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Abstract. Resilience is an imminent issue for next-generation platforms
due to projected increases in soft /transient failures as part of the inherent
trade-offs among performance, energy, and costs in system design. In this
paper, we introduce a comprehensive approach to enabling application-
level resilience in Asynchronous Many-Task (AMT) programming models
with a focus on remedying Silent Data Corruption (SDC) that can often
go undetected by the hardware and OS. Our approach makes it pos-
sible for the application programmer to declaratively express resilience
attributes with minimal code changes, and to delegate the complexity
of efficiently supporting resilience to our runtime system. We have cre-
ated a prototype implementation of our approach as an extension to
the Habanero C/C++ library (HClib), where different resilience tech-
niques including task replay, task replication, algorithm-based fault toler-
ance (ABFT), and checkpointing are available. Our experimental results
show that task replay incurs lower overhead than task replication when
an appropriate error checking function is provided. Further, task replay
matches the low overhead of ABFT. Our results also demonstrate the
ability to combine different resilience schemes. To evaluate the effective-
ness of our resilience mechanisms in the presence of errors, we injected
synthetic errors at different error rates (1.0%, and 10.0%) and found
modest increase in execution times. In summary, the results show that
our approach supports efficient and scalable recovery, and that our ap-
proach can be used to influence the design of future AMT programming
models and runtime systems that aim to integrate first-class support for
user-level resilience.

* Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration (NNSA) under contract DE-NA0003525.
This work was funded by NNSA’s Advanced Simulation and Computing (ASC) Pro-
gram. This paper describes objective technical results and analysis. Any subjective
views or opinions that might be expressed in the paper do not necessarily represent
the views of the U.S. Department of Energy or the United States Government.
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1 Introduction

High performance computing plays a critical role in the advancement of science
and engineering through simulations of large complex systems. Due to the in-
satiable demand for increased computing capability, multiple nations have com-
mitted to the development of exascale supercomputers. One of the major new
challenges in exascale computing is the projected increases in silent data corrup-
tions (SDC) [7], which are unexpected alterations in computation or data that
can occur undetected. In such cases, application and software level mechanisms
can play an essential role in improving application resilience.

The most popular resilience technique for application users today is coor-
dinated checkpoint and restart (C/R) typically with bulk-synchronous parallel
programming models [21], which involves global coordination of processing ele-
ments (PEs) for identifying a consistent global application state. However, this
global recovery model is better suited for hard failures, and suffers from ex-
cessive performance overheads when global recovery is triggered for transient
local failures. However, a majority of application failures are attributed to lo-
cal node/process failure as reported by [21], with the recognition that recovery
can potentially be applied only to the corrupted processes and data without re-
quiring global coordination. Another example of local recovery is Containment
Domains (CDs) [8], which provide an abstraction of error detection and correc-
tion to a local boundary intended for efficient and transparent recovery of HPC
applications.

Asynchronous many-task (AMT) programming models [2-5,9,17,20] are in-
tended for managing the increasing complexity of node architectures and hetero-
geneity. These frameworks decompose an application program into small, trans-
ferable units of work (many tasks) with associated inputs (dependencies or data
blocks) rather than simply decomposing the application at the process level (MPI
ranks). The term, ‘many-task’, encompasses the idea that the application is de-
composed into many transferable or migratable units of data/work, to enable
the overlap of communication and computation as well as asynchronous load
balancing strategies. We believe that the AMT foundations of transferable units
and dynamic load balancing are also conducive to supporting fault tolerance.
Specifically, we claim that AMT models are better suited to enabling local error
recovery in next-generation platforms than bulk-synchronous models, since AMT
models provide explicit abstractions of data and tasks, i.e., 1) a task represents
a small piece of program execution, 2) failures are manifested as failed or lost
tasks, and 3) failures can typically be remediated using lightweight mechanisms
such as task replay.

