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Motivation: Science/Technology

Resistive and extended MHD
models are used to study
important multiple-time/ length-
scale plasma physics systems

■ Fusion & High Energy Density Physics:
■ Magnetic Confinement [MCF] (e.g. ITER),
■ Inertial Conf. [ICF] (e.g. NIF, Z-pinch, MIF ).

■ Astrophysics:
■ Magnetic reconnection, instabilities,
■ Solar flares, Coronal Mass Ejections.

■ Planetary-physics:
■ Earth's magnetospheric sub-storms,
■ Aurora, Planetary-dynamos.

MHD tokamak equilibrium
(Soloveev)

Hydromagnetic Kelvin-Helmholtz Instability

MHD Taylor-Green Vortex with Sondak (Harvard), Oberai (USC)
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Tokamak Magnetic Confinement Fusion (MCF): Understanding and 
controlling instabilities/disruptions in plasma confinement is critical. 

Goal for Fusion Device: 
• Attempt is to achieve temperature of -100M deg K (6x Sun temp.) ,
• Energy confinement times 0(1 - 10) min is desired.

MCF Devices are characterized by large-range of time and length-scales
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Our Mathematical Approach - develop:
Stable, higher-order accurate implicit/IMEX formulations for multiple-time-scale systems

Stable and accurate unstructured FE spatial discretizations. Options enforcing key
mathematical properties (e.g. structure preserving forms: div B = 0; positivity p , P; DMP)

Robust, efficient fully-coupled nonlinear/linear iterative solution based on Newton-Krylov
methods

opu

Scalable and efficient multiphysics preconditioners utilizing physics-based and approximate
block factorization/Schur complement preconditioners with multi-level (AMG) sub-block solvers

=> Also enables beyond forward simulation & integrated UQ (adjoints - error estimates,

sensitivities; surrogate modeling (E.g. GP), ...)
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A Few Examples of Relevant Continuum / PDE-based Models for

• Resistive MHD,
• Multifluid Plasmas,

and Associated Solution Methods
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3D H(grad) Variational Multiscale (VMS) / AFC formulation

Resistive MHD Model in Residual Notation
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• Divergence free involution enforced as constraint with a Lagrange multiplier (Elliptic, parabolic, hyperbolic)
[Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010, 2016]

• Only weakly divergence free in FE implementation (stabilization of B - coupling )

•  •  
u P T B 11)

All nodal H(grad)
elements using
stabilized weak from

• Can show relationship with projection (e.g. Brackbill and Barnes 1980), and elliptic divergence cleaning (Dedner et. al, 2002) [JS et. al. 2016].

• issue for using C° FE for domains with re-entrant corners / soln singularities [Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2014]
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Large-scale Scaling Studies for Cray XK7 AND BG/Q; VMS 3D FE MHD
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Weak Scaling: Avg. Linear lters. / Newton Step

3D MHD Generator. Re = 500, Rem = 1, Ha = 2.5; (Steady State)

•Iitan DD ILU(1), ov = 1

•E•Titan ML FC-AMG ILU(0), ov =1, v(3,3)

BG/Q MI. FC-AMG ILU(0),ov= , V(3, )

—BG/Q Muelu FC-AMG ILU(0), ov=1, V(1,1)

1.0E+05

4096x increase in prb. size

BG/Q: 1M
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Weak Scaling: Avg. Linear Solve Time / Newton Step

3D MHD Generator. Re = 500, Rem = 1, Ha = 2.5; (Steady State)

M-Titan DD ILU(1), ov = 1

Milltan ML FC-AMG ILU(0), ov =1, V(3,3

'•- B G /Q ML FC-AMG ILU(0),ov=1, V(3,3)

BG/Q Meulu FC-AMG ILU(0), ov=1, V(1,1) -20x
4096x increase in prb. size
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Unknowns Unknowns

Titan: 128K
BGIQ 256K

1.0E+10

Largest fully-coupled unstructured FE MHD solves demonstrated to date: 

