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2 I Outline

• Motivation

• Process model

• Machine Learning methods
• Feedforward neural networks

• Long-Short Term Memory (LSTM) neurons

• One-Class Support Vector Machine (LSTM)

• Machine learning framework

• Initial results

• Conclusions and future work



3 I Elimination of on-site laboratories at reprocessing facilities is
a long-standing goal of the IAEA

• Currently on-site laboratories are required for large
throughput bulk handling facilities under IAEA safeguards,
such as PUREX reprocessing facilities
• Require small measurement uncertainties to have an acceptable sigma
MUF value

• Expensive and time consuming

• Can new approaches reduce the need for destructive analysis and
consequently on-site laboratories

• Proposed machine learning framework uses non-destructive
analysis (NDA) measurements to detect facility anomalies such
as diversion or misuse

• Measurements could be left unattended outside routine
calibration

• Framework is to aid the IAEA safeguards implementation,
not to replace inspectors



I4 Feedforward neural networks are powerful tools that can
learn any continuous function

• Neurons receive signals,
send output to connected
neurons

• Activation functions
allow for learning of non-
linear functions

• Weights are adjusted
during training to more
closely match desired
output

• Neurons are arranged in
a network
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http://cs23 I n.github.io/neural-networks- I /#feedforward



5 Recurrent neural networks can address temporal
dependencies in data

• Recurrent neural networks learn
time-dependent behavior by
passing information to other parts
of the network

• Very effective in other areas of
machine learning such as speech
recognition or language translation

• Used to predict the next time-
step of a NDA gamma signal in
this work

• Gamma peaks from previous
time are used to form a history.
The history is used to predict the
next step.

• Difference between predicted
value and observed is the
reconstruction error

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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I6 SupportVector Machines are powerful tools for classification
tasks 1

• Traditional Support Vector
Machine (SVM) is a
supervised method to
calculate a classifier between
to classes of data

•Large-margin classifier
method that attempts to
maximize the separation
between classes

• Uses a hyperplane to
separate data — however
most datasets not linearly
separable

• Kernel methods used to
transform data into a higher
space to separate data

ca.
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7 One-Class SupportVector Machines are an extension of the
SupportVector Machine formulation

• SVM can be reformulated as an
unsupervised classification
problem

• SVM is trained to separate p from
1-p of the data where
• £ p (1 - E)

• £ '-= 10-10

• Controllingp adjusts sensitivity to
off-normal conditions

• Under normal operation some
observations are classified as off-
normal, but density of outliers is
low

• Density of outliers is used to
determine false alarm probability
and probability of detection

One-Class SVM
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Understanding the entire machine learning pipeline
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9 Problem setup for methodology benchmarking

• Substitution material loss at a generic PUREX facility

• Direct material losses can be detected through bulk mass measurements and are not
considered here

• Removal of 1SQ over varying lengths of time, described as multiples of a MBP

• Masses from process model are used as inputs to the machine learning based and
traditional safeguards tests

• In practice the LSTM+OCSVM would use gamma counts from NDA measurements, but
for initial work mass was used to reduce computational overhead of computing gamma
spectra via GADRAS

• The LSTM+OCSVM has input/output measurement uncertainties of 1% for both
systematic and random errors

• Page's trend test on SITMUF (traditional safeguards test for detecting material loss)
has measurement uncertainties of —0.7% (varies by location).

• LSTM+OCSVM is setup around a small part of one MBA, Page's trend test on
SITMUF is around entire MBA

• Material loss performed after a mixing tank — challenging to detect with changing
fuel characteristics such as burnup and initial enrichment

•



io Initial results show new methodology perform better for
abrupt cases but worse for protracted
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ii Interpreting algorithm performance and understanding the1 CI
role of systematic uncertainty

• LSTM is trained on past
input data only to predict
the output

• LSTM has no knowledge
of the systematic error on
the output stream

• Predictions based only on
systematic error of input

• Negative biases in
reconstruction error can
occur when the systematic
error is positive for the
input and negative for the
output

• Biases in reconstruction
error can reduce probability
of detection for material
diversion
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12 Removing the bias from the data after observation is very
challenging

0.40

• Desired behavior is that the 0.38
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• In practice determining the
difference between systematic
errors for different detectors
can be challenging

• Calculate running mean?

• Can be biased by long off-
normal events

• Certified calibration period?
• Approximate the average
reconstruction error

• Expensive and time consuming

• Cross-calibration is a
possibility
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I Cross-calibration could be used as a means to reduce
differences in systematic uncertainty

■ Current performance issues caused by differences in
systematic errors for input and output measurements

■ LSTA/I+OCSVNI methodology uses deviations from a normal
pattern to detect off-normal conditions

■ Wide data distributions reduce the effectiveness of the
approach

■ Cross calibration to reduce the mismatch between input and
output systematic error is one possible approach

■ Input detectors are calibrated using a check source in a fixed
geometry, then, output detectors are calibrated using the input
detector calibration using the same fixed geometry

■ Consider the a case where the systematic error is non-zero
(still 1%), but the same for both input and output
measurements



14 Reductions in the differences between input and output
systematic errors greatly increase algorithm performance
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IS Conclusions

■ Unsupervised learning could prove effective for nuclear
safeguards under certain conditions

■ Provided certain conditions are met, it is possible to reduce
reliance on destructive analysis for safeguards

■ This work is an initial look at machine learning for safeguards
applications



16 Future Work

• Algorithm improvement
• Strange LSTM performance observed in certain limited circumstances

• Expansion of the LSTM prediction area to include entire
MBA

• Evaluation of Page's trend test under conditions where
systematic error is assumed to be cross-calibrated

• Performance testing in real-world conditions
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18 Supplementary Slides — Before bias tabular data

P(D)
Case P(D) Page LSTM+OCSVM Relative Performance

SQIMBP0.5 65.18% 80.36% 15.18%

SQIMBPI 61.61% 26.79% -34.82%

SQ 1 MBPI.5 25.00% 14.29% -10.71%

SQ I MBP2 25.89% 16.96% -8.93%

SQ2MBP0.5 100.00% 100.00% 0.00%

SQ2MBPI 100.00% 99.11% -0.89%

SQ2MBPI.5 97.32% 72.32% -25.00%

SQ2M BP2 90.18% 51.79% -38.39%



19 Supplementary Slides —After bias tabular data

P(D)
Case P(D) Page LSTM+OCSVM Relative Performance

SQIMBP0.5 65.18% 100.00% 34.82%

SQIMBPI 61.61% 95.54% 33.93%

SQI MBPI.5 25.00% 86.61% 61.61%

SQIMBP2 25.89% 74.1 1 % 48.21%

SQ2MBP0.5 100.00% 100.00% 0.00%

SQ2MBPI 100.00% 100.00% 0.00%

SQ2MBPI.5 97.32% 100.00% 2.68%

SQ2MBP2 90.18% 100.00% 9.82%