In this paper, we introduce a comprehensive approach to enabling resilience
in AMT programming models. While some of the prior approaches discuss differ-
ent resilience techniques including task replay, task replication, algorithm-based
fault tolerance (ABFT [15]), and checkpoint/restart for different AMT program-
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ming models such as OmpSs [24] and PaRSEC [6], they are usually limited to a
specific technique or to a specific application domain. Our approach complements
existing checkpoint/restart mechanisms with reusable APIs to enable abstrac-
tion of data and program execution to map to multiple resilience patterns, and
compositions thereof. To the best of our knowledge, this is the first work to dis-
cuss the design, implementation, and evaluation of a unified programming model
that supports multiple resilience techniques.
Specifically, this paper makes the following contributions:

1. Programming model extensions to enable resilience techniques from past
work (replay, replication, ABFT, checkpoint/restart) for AMT applications.

2. Support for arbitrary compositions of the extensions in 1.

3. Unified execution of resilient and non-resilient tasks in a single framework.

4. Implementation of our approach as extensions to the Habanero-C/C++ li-
brary for many-task parallelism.

5. Comprehensive performance evaluation of our implementation with synthetic
error rates, and analysis of the results.

2 Design

A key question for any resilience design is to identify a program location at which
we can perform error checking and recovery. For AMT programming models, the
task boundary provides an ideal location around which resilience can be imple-
mented. The task constructs that are of our interest do not involve internal
synchronization, i.e., once a task is started, it runs to completion without block-
ing or waiting for other tasks or data. This implies that a task can start only after
it acquires all its inputs, and that we can publish the results once it is finished;
therefore, the task boundary provides a natural fit as the location around which
resilience can be implemented, without worrying about internal task states or
the global application state.

Once the program location around which resilience can be implemented is
identified, the next step is to identify the data that needs to be checked to en-
sure correctness. A trivial choice is to ensure the integrity of the entire data
used in the program, but this could be very expensive to implement and also
unnecessary. The next obvious choice is to look at data that is going to be used
past the task boundary, i.e. the task outputs. It is common for task-based run-
times to discourage the use of global variables for communicating data between
tasks, and instead use built-in constructs for task inputs and outputs. For exam-
ple, Legion [3] uses Logical regions, and Open-Community-Runtime(OCR) [20]
uses Data-blocks to share data between tasks. C++11 includes promise and
future constructs to enable transfer of data between tasks along with synchro-
nization to avoid data races. A promise is a thread-safe container that uses
single-assignment semantics to fill its value. The filled value can be read using
a read-only handle called a future. promise and future together enable point-
to-point synchronization between one source task to many sink tasks. Thus, if
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the application programmer uses only promise-future pairs to perform commu-
nication between tasks, then the data in the promise objects becomes the live
data at the task boundaries. Thus, we have identified both the program location
and data that needs to be checked to enable resilience for applications based on
AMT runtimes. Errors in the global state can be handled by other global recov-
ery approaches; our approach is still beneficial in such cases because its support
for local recovery for tasks enables more scalable and efficient resilience relative
to the use of global recovery everywhere.

We assume, that for the same inputs, the task generates promises with data
that is within some known range. Tasks do not need to be entirely deterministic
- random numbers, etc. can be used within tasks so long as errors within the
margin of the randomization’s effect are permissible.

2.1 Resilient API Specifications

To reiterate, the key components of our approach to enable resilience in AMT
runtimes are tasks and promise/futures. This section discusses our resilient APT
design. In short, we identified appropriate software abstractions that allow pro-
grammers to easily enable/disable different resilience techniques while keeping
the original program mostly unchanged. In the following listings, we use async
as a generic construct that creates an asynchronous task with a user-provided
lambda expression, and async_await is a variant of async that can wait on one
or more futures.

First, as a baseline implementation without resilience, shows a
code example where the function operation_val() in Line [17 creates an asyn-
chronous task waiting on the completion of two tasks, namely read first_val()
and read_second_val(). As shown in Lines [§ and [I14, a future is satisfied by
performing a put operation on the corresponding promise. Once the promises
are satisfied, the operation_val() task which depends on the two promises is
scheduled for execution. After the completion of the task, the result (res) is
printed in the print_result() task.

