This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 7351C

PRESENTED BY
Andrew J. Younge

Sandia National Laboratories

ajyoung@sandia.gov

CEA/NNSA Meeting

Sandia National Laboratories is a multimission
laboratory managed and operated by National
June 26 th ’ 2019 Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract
== DE-NA0003525.

Motivation

= Need HPC infrastructure to better support diverse software stacks
= Utilize, modify, adapt industry tools to HPC only when applicable
= Provide increased software flexibility to HPC

= Sandia has long history of OSR & virtualization research in HPC
= Hobbes, Kitten, Palacios, KVM, ...
= | atest efforts also focus on containers & containerized workloads

= Can HPC support containers in the same way as industry?

= Does this model fit for HPC and emerging workloads at Sandia?

What is a Container?

necessary to execute single process or task

= Encapsulates the entire software ecosystem (minus the kernel)

= OS-level virtualization mechanism
= Different than Virtual Machines
= Think "chroot” on steroids, BSD Jails
= Dependent on host OS, which is (usually) Linux
= Uses namespaces (user, mount, pid, etc)

|
= Unit of software which packages up all code and dependencies B |

= Docker is the leading container runtime
= Used extensively in industry/cloud enterprise
= Foundation for Kubernetes and google cloud
= Supported in Amazon AWS cloud

Containers in HPC

BYOE - Bring-Your-Own-Environment

Developers define the operating environment and system libraries in which their
application runs

= Composability
= Developers have control over how their software environment is composed of modular
components as container images

= Enable reproducible environments that can potentially span different architectures

= Portability
= Containers can be rebuilt, layered, or shared across multiple different computing systems
Potentially from laptops to clouds to advanced supercomputing resources

= Version Control Integration
= Containers integrate with revision control systems like Git

= Include not only build manifests but also with complete container images using container
registries like Docker Hub

Container features not wanted in HPC

Overhead
HPC applications cannot incur significant overhead from containers

= Micro-Services
= Micro-services container methodology does not apply to HPC workloads
= 1 application per node with multiple processes or threads per container

= On-node Partitioning
= On-node partitioning with cgroups is not necessary (yet?)

= Root Operation
= Containers allow root-level access control to users
On supercomputers this is unnecessary and a significant security risk for facilities

= Commodity Networking

o (Co(?ta/\in?rs and their network control mechanisms are built around commodity networking
TCP/IP

= Supercomputers utilize custom interconnects w/ OS kernel bypass operations

Initial Container Vision \

Z \
AsSC

= Support HPC software development and testing on laptops/workstations
= Create working container builds that can run on supercomputers
= Minimize dev time on supercomputers

= Developers specify how to build the environment AND the application
= Users just import a container and run on target platform
= Have many containers, but with different manifests for arch, compilers, etc.
= Not bound to vendor and sysadmin software release cycles

= Want to manage permutations of architectures and compilers
= x86 & KNL, ARMv8, POWERS9, etc.
= Intel, GCC, LLVM, etc

= Performance matters!
= Use mini-apps to “shake out” container implementations on HPC
= Envision features to support future workflows (ML/DL/in-situ analytics)

; | Singularity Containers

= Docker is not good fit for running HPC workloads ‘
= Security issues, no HPC integration

= Many different container runtimes |
= Docker, Shifter, Singularity, Charliecloud, etc. etc.

