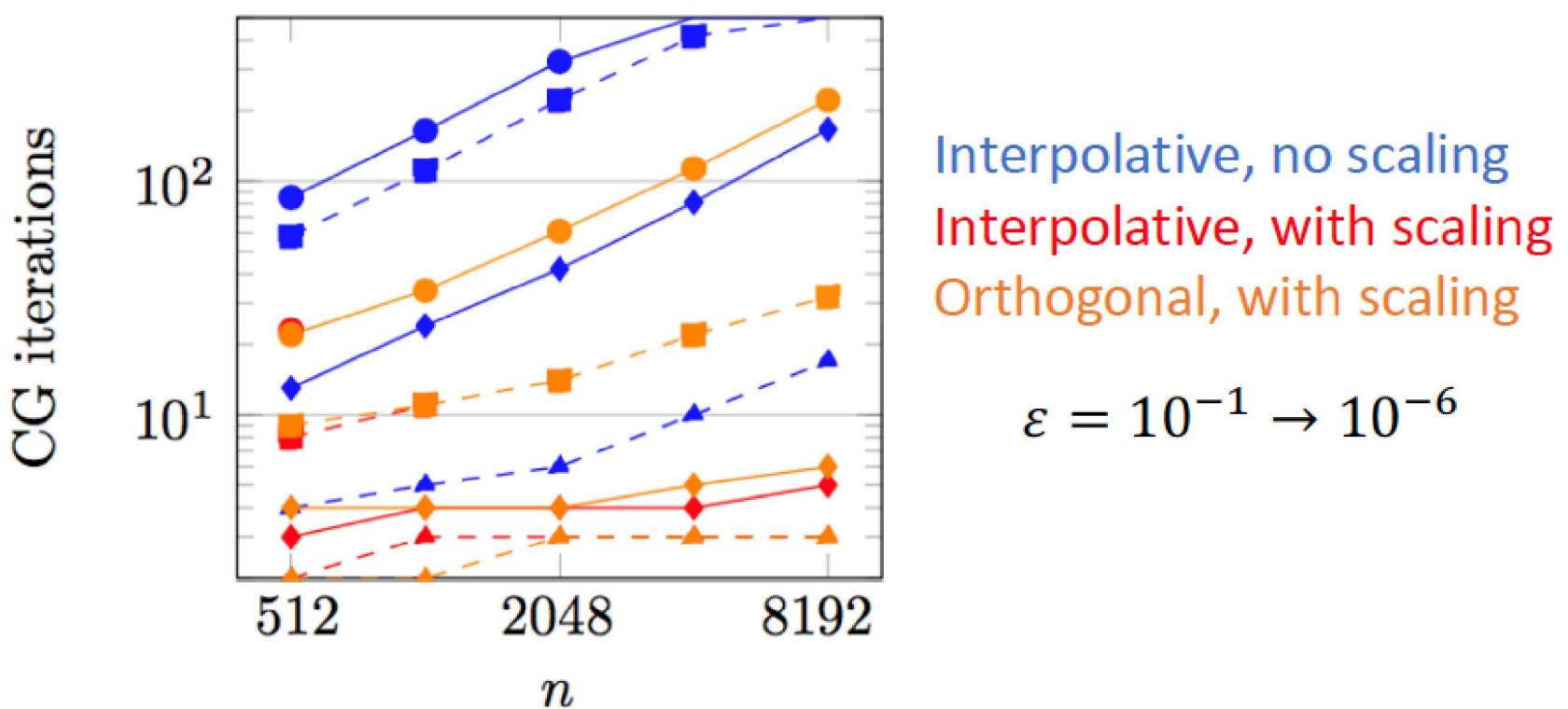
$$Q^T s = f \cup c$$

(3) We end up with

$$\begin{bmatrix} I & & \varepsilon & W_{cn} \\ & I & & A_{wn} \\ & & A_{ww} & A_{nn} \\ \varepsilon & W_{cn}^\top & A_{nw} & A_{nn} \end{bmatrix}$$