Listing 1.1. A baseline non-resilient 17 void operation_val() {
. 18 | async_await([=] {
AMT program to perform an operation on i YELT = got valuslvall depls
two asynchronously generated values. 20 val2 = get_value(val2_dep);
. 21 res = new value(op(vall, val2));
1 auto vall_dep = new promise();
; 22 res_dep->put (res) ;
2 auto val2_dep = new promise(); Wi e D)
3 auto res_dep = new promise(); 2 s lien on it
y = ! 24 ,val2_dep->get_future());//async
5 void read_first_val() { iz >
6 async([=] { 27 void print_result() {
7 vall = new value(get_val_from_src()); B -
. 28 | async_await([=] {
8 vall_dep->put(vall); - lue( dep) ;
o RS deynz 29 res = get_value(res_dep);
’ 30 print(res);

11 void read_second_val() {
12 | asyne([=] { i
13 val2 = new value(get_val_from_src()); Lask:Creation

Satisfying a promise
14 val2_dep->put(val2); FEekihas 010 £ [raen
15 }); // async

31  },res_dep->get_future()); // async
}
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Replication Task replication is aimed at proactive reliability enhancement by
executing the same task multiple times, assuming that the majority of the repli-
cas produce the same output for determining correctness. The obvious drawback
is the increase in computational cost, but it is still effective in situations where
a few tasks in a critical path of the task graph may leave the computing system
underutilized. The replication overhead can be reduced by selective replication
to control the trade-offs between reliability and performance penalties.

Since task replication is based on equality checking of the outputs of the
replica tasks, the runtime can internally take care of performing the replication
and equality checking. There is no need for the user to provide any additional
information other than the equality checking operator for each data type used.
Also, the task APIs should include a mechanism to communicate the result of
equality checking. This can be done using a promise that will have a value of
1 for success and 0 for failure. The replication version of the operation_val()
task from is shown [Listing 1.2. We can see that the only modification
required in user code is to change the name of the task creation API and add a
parameter, the err_dep promise which tells whether a majority of the replicas
produced the same output.

The only data that gets propagated to dependent tasks are those that are
put to a promise. With non-resilient tasks, dependent tasks get scheduled for
execution once the necessary put operations have been performed. In order to
prevent errors discovered in replication from propagating to dependent tasks,
we do not publish any put operations from a replicated task until the equality
checking of the replicas succeed.

Listing 1.2. Resilient AMT program

based on replication to perform an op- Listing 1.3. Resilient AMT program
eration on two asynchronously generated based on replay to perform an operation
values. on two asynchronously generated values.

auto err_dep = new promise(); bool err_chk_func (void *data) {

1 1
2 . ) 2 if (data is good) return true;
3 void operation_val() { 3 else return false;

4 | replication::async_await_check([=] { 4}

5 vall = get_value(vall_dep); 5

6 val2 = get_value(val2_dep); 6 auto err_dep = new promise();

7 res = new value(op(vall, val2)); 7 void *chk_data = nullptr;

8 res_dep->put (res) 8

9  },err_dep, 9 void operation_val() {

10 vall_dep->get_future(), 10 | replay::async_await_check}([=]{

11 val2_dep->get_future());//async 11 vall = get_value(vall_dep);

12 } 12 val2 = get_value(val2_dep);

13 ) ) 13 res = new value(op(vall, val2));
14 void print_result() { 14 res_dep->put (res) ;

15 async_await([=] { 15 chk_data = res;

16 recoverable = get_value(err_dep); 16 }, err_dep,err_chk_func, chk_data,
17 if (recoverable == 0) exit(1); 17 vall_dep->get_future(),