= Singularity best for current needs
= 0SS, publicly available, support backed by Sylabs
= Simple image plan, support for many HPC systems
= Docker image support
= Multiple architectures (x86, ARM, POWER)
= Large community involvement

: | Container DevOps P

I
= Impractical to use large-scale
supercomputers for DevOps and
testing
= HPC resources have long batch queues -
= Large effort to port to .elach n.ew machlr?e E:":"‘?EE %I%E:E?%éogé:j:%%rm&t %;Z;% % wpling
= Deployment portability with containers AN 7 H

= Develop Docker containers on your laptop or Gitiab Container Reglstry

Service
workstation ‘ V
Pl 5 l

= Leverage registry services

= Import container to target deployment $ docker buildappl $ singularity pull app1.img
.) . $ docker login gltlab..sandla.gov docken/lgmab:sandla'.govluserlappj ‘latest
= Integrate with vendor libs (via ABI compat) — ym *awnﬂxﬂ"g"'aﬂwﬁawtmaPP‘-exe

= Leverage local resource manager (SLURM)

= Separate networks maintain separate
registries

s | A Tale of Two Systems

Volta

= Cray XC30 HPC system

= 56 nodes:
= 2x Intel "lvyBridge” E5-2695v2 CPUs

= 24 cores total, 2.4Ghz
= 64GB DDR3 RAM

= Cray Aries Interconnect
= Shared DVS filesystem

= Cray CNL ver. 5.2.UP04
= 3.0.101 kernel

= Running custom Singularity

Amazon EC2

Common public cloud service from AWS

= 48 c3.8xlarge instances:

= 2x Intel “lvyBridge” E5-2680 CPUs

= 16 cores total 32 vCPUs (HT), 2.8Ghz

= 10 core chip (2 cores reserved by AWS)
= 60 GB RAM

10 Gb Ethernet network w/ SR-I0OV
2x320 SSD EBS storage per node

RHEL7 compute image
* Running Docker 1.19

Run in dedicated host mode

= 32 nodes used to keep equal core count

= NNSA ASC testbed at Sandia = 48 node virtual cluster = $176.64/hour

Run a series of benchmarks and Sandia mini-apps to evaluate each system.
Use same container images, built using Docker & deployed to both Volta and Amazon cloud.

o | HPCG Weak Scaling (log log scale)

100.00 |

GFLOPS

10.00
48

——Native_CrayMPI
——Singularity_IntelMPI

96 192
Cores

KVM_MPICH
——AWS_ Docker_ IntelMPI

99.8%
89.3%
81.9%
=
384 768

——Singularity__CrayMPI

» Container vs. Native for Strong Scaling of Nalu on CTS1

Agelastos, A, Younge, A et. al, (U) Quantifying Metrics to Evaluate Containers for Deployment and Usage of NNSA Production Applications, NECDC 2018

7,000 1.200 |
6,000 1.150
S 5,000 &
3 1.100 ?::
£ 4,000 a
p— w
= 1.050 5
g 3,000 §
§ . 000 1.000 §
E)
1 000 0.950 |
0 0.900 |
0 2 4 6 8 10 12 14 16 18 20
No. Nodes
—+—Native =X=Container Ratio ‘

» | Containers on Secure Networks

= Containers are primarily built on unclassified systems then moved to
air gapped networks via automated transfers

= Cybersecurity approvals in place to run containers on all networks

= Security controls used in running containers on HPC systems
= Working to validate software compliance

= Automated Transfer Services to air gapped networks

= Challenges of automated transfers
= Size — 5GB-10GB are ideal
= Integrity — md5 is enough
= Availability — who are you competing against?
= Transfer policies — executables, code, etc.

Containers will fully work with automated transfers for use in air gapped networks

“Per aspera datr -

“ATSE - Advanced Tri-lab Software Environment
. Supports Singularity container runtime
*. . Working on Charliecloud .
Building ATSE container images
Developing Pytorch ARM containers

885 TE/S r)i;émory bandwidth peak .
‘ 332 TB memory
1.2 MW

Container Takeaways

= Use case today:

= Use Docker to build a manifests to assemble full application suites from scratch
= Developers specify TPLs, base OS, configuration, etc
= Leverage base or intermediate container images (eg: TOSS base, SEMS image, etc)

= Leverage container registry services for storing images

= Import/flatten Docker images into Singularity & run on HPC resources
= Singularity being rolled out across CTS1, TLCC, and Astra

