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Motivation

Need HPC infrastructure to better support diverse software stacks

Utilize, modify, adapt industry tools to HPC only when applicable

Provide increased software flexibility to HPC

Sandia has long history of OSR & virtualization research in HPC
Hobbes, Kitten, Palacios, KVM, ...

Latest efforts also focus on containers & containerized workloads

Can HPC support containers in the same way as industry?

Does this model fit for HPC and emerging workloads at Sandia?



What is a Container?

Unit of software which packages up all code and dependencies
necessary to execute single process or task

Encapsulates the entire software ecosystem (minus the kernel)

OS-level virtualization mechanism
Different than Virtual Machines

Think "chroot" on steroids, BSD Jails

Dependent on host OS, which is (usually) Linux

Uses namespaces (user, mount, pid, etc)

Docker is the leading container runtime
Used extensively in industry/cloud enterprise

Foundation for Kubernetes and google cloud

Supported in Amazon AWS cloud



Containers in HPC

BYOE - Bring-Your-Own-Environment
Developers define the operating environment and system libraries in which their
application runs

Composability
Developers have control over how their software environment is composed of modular
components as container images
Enable reproducible environments that can potentially span different architectures

Portability
Containers can be rebuilt, layered, or shared across multiple different computing systems
Potentially from laptops to clouds to advanced supercomputing resources

Version Control Integration
Containers integrate with revision control systems like Git
Include not only build manifests but also with complete container images using container
registries like Docker Hub



Container features not wanted in HPC

Overhead
HPC applications cannot incur significant overhead from containers

Micro-Services
Micro-services container methodology does not apply to HPC workloads
1 application per node with multiple processes or threads per container

On-node Partitioning
On-node partitioning with cgroups is not necessary (yet?)

Root Operation
Containers allow root-level access control to users
On supercomputers this is unnecessary and a significant security risk for facilities

Commodity Networking
Containers and their network control mechanisms are built around commodity networking
(TCP/IP)
Supercomputers utilize custom interconnects w/ OS kernel bypass operations



Initial Container Vision \
Ell-----t

Fl 6 C'
Support HPC software development and testing on laptops/workstations
Create working container builds that can run on supercomputers
Minimize dev time on supercomputers

Developers specify how to build the environment AND the application
Users just import a container and run on target platform
Have many containers, but with different manifests for arch, compilers, etc.
Not bound to vendor and sysadmin software release cycles

Want to manage permutations of architectures and compilers
x86 & KNL, ARMv8, POWER9, etc.
Intel, GCC, LLVM, etc

Performance matters!
Use mini-apps to "shake out" container implementations on HPC
Envision features to support future workflows (ML/DL/in-situ analytics)

I



7 Singularity Containers

Docker is not good fit for running HPC workloads
Security issues, no HPC integration

Many different container runtimes
Docker, Shifter, Singularity, Charliecloud, etc. etc.

Singularity best for current needs
OSS, publicly available, support backed by Sylabs

Simple image plan, support for many HPC systems

Docker image support

Multiple architectures (x86, ARM, POWER)

Large community involvement



8 Container DevOps

Impractical to use large-scale
supercomputers for DevOps and
testing
HPC resources have long batch queues

Large effort to port to each new machine

Deployment portability with containers
Develop Docker containers on your laptop or
workstation

Leverage registry services

Import container to target deployment

Integrate with vendor libs (via ABI compat)

Leverage local resource manager (SLURM)

Separate networks maintain separate
registries

eon EC2

$ docker pull gitlab.sandia.gov/usr/appl:latest
$ docker run -d -p 12500-13:00 ... appl
$ ssh ctl -C "mpirun -np X appl .exe

S docker build appl
S docker login gitlab.sandia.gov
S docker push appl :latest

CTS Cluster

$ singularity pull appl .img
docker://gitlab.sandia.gov/user/appl :latest
$ qsub71.pbs

Gitlab out:litter Registry

Ser% ice

S singularity pull appl img
docker://gitlab.sandia.gov/user/appl:latest
S aprun -n X singularity exec appl .img appl .exe