18 res = get_value(res_dep); 18 val2_dep->get_future()); // async

19 print(res); 19 }

20 }, res_dep->get_future(),

21 err_dep->get_future()); // async The task replay construct

22 } User-defined error checking function

Arguments to the error checking
The task replication comnstruct

A promise with a failure status
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Replay Task replay is a natural extension of Checkpoint/Restart for the con-
ventional execution models. Instead of applying a rollback of the entire program,
as few as one tasks are replayed when an error is detected. Task replay is more
sophisticated than replication but has much less overhead. In this form of re-
silience, the task is replayed (up to N times) on the original input if its execution
resulted in some errors. Compared to replication, the application programmer
needs to provide an error checking function so that the runtime can use it to
check for errors. User-visible abstraction for a replay task is to extend the task
creation API to include an error checking function and data on which that func-
tion operates. The application programmer needs to fill the data (chk_data) that
needs to be checked for errors using the error checking function (err_chk_func).
The replay version of the operation_val() task from is shown
ing 1.3. Similar to Replication tasks, Replay tasks also do not publish the output
until error checking succeeds.

Algorithm-Based Fault Tolerance (ABFT) Algorithm-based fault toler-
ance (ABFT) mitigates failures using algorithm or application specific knowl-
edge to correct data corruptions and computation errors. One of the seminal
papers [15] introduced checksums that are embedded into the matrix and vector
operators in parallel dense matrix computations to enable runtime error detec-
tion and correction. By using the numerical properties of the algorithm, ABFT
uses checksums or provides alternative formulations to recover from an error
thus ensuring forward progress without redoing the whole computation. Thus
the API designed for an ABFT task should provide a facility to check for er-
rors and if there is an error, a way to recover from it. Therefore, the user level
abstraction to include ABFT is to extend the replay task API with a recovery

facility as shown in Listing 1.4

Listing 1.4. Resilient ABFT task signature containing the error correction mechanism.

1 abft::async_await_check([=] {

2 actual computation

3 }, err_dep, err_chk_func, chk_data,
4 err_correction_func, futures);

The ABFT construct
User-defined error correction function

Checkpoint/Restart (C/R) Checkpointing involves the saving of interme-
diate program state/outputs on to secure storage so that in case of failure, the
application can be restarted from the point when the checkpoint was taken rather
than from the beginning of the program’s execution. From the context of task-
based runtimes, once the error/equality checking succeeds at the boundary of a
task, the output data can be checkpointed. Later in some following task, if all
other resilience techniques fail, it can re-fetch the input data from the checkpoint
and execute again.

Checkpointing can be added to any of the resilient tasks listed above. A
proposed user level abstraction for a checkpoint task created by extending the
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replay task is shown in Listing 1.5. The only addition is to specify where to store
the checkpoint data using the set_archive_store API as shown in Line [I3 In
our current preliminary implementation, we keep a copy of the checkpoint in
the memory itself, as in diskless checkpointing [22]. Efficiently performing these
checkpoints and their performance evaluation is a topic for future work.

Listing 1.5. Resilient AMT program based on replay to perform an operation on two
asynchronously generated values and also checkpoints the results.

1 void operation_val() {

2 checkpoint::async_await_check([=] {
3 vall = get_value(vall_dep);

4 val2 = get_value(val2_dep);

5 res = new value(op(vall, val2));
6 res_dep->put (res);

7 chk_data = res;

8 }, err_dep, err_chk_func, chk_data,

9 vall_dep->get_future(),
10 val2_dep->get_future()); // async
11}

12
13 set_archive_store(storage object);

The checkpoint/restart construct
The checkpoint API that specifies where to store the checkpoint data
(invoked just once, before async_await_check)

2.2 Memory Management

C++ requires the user to perform memory management; i.e., the application
programmer needs to explicitly free any data that is allocated in the heap mem-
ory. This could be reasonable to manage in normal AMT programs, but when
we introduce resilience techniques manual deallocation poses certain challenges.

Many resilience techniques involve multiple executions of the task to get the
correct results. This would mean that the user needs to keep track of the good or
bad executions of the task. For the good runs, the data generated by a task would
be used later in some consumer tasks; therefore, they need to be deallocated
only after the consumption of the data. For bad runs, there is no need for the
data created in the task and, therefore, they need to be deallocated at the end
of the producer task itself. Keeping track of good or bad runs and selectively
deallocating memory would create unnecessary complexity in the application
code.