= Advantages:
= Simplify deployment to analysts (just run this container image)
= Simplify new developer uptake (just develop FROM my base container image)
= Decouple development from TPL or vendor software release cycle issues
= Reproducibility has a new hope

= Caveats:
= ABI compatibility with MPIl an ongoing issue

= Focus is on x86 64 images, alternative archs require more work
= Can’t build an ARM64 container image from my Mac laptop w/ x86 64

= Containers are an option in HPC, not a mandate

r

Y |
ECP Supercontainers Project E\(\g\\)P |

= Joint effort across Sandia, LANL, LBNL, U. of Oregon, LLNL
= Ensure container runtimes will be scalable, interoperable, and well integrated across DOE ‘
= Enable container deployments from laptops to Exascale

= Assist ECP applications and facilities leverage containers most efficiently

= Three-fold approach:
= Scalable R&D activities BEFORE
= Collaboration with related ST and AD projects o A
= Training, Education, and Support) Q‘

= Activities conducted in the context of interoperability
= Portable solutions

= Optimized E4S container images for each machine type
= Containerized ECP that runs on Astra, A21, El-Capitan, ...

= Work for multiple container implementations
= Not picking a “winning” container runtime
= Multiple DOE facilities at multiple scales

Efforts with Supercontainers

Containers must work at Exascale
= DOE ECP efforts are depending on it

= Embrace architectural diversity
= Advanced GPU support

= Containerized CI/CD pipeline with Gitlab e L R
= HPC service orchestration

= Build-time optimizations w/ Spack
= E4S software stack in containers
= Multi-stage builds, multi-env builds
= Use Spack pkg mgmt & orchestration

= Further integration with larger community needed
= Decrease reliance on MPI ABI compatibility
= Vendor support for base containers images
= Foster standards that increase reliability

= Workflow ensemble support
= Reproducibility?

Warning: Current Slideware

| Future Containerized CI/CD Pipeline

= As a developer | want to generate container builds from code pull requests so
that confainers are 11sed fo fest new code on taraet machines.

Gitlab
A
7\
s
Contintuous Integration
Build l’ Test Deploy
II’

(é <HTITTT) E
&

o 1
IEM

Emerging workloads on HPC with Containers

= Need to support merging AI/ML/DL frameworks on HPC
= Containers may be useful to adapt ML software to HPC ‘
= Already supported and heavily utilized in industry

= Extreme-scale Scientific Software Stack (E4S)
= Includes TensorFlow & Pytorch in container image

= Working with DOE app teams to deploy custom ML tools in containers
= ATDM ML4SS project
= ECP ExaLEARN project i |

= |nvestigating scalability challenges and opportunities

=S

TensorFlow |
PYTSRCH |

Conclusion

= Demonstrated value of container models in HPC Acknowledgements:
= Deployments in testbeds to production HPC Kevin Pedretti (1423) ‘
= nitial performance is promising Anthony Agelastos (9326)
= Modern DevOps approach with containers 31 Hammond (1422)
= Deployed on CTS systems Doug Pase (9326) |
Aron Warren (9327)
= ECP Supercontainers Project Stephen Olivier (1423)

Justin Lamb (9326)
Erik Illescas (9327)
Ron Brightwell (1423)

= Performance to be validated at Exascale

= Embrace diversity while insuring interoperability
= Larger integration with CI pipeline
Collaborators:

Shane Canon (LBNL/NERSC)

= Containers increase software flexibility in HPC |
Reid Priedhorsky (LANL) I

Sameer Shende (UofOregon)

- \
E\(C\) I:-') /‘ Todd Gamblin (LLNL)

. :‘.f:'. By

: 4 N -
el o = 2
= o " - —

Questions?

ajyoung@sandia.gov

sapl|S dnyjdoeg

Adaptive HPC Infrastructure

= Sandia and DOE/NNSA have long history of investment in HPC

= Mission workloads & computational requirements demand scale
= Tightly coupled BSP simulation codes eg: MPI
= Extensive computing capacity - CTS cluster resources
= Intermediate computing capability — ATS advanced supercomputing

