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Motivation and outline 1-D magnetic diffusion: very close agreement between PERSEUS, HYDRA, and analytic solution
: : : o F_ w1 System is not influenced by Hall MHD.
Modeling power-flow with high fidelity is of utmost ¢ o £
" . . g — Bg vsr, 1-D conductor penetration J; vs r, 1-D conductor penetration
importance for improving the performance of experiments on ® o e Wi ”
e e : O —— mm—tll L i A | :
B, § N 002280 002285 0.0270 002300  0.02305 — iy, 5l T o220 oozmss 05 — — analytic, 50 ns
present and future pulsed power facilities. solid Al ! e e <500 ERSEUS. 50 ne
@ I — HYDRA, 50 ns Al — HYDRA, 50 ns
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* For 1-D B-field penetration into conducting slab, we verified agreement between the two VacULm :
codes and with analytic solution.
* Tor 1-D B-field penetration into plasma layer, we verified agreement between the two codes.
* For 2-D B-field penetration into a low-density plasma, we compared the impact of Hall - - : -
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physics on diffusion rates, as modeled by each code.
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Simplifying assumptions to facilitate the modeling ot magnetic diffusion with Hall physics:
2-D magnetic diffusion into plasma Bg (T) at 10 ns By (T) at 5 ns
* 2-D axisymmetric system (MITL and plasma); only J,, |, , and By are nonzero. 5 P Bg (T) at 10 ns o (1) 6 (1)
* Spatially uniform resistivity and density within each material, i.e. vacuum, plasma, and electrode. qualitative Hall MHD agreement between = © ) TSI, Tl T
* 'The displacement current is negligible. This implies PERSEUS and HYDRA > 4
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* small system size compared to light propagation distance over relevant time scales 1
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field diffusion) than predicted by resistive MHD. I I .
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* [ > 0: material becomes more conductive (slower r converged for Ar < 25 pum.
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