9 A Tale of Two Systems
Volta

Cray XC30 HPC system

56 nodes:
2x Intel "IvyBridge" E5-2695v2 CPUs

24 cores total, 2.4Ghz

64GB DDR3 RAM

Cray Aries Interconnect

Shared DVS filesystem

Cray CNL ver. 5.2.UP04
3.0.101 kernel

Running custom Singularity

32 nodes used to keep equal core count

NNSAASC testbed at Sandia

Amazon EC2

Common public cloud service from AWS

48 c3.8xlarge instances:
2x Intel "IvyBridge" E5-2680 CPUs

16 cores total 32 vCPUs (HT), 2.8Ghz

10 core chip (2 cores reserved by AWS)

60 GB RAM

10 Gb Ethernet network w/ SR-IOV

2x320 SSD EBS storage per node

RHEL7 compute image
Running Docker 1.19

Run in dedicated host mode

48 node virtual cluster = $176.64/hour

Run a series of benchmarks and Sandia mini-apps to evaluate each system.
Use same container images, built using Docker Et deployed to both Volta and Amazon cloud.



10 HPCG Weak Scaling (log log scale)
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12 Containers on Secure Networks

Containers are primarily built on unclassified systems then moved to
air gapped networks via automated transfers

Cybersecurity approvals in place to run containers on all networks

Security controls used in running containers on HPC systems
Working to validate software compliance

Automated Transfer Services to air gapped networks

Challenges of automated transfers
Size — 5GB-1OGB are ideal

Integrity — md5 is enough

Availability — who are you competing against?

Transfer policies — executables, code, etc.

Containers will fully work with automated transfers for use in air gapped networks
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‘•
ATSE - AdvancedTri-lab Software Environment 

,

Supports Singularity container runtime
• Working on Charliecloud
Building ATSE container images
Developing Pytorch ARM containers



Container Takeaways

Use case today:
Use Docker to build a manifests to assemble full application suites from scratch
Developers specify TPLs, base OS, configuration, etc

Leverage base or intermediate container images (eg: TOSS base, SEMS image, etc)

Leverage container registry services for storing images
Import/flatten Docker images into Singularity & run on HPC resources

Singularity being rolled out across CTS1, TLCC, and Astra

Advantages:
Simplify deployment to analysts (just run this container image)
Simplify new developer uptake (just develop FROM my base container image)
Decouple development from TPL or vendor software release cycle issues
Reproducibility has a new hope

Caveats:
ABI compatibility with MPI an ongoing issue
Focus is on x86_64 images, alternative archs require more work
Can't build an ARM64 container image from my Mac laptop w/ x86_64

Containers are an option in HPC, not a mandate



ECP Supercontainers Project
giones

EXRECRILE COMPUTING PROJECT

Joint effort across Sandia, LANL, LBNL, U. of Oregon, LLNL

Ensure container runtimes will be scalable, interoperable, and well integrated across DOE

Enable container deployments from laptops to Exascale

Assist ECP applications and facilities leverage containers most efficiently

Three-fold approach:
Scalable R&D activities
Collaboration with related ST and AD projects
Training, Education, and Support

Activities conducted in the context of interoperability
Portable solutions
Optimized E4S container images for each machine type

Containerized ECP that runs on Astra, A21, EI-Capitan,

Work for multiple container implementations
Not picking a "winning" container runtime

Multiple DOE facilities at multiple scales



Efforts with Supercontainers

Containers must work at Exascale
DOE ECP efforts are depending on it
Embrace architectural diversity
Advanced GPU support

Containerized Cl/CD pipeline with Gitlab

HPC service orchestration

Build-time optimizations w/ Spack
• E4S software stack in containers
• Multi-stage builds, multi-env builds
• Use Spack pkg mgmt & orchestration

Further integration with larger community needed
Decrease reliance on MPI ABI compatibility
Vendor support for base containers images
Foster standards that increase reliability

Workflow ensemble support

Reproducibility?
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Warning: Current Slideware

Future Containerized Cl/CD Pipeline

As a developer I want to generate container builds from code pull requests so
th2t cnntniners are te.st nPw cnde nn taraet mpr,hine.s

Gitlab

Git Repo

I
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Contir/Uous Integration

ontainer
Registry

Build & Test Farm



Emerging workloads on HPC with Containers

Need to support merging Al/ML/DL frameworks on HPC
Containers may be useful to adapt ML software to HPC

Already supported and heavily utilized in industry

Extreme-scale Scientific Software Stack (E4S)
Includes TensorFlow & Pytorch in container image

Working with DOE app teams to deploy custom ML tools in containers
ATDM ML4SS project