= Public cloud computing is often prohibitive for Sandia
= Both in cost and security models

= However, HPC is not traditionally as flexible as “the cloud”
= Shared resource models
= Static software environments
= Not always best fit for emerging apps and workflows

Container features not wanted in HPC

Overhead
HPC applications cannot incur significant overhead from containers

= Micro-Services
= Micro-services container methodology does not apply to HPC workloads
= 1 application per node with multiple processes or threads per container

= On-node Partitioning
= On-node partitioning with cgroups is not necessary (yet?)

= Root Operation
= Containers allow root-level access control to users
On supercomputers this is unnecessary and a significant security risk for facilities

= Commodity Networking

o (Co(?ta/\in?rs and their network control mechanisms are built around commodity networking
TCP/IP

= Supercomputers utilize custom interconnects w/ OS kernel bypass operations

» | Example Muelu Dockerfile

FROM ajyounge/dev-tpl
WORKDIR /opt/trilinos

Download Trilinos

COPY do-configure /opt/trilinos/

RUN wget -nv https://trilinos.org/...\
/files/trilinos-12.8.1-Source.tar.gz \
-0 /opt/trilinos/trilinos.tar.gz

Extract Trilinos source file

RUN tar xf /opt/trilinos/trilinos.tar.gz

RUN mv /opt/trilinos/trilinos-12.8.1-Source \
/opt/trilinos/trilinos

RUN mkdir /opt/trilinos/trilinos-build

Compile Trilinos

RUN /opt/trilinos/do-configure

RUN cd /opt/trilinos/trilinos-build \
&& make -3 3

Link Muelu tutorial

RUN 1n -s /opt/trilinos/trilinos-build/pkgs/...\
/opt/muelu-tutorial

WORKDIR /opt/muelu-tutorial

Example Trilinos container build
= Muelu Tutorial
= Trilinos on version 12.8.1

Uses ajyounge/dev-tpl as base
container

= Contains necessary third party libraries for

building

= PETSc, NetCDF, compilers, etc.
This is a simple version, more complex
Dockerfile allows various features and
versions to be selected

IMB PingPong Bandwidth (log scale)

)
~
w
Q
)
>
Ne)
>
-
]
S
3
©
c
©
(an]

—»—Native_SLL
—+-Singularity_IntelMPI

¥ M M
I N < 0
Message Size (Bytes
Native_DLL
——AWS_Docker_IntelMPI

E E
- N

—-Singularity_CrayMPI

E
1=

Aries Interconnect provides
peak 96 Gbps bandwidth

Singularity w/ CrayMPI provides;
99.4% of native efficiency

Singularity w/ IntelMPI drops to
only 39.5% of native efficiency

Amazon EC2 provides peak 7
Gbps bandwidth

Just 6.9% of native Aries

lllustrates massive
difference between
commodity and HPC
Interconnects

IMB PingPong Latency (log scale)

v
O
C
(@]
Q
Q
wv
(@]
| .
.U
>
[&]
C
Q
=t
(1]
-

=
o

—*—Native_SLL
—+Singuarlity_IntelMPI

Message Size (Bytes)
Native DLL
——AWS_Docker_IntelMPI

SIS
— N

—+-Singularity_CrayMPI

€
<

Aries native_latencies around
1.1 to 1.3 microseconds
~200 ns = static linking

Singularity w/ CrayMPI achieves
87.2% of native latency
Overhead = Native DLL

Singularity w/ IntelMPI only
achieves 15.6% efficiency
~/7 microseconds

Amazon EC2 offers just 2.1% of
native efficiency :
~55 microseconds

Large difference depending on
MPI library and interconnect

IMB All-Reduce across 768 ranks (log scale)