Therefore, to reduce the user’s burden of manual memory management, we
decided to add the reference counting capability that deallocates the data auto-
matically once its use is over. Since data is being transferred between tasks using
promise and future, reference counting is added by extending the promise to
include the reference count. Ideally, the reference count specifies the number
of tasks dependent on the future associated with the promise. The reference
count is passed on to a promise when it is created. In other words, a reference
count N specifies that only N tasks consume data from the given promise, and
therefore the promise and the associated data can be freed once N tasks have
used it.
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3 Implementation

In this section, we discuss the implementation of our resilient-AMT prototype [1],
extended from the Habanero C++ library (HClib) [11]. An overview of HClib
and its runtime capability are discussed in followed by efforts for the
extension of HClib.

3.1 HClib

HClib [11] is a lightweight, work-stealing, task-based programming model and
runtime that focuses on offering simple tasking APIs with low overhead [13]
task creation. HClib is entirely library-based (i.e. does not require a custom
compiler) and supports both a C and C++ API. HClib’s runtime consists of
a persistent thread pool, across which tasks are load balanced using lock-free
concurrent dequeues. At the user-visible API level, HClib exposes several useful
programming constructs. A brief summary of the relevant APIs is as follows. The
hclib: :launch() APIinitializes the HClib runtime, including spawning runtime
threads. The async([] { body; }) API creates a dynamic task executing body
provided as a C++ lambda expression; this API optionally allows the inclusion
of parameters that specify precondition events thereby supporting event-driven
execution for tasks when so desired (i.e., the async_await()). The finish([] {
body; }) API waits for all tasks created in body, including transitively spawned
tasks, before returning.

3.2 Enabling Resilience in HClib

We extended HClib to include the resilience constructs (Section 2.1)), and the
reference counting capability (Section 2.2).

As mentioned insection 2.7, to hold the put operations until equality checking
succeeds, we need additional space within the promise. The normal promise
can hold only one value that had been added to it using the put operation. For
replication, however, all replicas perform the put operation and, therefore, we
need N locations within the promise rather than one. To accommodate this,
we extended the reference counting promise with an array to store N values
so that we can perform majority voting among them. During a put operation
inside a replication task, the i*" replica stores the value in the i*" location of the
array. Similarly for replay or ABFT tasks, to hold the output inside the promise
until it is published, we extended the reference counting promise to include a
temporary storage. Unlike replication, which requires an array of temporary
storage, a replay and ABFT promise needs only one temporary storage space
since the replay happens sequentially.

We need to collect all the put operations within the resilient tasks so that
they can be checked for errors after all replicas finish. For this purpose, we
extended HClib with task-local storage. Each put operation in the replica with
index zero (we assume all replicas perform the same put operations) adds the
associated promise to the task-local storage. Finally, while merging the results
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from the replicas, we fetch the promises from the task-local storage and check for
equality on the data attached to those promises using an equivalence operator
the user provides.

4 Evaluation

This section presents the results of an empirical evaluation of our runtime sys-
tem, mostly on a single-node platform with a few experiments on a multi-node
platform to show its viability in a distributed environment.

Machine: We present the results on the Cori supercomputer located at NERSC,
in which each node has two sockets, each of which has 16-core Intel Xeon E5-
2698 v3 CPUs at 2.30GHz. Cori uses Cray Aries interconnect with Dragonfly
topology having a global peak bisection bandwidth is 45.0 TB/s. We used GCC
7.3.0 compiler for building the library and most benchmarks and Intel Compiler
18.0.1 for benchmarks that require MKL support.