MHD (steady) weak scaling studies to 128K Cray XK7, 1M BG/Q
Large demonstration computations
• MHD (steady): 13B DoF, 1.625B elem, on 128K cores
• CFD (Transient): 40B DoF, 10.0B elem, on 128K cores
Poisson sub-block solvers: 4.1B DoF, 4.1B elem, on 1.6M cores



Scaling for VMS 3D Island
Coalescence Problem:
Driven Magnetic Reconnection
[S = 103, dt = 0.1]
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Weak Scaling Study: 3D island Coalescence

Driven Magnetic Reconnection Problem

-i-Avg. Time (sec.) / Time Step

-N-Avg. Gmres Steps / Time Step

32K unknowns per core

Scaling of total time with I/0 included)

1 core 8 cores
64 cores 512 cores 4096 cores

 • 
• 256-x256x256

1.0E+05 1.0E+06 1.0E+07

Number of Unknowns

1.0E+08 1.0E+09

Scaling with Lundquist No.

Lundquist No. S Newt. Steps / dt Gmres Steps / dt

1.0E+03 1.36 5.2

5.0E+03 1.43 5.7

1.0E+04 1.51 6

5.0E+04 2 9.8

1.0E+05 2 12

5.0E+05 2 8.4

1.0E+06 2 8.4

BDF2 NK FC-AMG ILU(fill=0,oy=1), V(3,3)
SNL Capacity Cluster: Chama
Mesh: 128x128x128, dt = 0.0333.



Magnetic Vector-Potential MHD Formulation: structure-preserving (B=VxA;V•B=0 ) 
Mixed basis*:
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• Divergence free involution for B enforced to machine precision by structure-preserving edge-elements
✓ v x v .

H1  > H (curl) H (div)   L2

ti ti II 1
H -1 < H (curl)* <-- H (div)* <  L2

-v v x -v

6 = Qi16 k = Q,T,1 K b = V D
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nodest  v edges*  f aces*  nodest)6t = atQ kt = kt,:iv bt = Dtv

• Mixed basis, Q1/Q1 VMS FE Navier-Stokes, A-edge, Q1 Lagrange Multiplier



Multi-fluid 5-Moment Plasma System Model (Structure-preserving) 
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Other work on mulitfluid
formulations, solution
algorithms:

See e.g.
Abgral et. al.;
Barth;
Kumar et. al.;
Laguna et. al.;
Rossmanith et. al.;
Shumlak et. al.;



Physics-based and Approximate Block Factorizations: 
Strongly Coupled Off- Diagonal Physics & Disparate Discretizations (e.g. structure-preserving)

Du Ov Ov Su

St Ox Ot Ox

Continuous Wave System Analysis:
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Ot Ox at ax
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Discrete Sys.: E.g. 2nd order FD (illustration)

— i3At2Lxx)un+1 =

Fully-discrete:
Approximate Block Factorizations & Schur-complements:
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The Schur complement is then

D1 - U_IVL = (I - At2GCx),,;:,, (I - At2Lxx)

Recall: This is motivating how we develop preconditioners, not for developing solvers

[w/ L. Chacon (LANL) ]



Physics-based and Approximate Block Factorizations: 
Strongly Coupled Off- Diagonal Physics & Disparate Discretizations (e.g. structure-preserving)

D1 U
L D2

[ I ITIV
[ 0 I

[ D1- U.,0 1L 0 1 [ I 0

[ 0 D2 i [ .f) 1.L I

D1 — (ID 1L = (I — At2C,Cx)RD1 (I — At2rxx)

Result:

1) Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks) are now combined onto diagonal
Schur-complement operator (block) of preconditioned system.

2) Partitioning of coupled physics into sub-systems enables SCALABLE AMG optimized for the correct
spaces e.g. H(grad), H(curl) to be used. (e.g. Teko block-preconditioning using ML/Muelu; FieldSplit
in PetSc with Hyper)

Still Requires:
3) Effective sparse Schur complement approximations to preserve strong cross-coupling of physics and
critical stiff unresolved time-scales, and be designed for efficient solution by iterative methods.