100000 ¢

v
©
C
(@]
Q
Q
wv
o
.U
>
Q
C
Q
]
M
-

—-Native_SLL
—+Singularity_IntelMPI

L . . S . v 4
— N < 0 ©
L
Message Size (Bytes)
Native_DLL
—+—AWS_Docker_IntelMPI

—r
o 5 5

—=Singularity_CrayMPI

€
<

IMPI All-Reduce
benchmark

Some overhead in dynamic
linking of apps
~1.6us latency overhead
Independent of containers

Large messages hide
latency

1 order of magnitude
difference with Intel MPI

2 orders of magnitude
difference with Amazon
EC2

From Testbeds to Production

= Demonstrated Singularity containers on a Cray XC30

= Performance can be near native
Leveraging vendor libraries within a container is critical
Cray MPI on Aries is performant

= Confirming similar results from Shifter runtime

= Container and library interoperability is key moving forward
= Vendor provided base containers desired
= Community effort on library ABI compatibility is necessary

= |nitial benchmarks and mini-apps, what about real apps?
= Can mission applications use containers?
= Can production/facilities teams build container images?
= What are key metrics for success?
= How will containers work in “air gapped” environments?

Initiated joint container investigation with Gunite Falls team in 9320

N S $ 829090 P 0000900909090 2 2 |

. | Problem Description
= SNL Nalu:

= A generalized unstructured massively parallel low Mach flow code

designed to support energy applications of interest [1]
= Distributed on GitHub under 3-Clause BSD License [2]

= Leverages the Trilinos libraries

= Similar to bulk of SNL Advanced Simulation and Computing (ASC) Integrated Codes
(IC) and Advanced Technology, Development, and Mitigation (ATDM) project
applications

[
]

T
] HH!II’HIHH

= Milestone Simulation:

= Based on “milestoneRun” regression test [3] with 3 successive levels
of uniform mesh refinement (17.2M elem.), 50 fixed time steps, and no
file system output

= Problem used for Trinity Acceptance [4] and demonstrated accordingly
on Trinity HSW [5] and KNL [6], separately, at near-full scale

S. P. Domino, "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited Release (UUR), 2015. https://github.com/NaluCFD/NaluDoc
“NaluCFD/Nalu,” https://github.com/NaluCFD/Nalu, Sep. 2018.

“Nalu/milestoneRun.i at master,” https://github.com/NaluCFD/Nalu/blob/master/reg tests/test files/milestoneRun/milestoneRun.i, Sep. 2018.

A. M. Agelastos and P. T. Lin, “Simulation Information Regarding Sandia National Laboratories’ Trinity Capability Improvement Metric,” Sandia National Laboratories, Albuquerque, New Mexico 87185 and
Livermore, California 94550, Technical report SAND2013-8748, October 2013.

M.Rajan, N.Wichmann, R.Baker, E.W.Draeger, S.Domino, C. Nuss, P. Carrier, R. Olson, S. Anderson, M. Davis, and A. Agelastos, “Performance on Trinity (a Cray XC40) with Acceptance Applications and
Benchmarks,” in Proc. Cray User’s Group, 2016.

A. M. Agelastos, M. Rajan, N. Wichmann, R. Baker, S. Domino, E.W. Draeger, S. Anderson, J. Balma, S. Behling, M. Berry, P. Carrier, M. Davis, K. McMahon, D. Sandness, K. Thomas, S. Warren, and T. Zhu,

“Performance on Trinity Phase 2 (a Cray XC40 utilizing Intel Xeon Phi processors) with Acceptance Applications and Benchmarks,” in Proc. Cray User’s Group, 2017.