Benchmarks: Our first benchmark is the stencil 1D benchmark that solves lin-
ear advection (a hyperbolic PDE). We implemented this using the Lax-Wendroff
3-point stencil. In this benchmark, we use 128 tiles of size 16,000 doubles, 128
time steps per iteration (each task advances its assigned tile 128 time steps), and
8,192 iterations. For our next benchmark, we solve heat diffusion (a parabolic
PDE) on a 3D domain with periodic boundary conditions using a 7-point stencil.
Here we use 162 cubes, each representing a subdomain of size 323, and run for
1,024 iterations. Our next benchmark is a tiled version of Conjugate Gradient
(CG), which is an iterative method for solving sparse systems of linear equa-
tions. A square matrix from the “SuiteSparse” collection (52,804 rows/columuns,
5,333,507 non-zeros) was set up with the CG method with 128 tiles and 500 iter-
ations. Our fourth benchmark is the Smith-Waterman algorithm that performs
local sequence alignment, which is widely used for determining similar regions
between two strings of nucleic acid sequences. We use two input strings of sizes
185,600 and 192,000, divided among 4,096 tiles arranged as 64x64. Our last
benchmark is the Cholesky decomposition algorithm, which is used primarily to
find the numerical solution of linear equations. Here we decompose a matrix of
size 24,000x 24,000 into tiles of size 400x400. We report the average of five runs
for each experiment.

For the stencil benchmarks, we can detect corruption anywhere on a subdo-
main using physics-based checksums because conservation requires that the sum
of values over the subdomain only changes by the flux through the subdomain
boundary. For the Conjugate gradient and Smith-waterman benchmarks, there
are not any sophisticated error detection mechanisms, so we simply return true,
implying no error occurred. In the case when we want to inject faults, we pick a
few instances of the error checking function to return false. Error-checking func-
tions are expected to be domain/application dependent and are not the subject
of this paper, and we emulate the scenario arising from a prescribed fault rate.
The design of checksums for Cholesky decomposition is based on the work by
Cao [6].
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4.1 Performance numbers without failures

Single Resilience Technique To show the overhead of the resilient runtime,
the execution time of the five benchmarks using various resilience techniques
without failures is shown in [Figure 1. For all the benchmarks, we used replay
and replication to enable resilience. For the Cholesky benchmark, in addition to
replay and replication, we included ABFT. From the figure, we can see that for
the stencil benchmarks, some additional time is required for the replay variant
compared to the baseline. For the stencil 1D benchmark, this accounts for less
than 5% overhead whereas in stencil 3D the overhead is around 8%. A close
examination reveals the overhead includes both the computation of the checksum
and additional overhead from the replay runtime. For the Conjugate gradient
benchmark, the replay runtime incurs an overhead of less than 10%. For the
Smith-Waterman and Cholesky benchmarks, we did not notice any significant
overhead while using replay. For the Cholesky benchmark, we also enabled ABFT
and found that the time required for ABFT is comparable to that of replay.

When replication is used, we can see that the execution time increases for
all the benchmarks. We expected the time to double because, in the absence
of faults, duplication of the tasks occurs. However, for a few benchmarks, the
execution time was significantly less than double primarily due to L3 cache reuse.

Mixing Resilience Techniques To illustrate that the various resilience tech-
niques can be seamlessly combined, we also tried to mix replay and replication
in the stencil benchmarks. On one end, the application only uses replay, and on
the other end, it uses just replication. In between, the amount of replication is
increased in increments of 20%. shows that the execution time increases
linearly while mixing replay and replication. This implies that the increase di-
rectly corresponds to the additional cost for running replication and thus no
additional overhead is involved.
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4.2 Performance numbers with failures

To check the effectiveness of our resilience mechanisms in the presence of soft
errors, we ran all the benchmarks while introducing errors. We injected errors
at a rate of 1% and 10%. Here, 10% implies that an error is injected into 10%
of the total tasks. shows the execution time for various benchmarks
and resilience techniques in the presence of faults. Here, also, we can see that
the increase in execution time closely follows the amount of failure occurred. For
the 10% failure rate, in most cases, the increase in execution time is also around
10%. Failures do not cause much time increase in case of ABFT because the
ABFT error correction is very lightweight compared to others.