ECP ExaLEARN project

Investigating scalability challenges and opportunities

E4S

I
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I Conclusion

Demonstrated value of container models in HPC
Deployments in testbeds to production HPC

Initial performance is promising

Modern DevOps approach with containers

Deployed on CTS systems

ECP Supercontainers Project
Performance to be validated at Exascale

Embrace diversity while insuring interoperability

Larger integration with CI pipeline

Containers increase software flexibility in HPC
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Adaptive HPC Infrastructure

Sandia and DOE/NNSA have long history of investment in HPC

Mission workloads & computational requirements demand scale
Tightly coupled BSP simulation codes eg: MPI

Extensive computing capacity - CTS cluster resources

Intermediate computing capability —ATS advanced supercomputing

Public cloud computing is often prohibitive for Sandia
Both in cost and security models

However, HPC is not traditionally as flexible as "the cloud"
Shared resource models

Static software environments

Not always best fit for emerging apps and workflows



Container features not wanted in HPC

Overhead
HPC applications cannot incur significant overhead from containers

Micro-Services
Micro-services container methodology does not apply to HPC workloads
1 application per node with multiple processes or threads per container

On-node Partitioning
On-node partitioning with cgroups is not necessary (yet?)

Root Operation
Containers allow root-level access control to users
On supercomputers this is unnecessary and a significant security risk for facilities

Commodity Networking
Containers and their network control mechanisms are built around commodity networking
(TCP/IP)
Supercomputers utilize custom interconnects w/ OS kernel bypass operations



24 I Example Muelu Dockerfile

FROM ajyounge/dev-tpl

WORKDIR /opt/trilinos

# Download Trilinos

COPY do-configure /opt/trilinos/

RUN wget -nv https://trilinos.org/...\
/files/trilinos-12.8.1-Source.tar.gz \

-0 /opt/trilinos/trilinos.tar.gz

# Extract Trilinos source file
RUN tar xf /opt/trilinos/trilinos.tar.gz

RUN mv /opt/trilinos/trilinos-12.8.1-Source \
/opt/trilinos/trilinos

RUN mkdir /opt/trilinos/trilinos-build

# Compile Trilinos
RUN /opt/trilinos/do-configure

RUN cd /opt/trilinos/trilinos-build \

&& make -j 3

# Link Muelu tutorial
RUN ln -s /opt/trilinos/trilinos-build/pkgs/...\

/opt/muelu-tutorial

WORKDIR /opt/muelu-tutorial

• Example Trilinos container build
• Muelu Tutorial

• Trilinos on version 12.8.1

• Uses ajyounge/dev-tpl as base
container
• Contains necessary third party libraries for

building

• PETSc, NetCDF, compilers, etc.

• This is a simple version, more complex
Dockerfile allows various features and
versions to be selected

1
1
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IMB All-Reduce across 768 ranks (log scale) •
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From Testbeds to Production

• Demonstrated Singularity containers on a Cray XC30
• Performance can be near native

Leveraging vendor libraries within a container is critical

Cray MPI on Aries is performant

• Confirming similar results from Shifter runtime

• Container and library interoperability is key moving forward
• Vendor provided base containers desired
• Community effort on library ABI compatibility is necessary

• Initial benchmarks and mini-apps, what about real apps?
• Can mission applications use containers?
• Can production/facilities teams build container images?
• What are key metrics for success?
• How will containers work in "air gapped" environments?

Initiated joint container investigation with Gunite Falls team in 9320



Problem Description

SNL Nalu:
A generalized unstructured massively parallel low Mach flow code
designed to support energy applications of interest [1]

Distributed on GitHub under 3-Clause BSD License [2]

Leverages the Trilinos libraries
Similar to bulk of SNL Advanced Simulation and Computing (ASC) Integrated Codes
(IC) and Advanced Technology, Development, and Mitigation (ATDM) project
applications

Milestone Simulation:
Based on "milestoneRun" regression test [3] with 3 successive levels
of uniform mesh refinement (17.2M elem.), 50 fixed time steps, and no
file system output

Problem used for Trinity Acceptance [4] and demonstrated accordingly
on Trinity HSW [5] and KNL [6], separately, at near-full scale
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1. S. P. Domino, "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited Release (UUR), 2015. https://github.com/NaluCFD/NaluDoc 

2. "NaluCFD/Nalu," https://github.com/NaluCFD/Nalu, Sep. 2018.