» | Nalu Build & Environment Description

= Doom Software Stack: Nalu Dependencies:
= TOSS 3.3-1 (~RHEL 7.5) o zlib-1.2.11 o superlu_dist-5.2.2
= gnu-7.3.1, OpenMPI 2.1.1 ° bzip2-1.0.6 > superlu-4.3
= hwloc-1.11.8 > boost-1.65.0 o suitesparse-5.1.0
> hdf5-1.8.19 - matio-1.5.9
= Container Software Stack: - pnetcdf-1.8.1 - yaml-cpp-0.5.3
= CentOS 7.5.1804 (~RHEL 7.5) > netcdf-4.4.1 > Trilinos-develop-7c67b929
= gnu-7.2.0, OpenMPI 2.1.1 > parmetis-4.0.3 > Nalu-master-11899aff
= hwloc-1.11.1
= olv-plugin = SNL Doom:
= CTS-1 HPC platform

= 18 cores (36 threads) per processor, 36 cores (72 threads) total per node
= 512GB DDR4 2400 MHz/s, 4 channels per socket
= Intel Omni-Path HFI Silicon 100 Series (100 Gb/s adapter)

uu = Dual E5-2695 v4 (Broadwell) processors, with AVX2, per node

Open Source Software Stack Enables Greater Collaboration and Testing Across Networks and Systems

s | Nalu Container Analysis

= The container was faster, but used more memory

= Dynamic linking of GCC 7.2 in container vs system GCC 4.8 Memory usage

= Memory differences: gfortran & stdlibc++ libraries
= GCC 7.2 libs much larger, ~18MB total

= Performance differences: OpenMPI libs
= Container’s OpenMPI w/ GCC7 provides usempif08 in OpenMPI
= usempif08 includes MPI3 optimizations vs MPI2 with usempi

= Position Independent Code (-fPIC) used throughout container compiles
= Provides larger .GOT in memory, but often slightly improved performance on x86 64

= Overhead with using bash in container to load LD LIBRARY_PATH before exec

= Constant but small, depends on .bashrc file

Demonstrates both the power and pitfalls of building your own HPC application environment in containers

Containers at Exascale
= Containers have gained significant interest throughout the ECP

= There exists several container runtimes for HPC today
= Shifter, Singularity, Charliecloud
= Diversity is good!

= Containers can provide greater software flexibility, reliability, ease of deployment,
and portability

= Several likely challenges to containers at Exascale:
= Scalability
= Resource management
= Interoperability
= Security
= Further integration with HPC (batch jobs, Lustre, etc)

SH;ZR CSJ

; | Acceptance Plan — Maturing the Stack

Applications

Systems
Software

Tools

No more than 12 months

2-3 Months |

Target: 24 months

Full Scale Machine Runs

HPCG
HPL

MicroBenchmarks

STREAM
Intel MPI Benchmarks

Compile and Run

VPIC (LANL)
NALU (SNL)

Hardware
Delivery

Demonstrate

Vendor S/W Stack and
Kernel boot

Lab Rebuild and Boot of
Vendor S/W Stack and
Kernel

Demonstrate

1 Compiler Toolchain
1 MPI Runtime (Full
machine)

Milestone 1
“Acceptance”
Open Network

OPEN SCIENCE PERIOD

SSI Benchmarks

= HPCG

« HPL

Lab/Vendor Optimization
= SPARC (SNL)

= ALE3D (LLNL)

= PARTISNh (LANL)
Compile and Run

= RAMSES (SNL)

Demonstrate
= Vendor S/W Stack
advancements
Lab build and Boot of
Alternative S/W Stack
and Kernel

Demonstrate

= 2 Compiler Toolchains
(min. one open source)
2 MPI Runtimes (Full
machine, min. one open
source)

Milestone 2
Restricted Network

RESTRICTED SCIENCE PERIOD

Lab/Vendor Optimization
= SPARC (SNL)

= ALE3D (LLNL)

= PARTISN (LANL)
Compile and Run

= SIERRA (SNL)

Demonstrate
= User supplied containers
and virtual machine
(Open network
demonstration)