4.3 Performance numbers on multiple nodes

We run some preliminary experiments using stencil 1D with multiple nodes us-
ing MPI to measure the overhead of our implementation in multi-node environ-
ments?. We ran weak scaling of Stencil 1D by only increasing the number of
tiles while keeping the same configuration of other parameters as the experi-
ment on a single node. In [Figure 4, we can see some performance degradation
because of internode communication during a two-node run. However, the repli-
cation scheme worked well without degrading performance significantly because
the communication incurred by MPI routines is overlapped with the replicated
execution of tasks. For runs without resilience or with replay, MPI routines are
called only when the original task or replayed task generates correct results,
which causes a delay because it cannot be overlapped with other tasks. Thus,
the execution time of such runs increases with more nodes.

4 There is no resilience across nodes. We provide only single-node resilience and use
MPI for communication. Resilience across nodes is part of future work.
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5 Related work

Task Replication: Subasi et al [25] study a combination of task replication
and checkpoint/restart for a task-parallel runtime, OmpSs [9]. Their checkpoint
API is integrated with the input data parameters of OmpSs directives to pro-
tect the task input. They also suggested deferring launch of the third replica
until duplicated tasks report a failure. However, the mixing with other resilience
techniques and analysis of the performance penalties are yet to be studied.
Task Replay: Subasi et al [24] also study a combination of task replay and
checkpoint /restart for OmpSs. As with task replication, checkpoint/restart is
utilized for preserving the input of tasks. During the execution of a task, errors
notified by the operating system trigger a replay of the task using the input
data stored in the checkpoint. Cao et al [6] has a similar replay model. However,
the drawback of these approaches is a lack of mitigation for failure propagation,
as they assume reliable failure detection support, e.g., by the operating system,
which is not always available. Our approach provides a general interface that
allows user-level failure detection.

ABFT: Cao et al [6] also discuss an algorithm-based fault tolerance for tiled
Cholesky factorization [16] in the PaARSEC runtime. However, they do not dis-
cuss their user-visible APIs in terms of general applicability, while our approach
provides a general support for ABFT.

6 Conclusions and Future Work

The traditional checkpoint/restart (C/R) approach for resilience was designed to
support the bulk-synchronous MPI programming model under the assumption
that failure is a rare event. However, C/R is not well suited for supporting
higher-frequency soft errors or unexpected performance anomalies. The resilient-
AMT idea for applications mitigates the shortcoming of traditional C/R, so as
to support scalable failure mitigation. Task decomposition allows localization
and isolation of failures in the resilient-AMT framework, and thus keeps the
recovery inexpensive. Our work realizes the four resilience programming concepts
suggested by Heroux [14]. Task boundary helps to perform Local Failure Local
Recovery for scalable application recovery. The task replication and replay APIs
allow selective reliability; the use of replication and replay on individual tasks
can be at the user’s discretion. The task replay and ABFT APIs enable skeptical
programming, which can incorporate inexpensive user-defined error detection.
The response to an error is either task replay (rollback) or recovery (application-
specific correction). The AMT execution model relaxes the assumption of
bulk-synchrony of conventional parallel programs.

In the future, we would like to extend our resilient-AMT approach to support
both intra-node and inter-node resilience (MPI based communication). Another
direction is to combine both replication and replay mechanisms in an “eager
replay” approach. During eager replay, if extra resources are available, the replay
task can run multiple copies instead of waiting for the task to finish and select
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the correct output from the replicas using a selection function. Our current
approach also depends on the use of a user-provided equals function to check
for equivalence of data which could be automated using a compiler. Although
we support the use of nested non-resilient tasks within a resilient task, nesting
of resilient tasks is a topic of future research. Also the restriction of side-effect
free tasks can be relaxed by using idempotent regions as task boundaries [19].
Our current approach only supports one level of checkpointing, with access to
checkpoints of parent tasks. If that execution fails again, we may need to recover
from checkpoints of further ancestors (multi-level checkpointing), as part of our
future work. Another direction is to study the characteristics of faults [18, 23]
and perform fault injection [10,12] to efficiently and extensively cover them.
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