3 "Nalu/milestoneRun.i at master," https://github.com/NaluCFD/Nalu/blob/master/reg tests/test files/milestoneRun/milestoneRun.i, Sep. 2018.

4 A. M. Agelastos and P. T. Lin, "Simulation Information Regarding Sandia National Laboratories' Trinity Capability Improvement Metric," Sandia National Laboratories, Albuquerque, New Mexico 87185 and
Livermore, California 94550, Technical report SAND2013-8748, October 2013.

5. M.Rajan, N.Wichmann, R.Baker, E.W.Draeger, S.Domino, C. Nuss, P. Carrier, R. Olson, S. Anderson, M. Davis, and A. Agelastos, "Performance on Trinity (a Cray XC40) with Acceptance Applications and
Benchmarks," in Proc. Cray User's Group, 2016.

A. M. Agelastos, M. Rajan, N. Wichmann, R. Baker, S. Domino, E.W. Draeger, S. Anderson, J. Balma, S. Behling, M. Berry, P. Carrier, M. Davis, K. McMahon, D. Sandness, K. Thomas, S. Warren, and T. Zhu,
"Performance on Trinity Phase 2 (a Cray XC40 utilizing Intel Xeon Phi processors) with Acceptance Applications and Benchmarks," in Proc. Cray User's Group, 2017.



30 Nalu Build & Environment Description

Doom Software Stack:
TOSS 3.3-1 (—RHEL 7.5)

gnu-7.3.1, OpenMPl 2.1.1

hwloc-1.11.8

Container Software Stack:
CentOS 7.5.1804 (—RHEL 7.5)

gnu-7.2.0, OpenMPl 2.1.1

hwloc-1.11.1

olv-plugin

Nalu Dependencies:
zlib-1.2.11

bzip2-1.0.6

boost-1.65.0

hdf5-1.8.19

pnetcdf-1.8.1

netcdf-4.4.1

parmetis-4.0.3

superlu_dist-5.2.2

superlu-4.3

suitesparse-5.1.0

matio-1.5.9

yaml-cpp-0.5.3

Trilinos-develop-7c67b929

Nalu-master-11899aff

SNL Doom:
CTS-1 HPC platform

Dual E5-2695 v4 (Broadwell) processors, with AVX2, per node

18 cores (36 threads) per processor, 36 cores (72 threads) total per node

512GB DDR4 2400 MHz/s, 4 channels per socket

Intel Omni-Path HFI Silicon 100 Series (100 Gb/s adapter)

Open Source Software Stack Enables Greater Collaboration and Testing Across Networks and Systems



31 Nalu Container Analysis

The container was faster, but used more memory

Dynamic linking of GCC 7.2 in container vs system GCC 4.8 Memory usage
Memory differences: gfortran & stdlibc++ libraries
GCC 7.2 libs much larger, -18MB total

Performance differences: OpenMPl libs
Container's OpenMPl w/ GCC7 provides usempif08 in OpenMPl

usempif08 includes MPI3 optimizations vs MPI2 with usempi

Position Independent Code (-fPIC) used throughout container compiles
Provides larger .GOT in memory, but often slightly improved performance on x86_64

Overhead with using bash in container to load LD_LIBRARY_PATH before exec
Constant but small, depends on .bashrc file

Demonstrates both the power and pitfalls of building your own HPC application environment in containers



Containers at Exascale
Containers have gained significant interest throughout the ECP

There exists several container runtimes for HPC today
Shifter, Singularity, Charliecloud

Diversity is good!

Containers can provide greater software flexibility, reliability, ease of deployment,
and portability

Several likely challenges to containers at Exascale:
Scalability

• Resource management

• lnteroperability

• Security

Further integration with HPC (batch jobs, Lustre, etc)



„ Acceptance Plan — Maturing the Stack

Applications

Systems
Software

Tools

Target: 24 months

No more than 12 months

2-3 Months

Hardware
Delivery

Full Scale Machine Runs
• HPCG
• HPL

MicroBenchmarks
• STREAM
• Intel MPI Benchmarks

Compile and Run
• VPIC (LANL)
• NALU (SNL)

Demonstrate
• Vendor S/W Stack and

Kernel boot
• Lab Rebuild and Boot of

Vendor S/W Stack and
Kernel

Demonstrate
• 1 Compiler Toolchain
• 1 MPI Runtime (Full

machine)