Milestone 3
Classified Network

CLASSIFIED SCIENCE PERIOD

.« | Yanguard-Astra Compute Node Building Block

Q redhat

— |
Hewtettpackard CIFIN) 2 cavium [ENYETT
Enterprise S

= Dual socket Cavium Thunder-X2
= CN99xx
= 28 cores @ 2.0 GHz

= 8 DDR4 controllers per socket | T
L D

= One 8 GB DDR4-2666 dual-rank
DIMM per controller

= Mellanox EDR InfiniBand
ConnectX-5 VPI OCP

= Tri-Lab Operating System Stack
based on RedHat 7.5+

HPE Apollo 70
Cavium TX2 Node

Astra — the First Petscale Arm based Supercomputer

HPE Apollo 70 Chassis: 4 nodes 36 compute racks
_ B— (9 scalable units, each 4 racks)

e —

2592 compute nodes
(5184 TX2 processors)

3 IB spine switches
(each 540-port)

18 chassis/rack

72 nodes/rack
WANGUARD

Astra

3 1B switches/rack
(one 36-port switch
per 6 chassis)

Advanced Trilab Software Environment (ATSE)

I
=
= Advanced Tri-lab Software Environment e
= Sandia leading development with input from Tri-lab Arm team - ‘
= Provide a user programming environment for Astra @ -

= Partnership across the NNSA/ASC Labs and with HPE

'l Lawrence Livermore
—a National Laboratory

A,
» Los Alamos

= Lasting value for Vanguard effort

= Documented specification of:
= Software components needed for HPC production applications
= How they are configured (i.e., what features and capabilities are enabled) and interact I
= User interfaces and conventions

= Reference implementation:
= Deployable on multiple ASC systems and architectures with common look and feel
= Tested against real ASC workloads
= Community inspired, focused and supported
= Leveraging OpenHPC effort YEssseEee e

-_ab-—.-\m‘uh-
t;-:—ﬁ-w-‘m-‘*_nm-;ﬁ-—

ATSE is an integrated software environment for ASC workloads

Supercontainer Collaboration

= Interface with key ST and AD development areas

= Advise and support the container usage models necessary for deploying
first Exascale apps and ecosystems

= |nitiate deep-dive sessions with interested AD groups
= ExaLEARN or CANDLE good first targets

= Activities which can best benefit from container runtimes

= Develop advanced container DevOps models
= Work with DOE Gitlab Cl team to integrate containers into current Cl plan
= Leverage Spack to enable advanced multi-stage container builds

= Integrate with ECP SDK effort to provide optimized container builds which benefit
multiple AD efforts

Scalable R&D Activities

= Several Topics:
= Container and job launch, including integration with resource managers
= Distribution of images at scale
= Use of storage resources (parallel file systems, burst buffers, on-node storage)
= Efficient and portable MPl communications, even for proprietary networks
= Accelerators e.g. GPUs

= Integration with novel hardware and systems software associated with pre-Exascale
and Exascale platforms

= Activities conducted in the context of interoperability
= Portable solutions
= Work for multiple container implementations
= Multiple facilities at multiple scales

Future Integration

= For project to be successful, need to provide support for deploying
container runtimes at individual facilities

= Facilities Integration ideas:
= Help integrate with facilities on pre-Exa and Exa machine deployments

= Include systems level support for efficient configuration, and interoperability across
ECP

= Demonstrate exemplar ECP application deployed with containers at scale
= Work with HPC vendors today to ensure designs meet container criteria
= Support upstream container projects when applicable (Docker, Singularity)

Training Education & Support

= Containers are a new SW mechanism, training and education is needed
to help ECP community to best utilize new functionality

= Reports:
= Best Practices for building and using containers
= Taxonomy survey to survey current state of the practice

= Training activities:
= Run tutorial sessions at prominent venues

= ISC, SC, and ECP annual meetings
= Already have several activities underway

= Online training and outreach sessions

= Provide single source of knowledge for groups interested in containers

