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Elimination of on-site laboratories at reprocessing facilities is
a long-standing goal of the IAEA

* Currently on-site laboratories are required for large
throughput bulk handling facilities under IAEA safeguards,
such as PUREX reprocessing facilities

* Require small measurement uncertainties to have an acceptable sigma

MUF wvalue
* Expensive and time consuming

* Can new approaches reduce the need for destructive analysis and
consequently on-site laboratories

* Proposed machine learning framework uses non-destructive
analysis (NDA) measurements to detect facility anomalies such
as diversion or misuse

* Measurements could be left unattended outside routine
calibration

* Framework is to aid the IAEA safeguards implementation,
not to replace inspectors




Feedforward neural networks are powerful tools that can

learn any continuous function

= Neurons receive signals,
send output to connected
neurons

= Activation functions
allow for learning of non-
linear functions

= Weights are adjusted
during training to more
closely match desired
output
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Recurrent neural networks can address temporal
dependencies in data

= Recurrent neural networks learn
time-dependent behavior by
passing information to other parts
of the network

A —> A
= Very effective in other areas of é gb

machine learning such as speech https://colah.github.io/posts/2015-08-Understanding-LSTMs/
recognition or language translation
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Support Vector Machines are powerful tools for classification
tasks

= Traditional Support Vector
Machine (SVM) is a

supervised method to

calculate a classifier between
to classes of data

=[arge-margin classifier
method that attempts to
maximize the separation
between classes

= Uses a hyperplane to
separate data — however
most datasets not linearly
separable

= Kernel methods used to
transform data into a higher
space to separate data




One-Class Support Vector Machines are an extension of the
Support Vector Machine formulation

One-Class SVM

* SVM can be reformulated as an
unsupervised classification
problem

= SVM is trained to separate p from L. e
1-p of the data where . . m
"e<p<(1-¢) . .o

mg =~ 10710

= Controlling p adjusts sensitivity to
off-normal conditions

= Under normal operation some

observations are classified as off- _ o5}
normal, but density of outliers 1s 2
low =2 0
o

" Density of outliers is used to o
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determine false alarm probability
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Understanding the entire machine learning pipeline
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Problem setup for methodology benchmarking

= Substitution material loss at a generic PUREX facility

" Direct material losses can be detected through bulk mass measurements and are not
considered here

= Removal of 1SQ over varying lengths of time, described as multiples of a MBP

= Masses from process model are used as inputs to the machine learning based and
traditional safeguards tests

= In practice the LSTM+OCSVM would use gamma counts from NIDA measurements, but
for initial work mass was used to reduce computational overhead of computing gamma

spectra via GADRAS

* The LSTM+OCSVM has input/output measurement uncertainties of 1% for both
systematic and random errors

= Page’s trend test on SITMUPF (traditional safeguards test for detecting material loss)
has measurement uncertainties of ~0.7% (varies by location).

= LSTM+OCSVM is setup around a small part of one MBA, Page’s trend test on
SITMUF is around entire MBA

= Material loss performed after a mixing tank — challenging to detect with changing
fuel characteristics such as burnup and initial enrichment

|



o 1 Initial results show new methodology perform better for
abrupt cases but worse for protracted
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i I Interpreting algorithm performance and understanding the
role of systematic uncertainty

Observed NDA data vs predicted

= LSTM is trained on past
input data only to predict
the output

= L.STM has no knowledge

of the systematic error on
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2 I Removing the bias from the data after observation is very

Observed NDA data vs predicted

—— Observed Data
—— Predicted Data
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possibility
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3 | Cross-calibration could be used as a means to reduce -
differences in systematic uncertainty

= Current performance issues caused by differences in
systematic errors for input and output measurements

* LSTM+OCSVM methodology uses deviations from a normal
pattern to detect off-normal conditions

= \Wide data distributions reduce the effectiveness of the
approach

= Cross calibration to reduce the mismatch between input and

output systematic error is one possible approach I

= Input detectors are calibrated using a check source in a fixed
geometry, then, output detectors are calibrated using the input
detector calibration using the same fixed geometry

= Consider the a case where the systematic error is non-zero
(still 19%0), but the same for both input and output
measurements



4+ 1 Reductions in the differences between input and output
systematic errors greatly increase algorithm performance
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5 I Conclusions

= Unsupervised learning could prove effective for nuclear
safeguards under certain conditions

" Provided certain conditions are met, it is possible to reduce
reliance on destructive analysis for safeguards

= This work is an initial look at machine learning for safeguards
applications




Future Work

= Algorithm improvement

= Strange LSTM performance observed in certain limited circumstances

= Expansion of the LSTM prediction area to include entire
MBA

= Evaluation of Page’s trend test under conditions where
systematic error 1s assumed to be cross-calibrated

= Performance testing in real-world conditions
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s | Supplementary Slides — Before bias tabular data

P(D

Case P(D) Page LgTI)VI+OCSVM Relative Performance

SQIMBPO.5 65.18% 80.36% 15.18%
SQIMBPI 61.61% 26.79% -34.82%
SQIMBPI.5 25.00% 14.29% -10.71%
SQIMBP2 25.89% 16.96% -8.93%
SQ2MBP0.5 100.00% 100.00% 0.00%
SQ2MBPI 100.00% 99.11% -0.89%
SQ2MBPI.5 97.32% 72.32% -25.00%

SQ2MBP2 90.18% 51.79% -38.39%



9 I Supplementary Slides — After bias tabular data

P(D

Case P(D) Page LgTI)"HOCSVM Relative Performance

SQIMBP0.5 65.18% 100.00% 34.82%
SQIMBPI 61.61% 95.54% 33.93%
SQIMBPI.5 25.00% 86.61% 61.61%
SQIMBP2 25.89% 74.11% 48.21%
SQ2MBP0.5 100.00% 100.00% 0.00%
SQ2MBPI 100.00% 100.00% 0.00%
SQ2MBPI.5 97.32% 100.00% 2.68%

SQ2MBP2 90.18% 100.00% 9.82%



