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Pulsed power devices rely on the ability to deliver high voltages and currents to
a variety of complex loads with minimal transmission losses. The Z Machine at
Sandia National Laboratories can deliver up to 26MA within —100 nanoseconds
to multiple physics targets. This type of current flow combined with MeV
potentials across millimeter A-K vacuum gaps lead to a variety of extreme
electrode heating conditions, which liberate both surface and entrained gases,
forming plasmas that propagate into the vacuum gap and draw current from the
load. Losses of up to 20% have been observed on Z for certain load
configurations. An effort is underway to investigate plasma generation in the
power flow regions of the Z Machine. Visible plasma spectroscopy is employed
to spatially and temporally determine plasma formation and propagation, and to
measure plasma parameters such as densities and temperatures. In addition to
plasma parameters, measurements of magnetic and electric fields by Zeeman
splitting and Stark shifts, respectively, are also conducted [1]. Measurements
are made using multifiber arrays, input into streak and fast-gated spectrometers.
Line shape analyses are performed using detailed, time-dependent, collisional-
radiative (CR) and radiation transport modeling. Recent results will be
discussed.

[1] S. Biswas, M.D. Johnston, et. al., "Shielding of the Azimuthal Magnetic Field by the Anode

Plasma in a Relativistic Self-Magnetic-Pinch Diode," Physics of Plasmas, 25, 113102 (2018).
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Motivations for Power Flow Studies on the Z Machine

• Obtain measurements of plasmas in the power flow regions on Z for
the purpose of gaining a comprehensive physics understanding of
plasma formation on Z.

• Detailed plasma measurements have been made on other pulsed-
power machines [2]. Want to extend these measurements to the
Z-Machine.

• Current losses on Z are attributed to plasmas in the vacuum gap of
the final feed section.

• Input experimental data into particle in cell (PIC) codes to better
predict plasmas and fields in high power devices.

• Use this information to improve present pulsed power designs, and
as a predictive capability for future, next generation facilities such as
Z-Next [3].

[2] S.G. Patel, M.D. Johnston, et al., Review of Sci. lnstr., 89, 10D123 (2018).

[3] W.A. Stygar et al., Phys. Rev. STAB, 18, 110401 (2015).

Sandia
National
Laboratories



Z Load Hardware Configuration [4]

Wire-Array Z-Pinch Load

Anode

Cathode

Anode

1 

Region of Interest for
Plasma Measurements

Posts

/dig as...

30 cm

• B-dot measurements are made at 6 cm from the axis

• Vacuum gap decreases to 3 mm in the MagLIF hardware

• Plasma velocity > 10 cmhis measured in the convolute

 .
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[4] D.H. McDaniel, et al., Proc. 5th lnternational Conf. on Dense Z Pinches, AIP, Melville, NY p. 23 (2002).



Current Losses on Z Reduce Power Delivery to the Loads

Stainless Steel  Wire Array
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• Up to 5MA current loss is sustained for
-50ns on some loads.

• Surface contaminants, outgassing of
electrode materials, and non-ideal
geometries affect current delivery to
the load.

Gas Puff Load
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• Approximately 70% of the total electrical
power delivered to the load occurs after peak
current, when losses are at their highest.

• Current and voltage near stagnation are
more important than the peak current and
these are dictated by convolute loss.



Current losses on the Z machine are attributed to plasma
formation in the convolute and final current feed [5]
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[5] D.v. Rose, et al., Physical Rev. Special Topics-Accel. and Beams, 18, p. 030402-1-10 (2015).



Particle in Cell Modeling of Cathode and Anode Plasma in
Quicksilver [6,7]
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[6] J.P. Quintenz, et al., Laser Part. Beams 12, p. 283 (1994).
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[7] T.D. Pointon, 52nd Annual Meeting of the APS Division of Plasma Physics, Nov. 8-12, 2010.



Dedicated Experiments for Power Flow Physics are

Being Conducted on Z

Power Flow Hardware
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Non-Imploding Load

• Experiments are designed to look for plasmas off the surface of a non-imploding load.

• Coatings are applied to the load to measure specific neutral and ion lines.

• Experiments are designed to look in the final feed gap without a backlighting wall.



Chordal Line of Sight on Power Flow Shots in the Final Feed GE1 saga.
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Magnesium Dopant Results

• MgF2 coated optics
• Mg I and Mg II broadened line emission observed
• Two distinct plasma regions present in spectrum
• Colder, more dilute Mg I plasma next to optics
• Hotter, denser plasma, further off the surface
• Light from the hotter, denser plasma is absorbed in

the cooler plasma.
• Density of emitting plasma: -1x1 019 cm-3
• Density of absorbing plasma: - 1x1 018 cm-3
• Plasma temperatures: 1-5eV
• Mg I lines are red-shifted by 5.9A
• Opacity (T) = -0.4
• 1x1 019 cm-3 continua fits experimental data
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Metastable level in Mg I (steady state, without opacity)
3s3p 3P - metastable level

3s3p 3P —> 2p6 3s2 1S — spin-forbidden transition

3s4s 1S —> 3s3p 1P, X = 11,828 A (NIST)
3s4s 3S —> 3s3p 3P; X = 5,183 A (NIST)
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Zeeman Splitting is a Useful Technique for

Magnetic Field Measurements in Plasmas
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Zeeman Splitting Measurements on Z
Requirements:
• Slotted return current can

• Multifiber array

• Detectors (Streaked spectra, gated

spectra, photodiodes)

• Dopants (Na, Li, Al, C, others)
Load • Compare with VISAR measurements at

the load

• Compare with B-dot monitors at r=6cm

Three Potential Views at the Load

v. v. v.