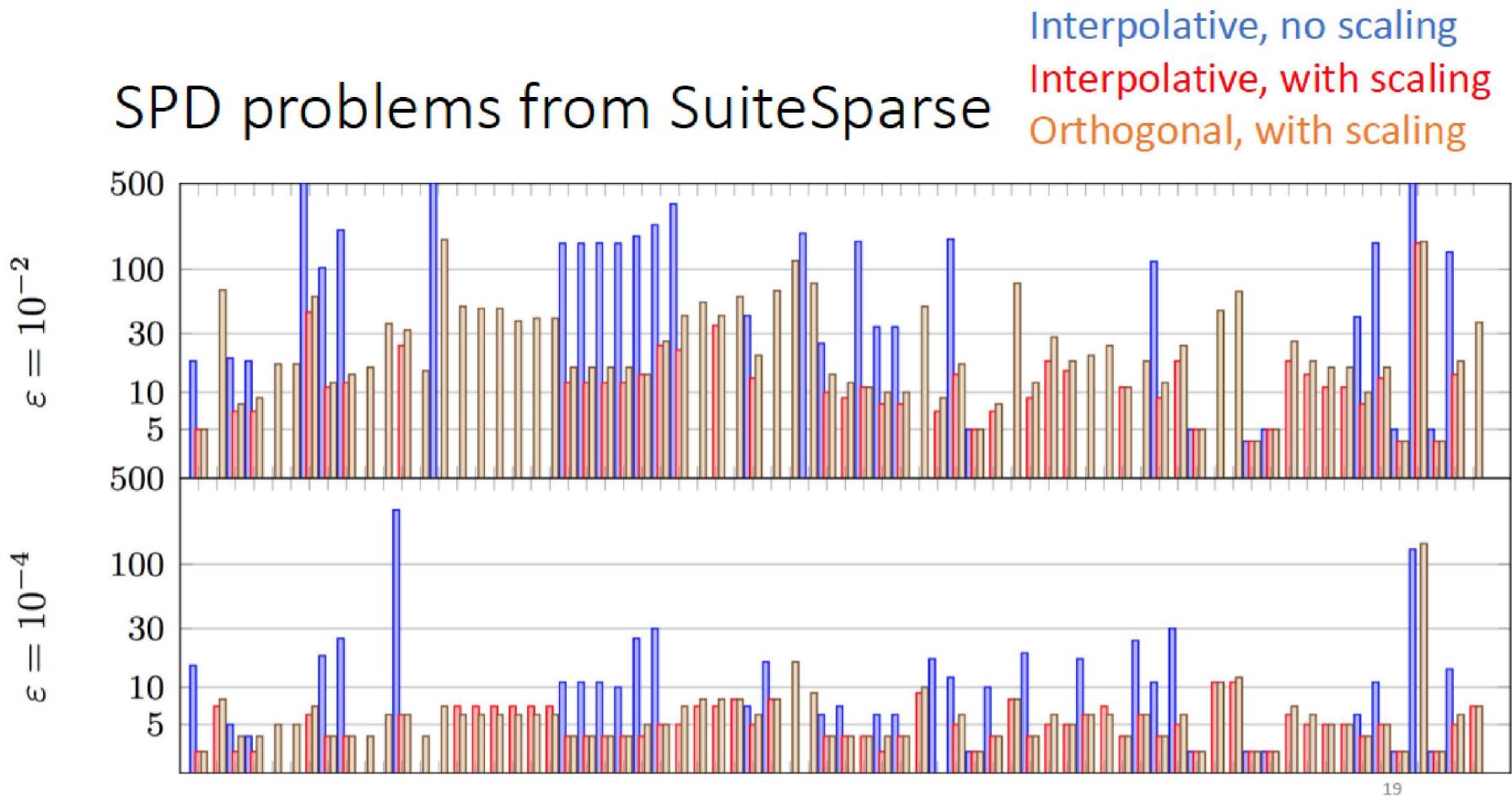


Results: 2D Laplacians



Results: SuiteSparse Collection

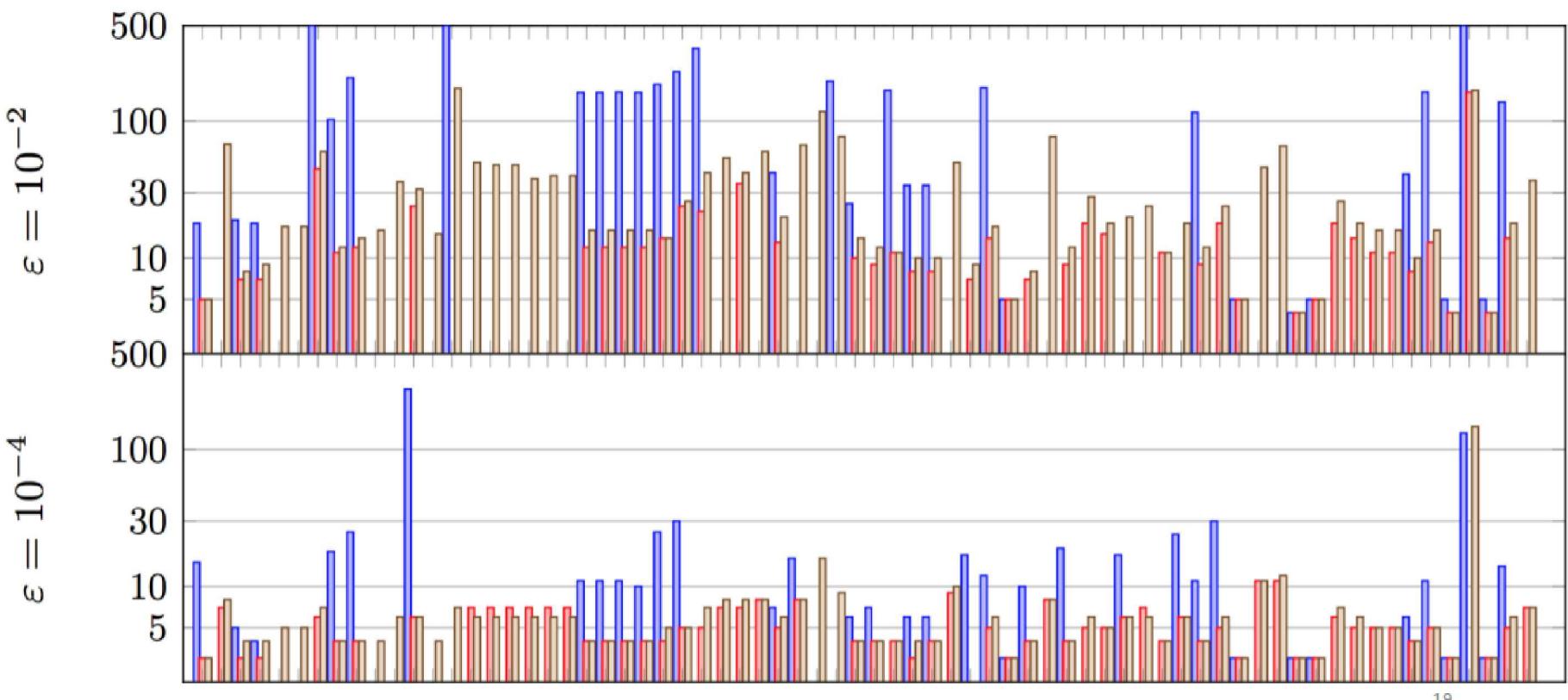
SPD problems from SuiteSparse