Milestone 1
"Acceptance”
Open Network

 1
SSI Benchmarks
• HPCG
• HPL

LabNendor Optimization
• SPARC (SNL)
• ALE3D (LLNL)
• PARTISn (LANL)

Compile and Run
• RAMSES (SNL)

Demonstrate
• Vendor S/W Stack

advancements
• Lab build and Boot of

Alternative S/W Stack
and Kernel

Demonstrate
• 2 Compiler Toolchains

(min. one open source)
• 2 MPI Runtimes (Full

machine, min. one open
source)

Milestone 2
Restricted Network

LabNendor Optimization
• SPARC (SNL)
• ALE3D (LLNL)
• PARTISn (LANL)

Compile and Run
• SIERRA (SNL)

Demonstrate
• User supplied containers

and virtual machine
(Open network
demonstration)

Milestone 3
Classified Network
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34 Vanguard-Astra Compute Node Building Block

Hewlett Packard CAV1UMr
Enterprise

Dual socket Cavium Thunder-X2
CN99xx
28 cores @ 2.0 GHz

8 DDR4 controllers per socket

One 8 GB DDR4-2666 dual-rank
DIMM per controller

Mellanox EDR InfiniBand
ConnectX-5 VPI OCP

Tri-Lab Operating System Stack
based on RedHat 7.5+

MellqpNE redhat

HPE Apollo 70
Cavium TX2 Node



Astra the First Petscale Arm based Supercomputer

HPE Apollo 70 Chassis: 4 nodes

HPE Apolio 70 Rack

113 chassis/rack

72 nodes/rack

3 IB switches/rack
(one 36-port switch

per 5 chassis)

36 compute racks
(9 scalable units, each 4 racks)

2592 compute nodes
(5184 TX2 processors)

31B spine switches
(each 540-port)

VANGUARD
Astra



Advanced Trilab Software Environment (ATSE)

Advanced Tri-lab Software Environment
Sandia leading development with input from Tri-lab Arm team

Provide a user programming environment for Astra

Partnership across the NNSA/ASC Labs and with HPE

Lasting value for Vanguard effort
Documented specification of:
Software components needed for HPC production applications

How they are configured (i.e., what features and capabilities are enabled) and interact

User interfaces and conventions

Reference implementation:
Deployable on multiple ASC systems and architectures with common look and feel

Tested against real ASC workloads

Community inspired, focused and supported

Leveraging OpenHPC effort tl 11:61:If

Hewlett Packard
Enterprise

Sandia
National
Laboratories

Lawrence Liverrnore
National Laboratory

• Pe Ti ()NAL PETOR

ATSE is an integrated software environment for ASC workloads



Supercontainer Collaboration

Interface with key ST and AD development areas

Advise and support the container usage models necessary for deploying
first Exascale apps and ecosystems

Initiate deep-dive sessions with interested AD groups
ExaLEARN or CANDLE good first targets

Activities which can best benefit from container runtimes

Develop advanced container DevOps models
Work with DOE Gitlab CI team to integrate containers into current CI plan

Leverage Spack to enable advanced multi-stage container builds

Integrate with ECP SDK effort to provide optimized container builds which benefit
multiple AD efforts



Scalable R&D Activities

Several Topics:
Container and job launch, including integration with resource managers

Distribution of images at scale

Use of storage resources (parallel file systems, burst buffers, on-node storage)

Efficient and portable MPI communications, even for proprietary networks

Accelerators e.g. GPUs

Integration with novel hardware and systems software associated with pre-Exascale
and Exascale platforms

Activities conducted in the context of interoperability
Portable solutions

Work for multiple container implementations

Multiple facilities at multiple scales



Future Integration

For project to be successful, need to provide support for deploying
container runtimes at individual facilities

Facilities Integration ideas:
Help integrate with facilities on pre-Exa and Exa machine deployments

Include systems level support for efficient configuration, and interoperability across
ECP

Demonstrate exemplar ECP application deployed with containers at scale

Work with HPC vendors today to ensure designs meet container criteria

Support upstream container projects when applicable (Docker, Singularity)



Training Education & Support

Containers are a new SW mechanism, training and education is needed
to help ECP community to best utilize new functionality

Reports:
Best Practices for building and using containers

Taxonomy survey to survey current state of the practice

Training activities:
Run tutorial sessions at prominent venues
ISC, SC, and ECP annual meetings

Already have several activities underway

Online training and outreach sessions

Provide single source of knowledge for groups interested in containers