1

Considerations:

• Polarizations (u and TE)
• Lines of sight vs. B-field

orientation

• Weak field/Strong field

• Specific Lines (low Stark)

• Plasma density and

temperatures

• Doppler broadening

B-field versus Radius
300

250

200

20. mm
30. mm

40. mm
50. mm

60. mm

3050
Time (ns)

3150

Sandia
National
Laboratories



Zeeman Splitting on Z

• Time and space resolved Zeeman

measurements were taken on the SMP diode

on RITS-6 as a proof of principle for Z.

• Calculations of Zeeman lineshapes have been

done for Al 111 and C IV  covering a wide variety

Z relevant temperature and density regimes.

• Previous work by Gomez et. al. measured Na I

splitting in the load region on Z [8].

Experiment ---- Theory
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[8] M.R. Gomez, et al., Rev. Sci. lnstr., 85, p. 11E609-1-11 (2014). 11.



Quadratic Stark Shift is a Useful Technique for
Electric Field Measurements in Plasmas
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Lithium Dopant for Electric and Magnetic
Field Measurements

Lithium neutral lines
(6708Å and 6104Å) used in

combination, provide a
means of measuring local

electric and magnetic fields
in Z power flow regions*.
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*S. Biswas, M.D. Johnston, et al., "Shielding of the Azimuthal Magnetic Field by the Anode Plasma in a Relativistic
Self-Maanetic-Pinch Diode." Phvsics of Plasmas. 25. 113102 (2018).



Ride-along Experiments are Fielded on Multiple Z Platforms

Wire Array Experiment

Angled LOS
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Spectra from Nested Wire Array Experiments

Fused Silica Window-no dopants

Grating: 150g/mm

Center Wavelength: 595nm

Sweep: 50Ons

Combs: 35MHz (28ns)

MgF2 coated optics

Lithium and Sodium Dopants

• Dopants observed from both the anode and
cathode, as well as from the optics.

• Highly broadened lithium neutral lines along
the anode.
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Proposed Zeeman Splitting Measurements Inside the MagLIF

Return Current Can tum
Ctir rent Cnie

• Dopants will be applied to
the inside of the return
current can, around the
holes.

• A horizontal array of fibers
will be used to allow for
measurements at different
distances.

• Various dopants will cover
both neutral and ion species.
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1-5tainless Steel
4mm diameter holes

positioned 45° apart

5mm dia., 7.5mm flAchromat focused
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AC050-008-A-ML (f# 1.5, NA 0.32, 18.4' half angle)



Determination of Current Flow in Pulsed-Power Systems Sandia
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• Current distribution is important in the design of new pulsed-power machines and in the
understanding of existing machines like Z.

• The only way to obtain line emission from the A-K gap of a power-flow transmission line is to
use neutrals, which requires:
- Sufficient number of neutrals in the gap
- Using neutrals that are not field-ionized in the gap, or more precisely, the atomic level of

interest (that provides the radiative decay) should not be field ionized.

• In order to observe the Zeeman effect, one needs line emission in the gap that is not Stark
shifted.

• To prove the neutral atoms emitting the line(s) are in the gap (rather than in the plasma) one
also needs an emission line from the same atom that is Stark shifted.

• We prove, both experimentally and theoretically, that Li neutrals fulfill these requirements,
namely:
- The 2p-2s transition is not Stark shifted and demonstrates the Zeeman effect.
- The 3d-2p transition is Stark shifted and proves the presence of the emitting neutrals in the

gaID-
- The upper, n=3 level of Li I (also the 2p level) does not field ionize in the gap.

• In Summary, we demonstrated a promising new method to reliably determine the current
distribution in the final feed section on Z.



Summary and Conclusions

• Spectroscopic measurements of plasmas in the power flow regions on Z are ongoing.

• B-fields can be measured using the Zeeman effect, even when Stark and Doppler
broadening is present, and for arbitrary B-field orientations, using techniques
developed at the Weizmann Institute.

• Measurements of the magnetic field provide information regarding local current
distributions, including current loss mechanisms.

• Techniques are being developed at the Weizmann Institute to analyze spectral data,
taking into account opacities, impurities, signal to noise, and continua.

• Spectral measurements are needed to increase the fundamental physical
understanding of plasmas and fields in high power machines.

• Present and future understanding and design of high power diodes relies heavily on
kinetic PIC and hybrid (PIC/fluid) simulation models (ex. LSP and EMPHASIS).

• Experimental measurements are needed to validate the models, and to accurately
predict the performance of the next generation pulsed-power machines, such as Z-
Next.
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Future Work

• Continue to develop advanced techniques of spectral analyses, which include effects
due to opacities, impurities, signal to noise, line emission, absorption, continua, and
shielding.

• Determine plasma parameters such as species, ionization states, densities, and
temperatures in the power flow region on Z.

• Measure magnetic fields and currents in the A-K gaps on Z. This will require greater
signal to noise and/or plasma injection scheme (ex. active dopants) [9].

• Implement a gated spectroscopy system at high resolution to record the spatial
distribution of plasma on a single shot.

• Explore Stark shifts to measure E-fields as a function of time and space.

• Extend spectroscopic methods to other power flow regions.
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[9] S. Patel, et al., LDRD Project.