Results: Performance Profile

SPD problems from SuiteSparse

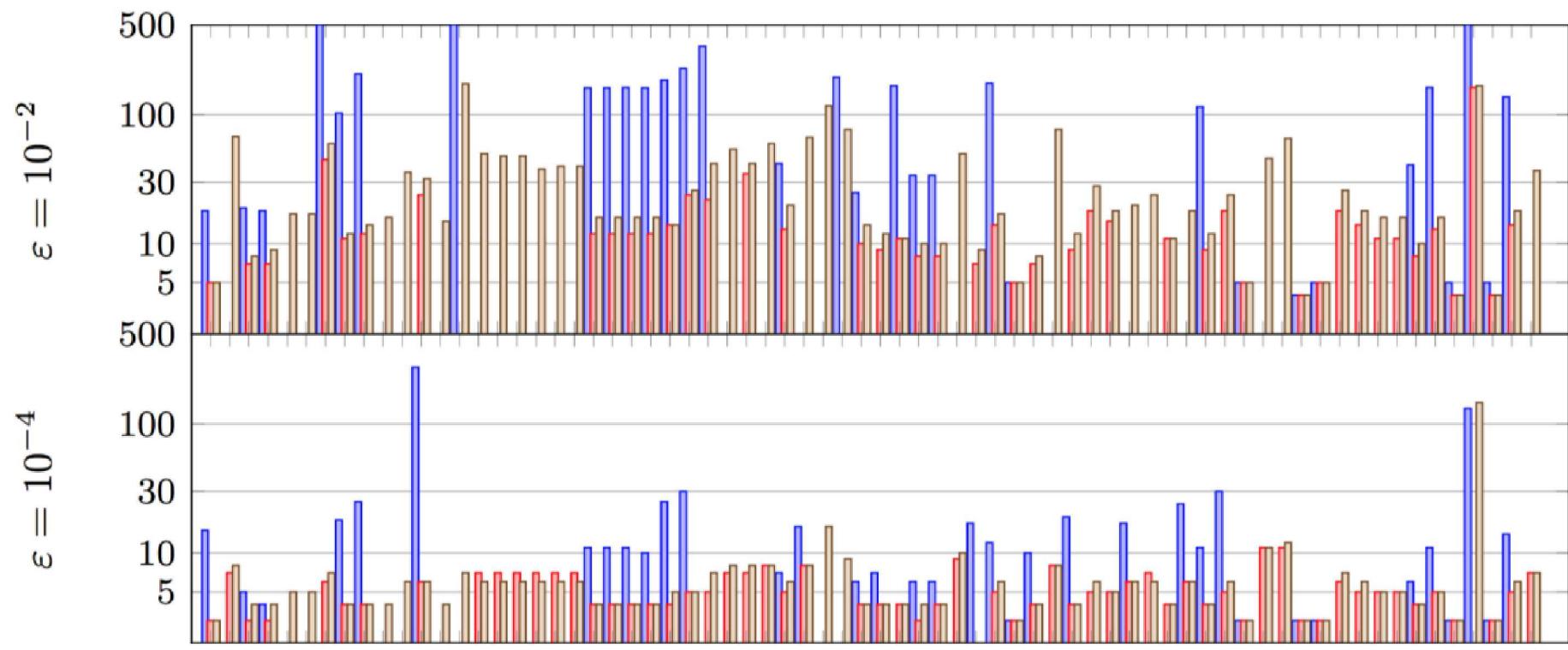
Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling



Results:

SPD problems from SuiteSparse

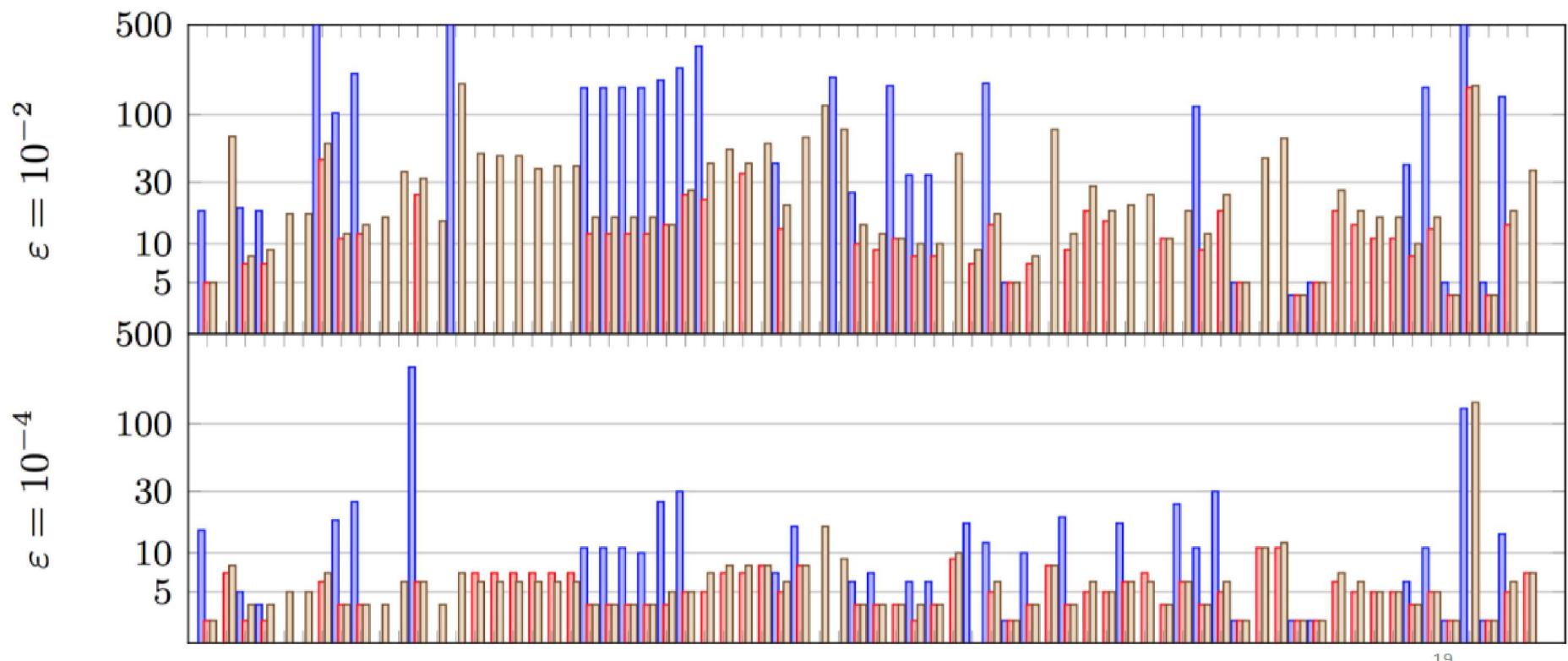
Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling



Results: SPE

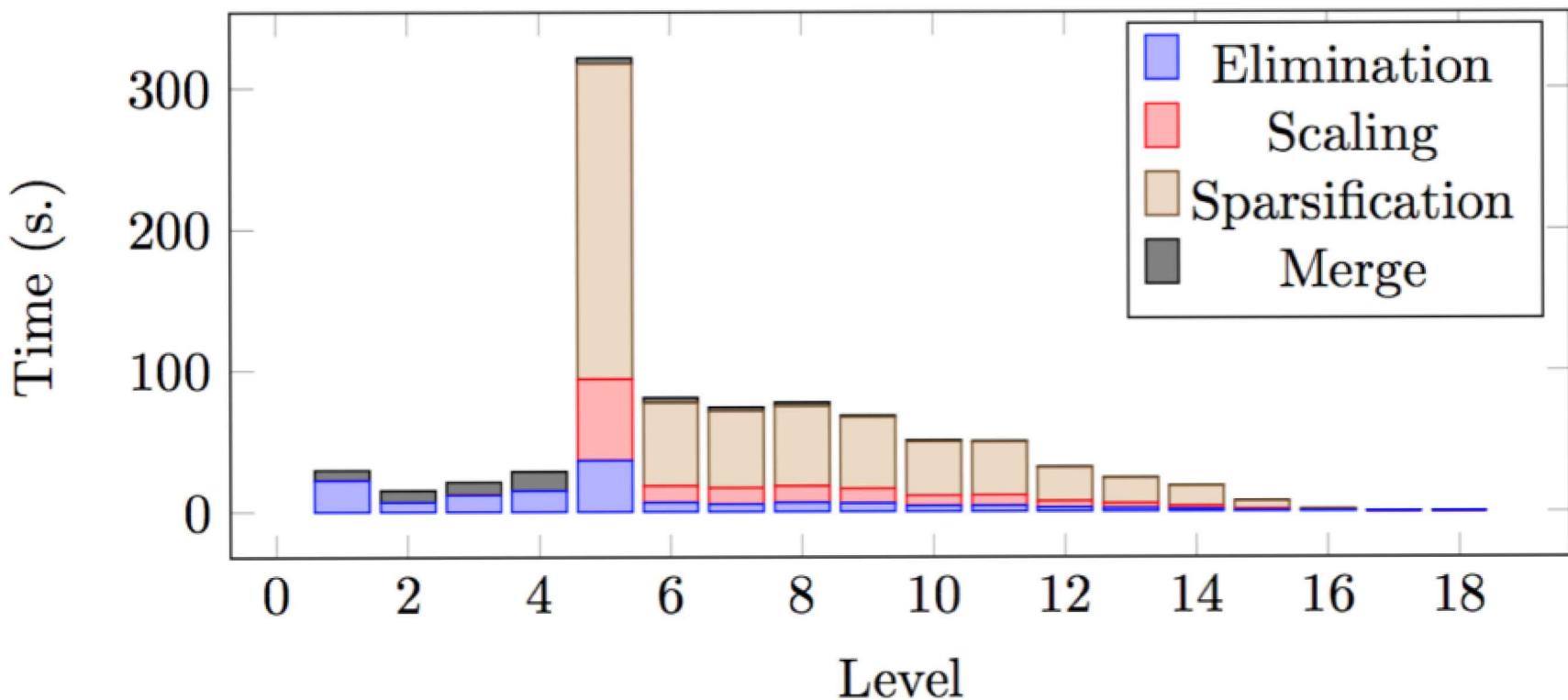
SPD problems from SuiteSparse

Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling



Profiling

- Most expensive part is sparsification (RRQR)
- Skip sparsification on bottom levels (no benefit)



Conclusions

- SpaND is an approximate factorization
 - combines features from sparse direct and hierarchical matrices
- Tunable trade-off factorization cost and preconditioner quality
 - Observed near-linear scaling on many problems
- Based on HIF but several improvements
- We focused on SPD case (Cholesky) but
 - Method can be generalized to nonsymmetric (LU)

References

- SpaND
- HIF