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Motivation

■ Sparse direct factorization is too expensive in 3D

■ Want robust "black-box" approximate factorization

■ Use as preconditioner

■ Allow trade-off fill versus quality

■ Current methods are not scalable or not robust

■ Incomplete factorizations

■ Schur complement methods

■ Sparse approximate inverses

■ SpaND: Collaboration with Stanford (Darve, Cambier, Chen)

■ Similar to HIF method (Ho & Ying)



Sparse Factorization (1)
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Sparse Factorization (2)



Sparse Factorization (3)



Sparse Factorization (4)
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Sparsified Approx. Factorization (1)
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Sparsified Approx. Factorization (2)
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Sparsified Approx. Factorization (3)



Sparsified Approx. Factorization (4)
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Sparsified Approx. Factorization (5)
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Sparsified Approx. Factorization (6)



SpaND Summary

• Sparsify separators (low-rank compression) during elimination
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Different from fast-algebra on dense

■ Common approach: Fast algebra (H/HSS/BLR) on dense blocks

■ Ex: Strumpack, MUMPS, PasTix, etc.

■ Instead we reduce the size of the separator blocks!



Sparsification Step

• Block scaling, low-rank elimination, drop negligible blocks
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Sparsification via Low-rank Approx.

We need low-rank approximation of off-diagonal (rectangular) block.

1. Interpolative decomposition (ID)

■ Use RRQR (QRCP)

■ Aka skeletonization

2. Orthogonal transform

■ More stable, but more expensive
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Sparsification 1: ID
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Sparsification 2: Orthogonal
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Results: 2D Laplacians
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Results: SuiteSparse Collection

SPD problems from SuiteSparse
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Results: Performance Profile

interpolative, no scaling
Interpolative, with scaling

SPD problems from SuiteSparse Orthogonal, with scaling
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Results:

Interpolative, no scaling
Interpolative, with scaling

SPD problems from SuiteSparse Orthogonal, with scaling
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Results: SPE

Interpolative, no scaling
Interpolative, with scaling

SPD problems from SuiteSparse orthogonal, with scaling
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Profiling

• Most expensive part is sparsification (RRQR)

• Skip sparsification on bottom levels (no benefit)
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Conclusions

■ SpaND is an approximate factorization

■ combines features from sparse direct and hierarchical matrices

■ Tunable trade-off factorization cost and preconditioner quality

■ Observed near-linear scaling on many problems

■ Based on HIF but several improvements

■ We focused on SPD case (Cholesky) but

■ Method can be generalized to nonsymmetric (LU)
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