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Motivation and outline

Modeling power-flow with high fidelity is of utmost
importance for improving the performance of experiments on
present and future pulsed power facilities.

• Hall MHD affects the magnetic field diffusion rates into electrode plasmas, and

therefore the impact of electrode plasmas on power-flow.

• PERSEUS vs HYDRA comparison:

• For 1-D B-field penetration into conducting slab, we verified agreement between the two

codes and with analytic solution.

• For 1-D B-field penetration into plasma layer, we verified agreement between the two codes.
• For 2-D B-field penetration into a low-density plasma, we compared the impact of Hall

physics on diffusion rates, as modeled by each code.

When does the Hall Term become important for power flow?

• When the Hall term becomes large relative to the dynamo term or resistive term in the Generalized Ohm's

Law:

•• E+uxB X B
nee

• Large Hall term relative to dynamo term: small ion inertial length relative to spatial scales, i.e. low-density plasma.
• Large Hall term relative to resistive term: strongly magnetized plasma (electron gyrofrequency large relative to

collision frequency).

Simplifying assumptions to facilitate the modeling of magnetic diffusion with Hall physics:
• 2-D axisymmetric system (MITL and plasma); only J„ J7 , and Be are nonzero.

• Spatially uniform resistivity and density within each material, i.e. vacuum, plasma, and electrode.

• The displacement current is negligible. This implies

• current has negligible divergence
• small system size compared to light propagation distance over relevant time scales

Limitcd inotion of plasma cicctrodcs.

Faraday's law with Hall term:
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• The Hall term is only non-zero under these

assumptions when Bo couples to Jr (Hall term is zero
in 1-D simulations where Jr = 0).

• Jr < 0: material becomes more resistive (faster B-
field diffusion) than predicted by resistive MHD.

• Jr > 0: material becomes more conductive (slower
B-field diffusion) than predicted by resistive MHD.
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1-D magnetic diffusion:
System is not influenced by Hall MHD.
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very close agreement between PERSEUS, HYDRA, and analytic solution

Be vs r, 1-D conductor penetration
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1-D magnetic diffusion into plasma very close agreement between PERSEUS and HYDRA

System is not influenced by Hall MHD.
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2-D magnetic diffusion into plasma
qualitative Hall MHD agreement between

PERSEUS and HYDRA
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Jr < 0 : Hall physics
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Jr > 0 : Hall physics
reduces effective resistivity
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Results are approximately

r converged for Ar 25 pim.
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