[w/ L. Chacon (LANL) ]



Incomplete References for Scalable Block Preconditioning of MHD / Maxwell Systems

Physics-Based MHD and XMHD 
• Knoll and Chacon et. al. "JFNK methods for accurate time integration of stiff-wave systems", SISC 2005
• Chacon "Scalable parallel implicit solvers for 3D MHD", J. of Physics, Conf. Series, 2008
• Chacon "An optimal, parallel, fully implicit NK solver for three-dimensional visco-resistive MHD, PoP 2008

• L. Chacon and A. Stanier, "A scalable, fully implicit algorithm for the reduced two-field low-I3 extended MHD model," J. Comput. Phys., vol. 326, pp. 763-
772, 2016.

Approximate Block Factorization & Schur-complements MHD 
• Cyr, JS, Tuminaro, Pawlowski, Chacon. "A new approx. block factorization precond. for 2D .. reduced resistive MHD", SISC 2013
• Phillips, Elman, Cyr, JS, Pawlowski "A block precond. for an exact penalty formulation for stationary MHD", SISC 2014
• Phillips, JS, Cyr, Elman, Pawlowski. "Block Preconditioners for Stable Mixed Nodal and Edge Finite Element Representations of Incompressible Resistive

MHD," SISC 2016.
• Cyr, JS, Tuminaro, "Teko an abstract block preconditioning capability with concrete example applications to Navier-Stokes and resistive MHD, SISC, 2016
• Wathen, Grief, Schotzau, Preconditioners for Mixed Finite Element Discretizations of Incompressible MHD Equations, SISC 2017

Block Preconditioners for Maxwell 
• Greif and Schotzau. "Precond. for the discretized time-harmonic Maxwell equations in mixed form," Numer. Lin. Alg. Appl. 2007.
• Wu, Huang, and Li. "Block triangular preconditioner for static Maxwell equations," J. Comput. Appl. Math. 2011

• Wu, Huang, Li. "Modified block precond. for discretized time- harmonic Maxwell .. in mixed form," J. Comp. Appl. Math. 2013.
• Adler, Petkov, and Zikatanov. "Numerical approximation of asymptotically disappearing solutions of Maxwell's eqns," SISC 2013.
• Phillips, JS, Cyr, "Scalable Precond. for Structure Preserving Discretizations of Maxwell Equations in First Order Form", SISC 2018

Norm Equivalence Methods 
• Mardal and Winther "Preconditioning discretizations of systems of partial differential equations". NLAA, 2011
• Ma, Hu, Hu, Xu. "Robust preconditioners for incompressible MHD Models," JCP 2016.



Magnetic Vector-Potential MHD Formulation: structure-preserving (B=VxA;V•B=0 ) 
Mixed basis*:
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• Divergence free involution for B enforced to machine precision by structure-preserving edge-elements
✓ v x v .

H1  > H (curl) H (div)   L2

ti ti II 1
H -1 < H (curl)* <-- H (div)* <  L2

-v v x -v

6 = Qi16 k = Q,T,1 K b = V D
nodes1 edges  f aces  nodeso

1Q ,t, IQE IQB 1Qq>
nodest  v edges*  f aces*  nodest)6t = atQ kt = kt,:iv bt = Dtv

• Mixed basis, Q1/Q1 VMS FE Navier-Stokes, A-edge, Q1 Lagrange Multiplier



Magnetic Vector-Potential Form.: Hydromagnetic Kelvin-Helmholtz Problem (fixed CFL)

Structure of Block Preconditioner: Critical 3x3 Block Sys.
Split into 2 - 2x2 Sys. with Sparse Schur Complement Approximations
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Segregation into
• H(grad) system AMG for velocity
• H(curl) AMG for magnetic vector potential (SIMPLEC approx.)
• Scalar H(grad) AMG for pressure (PCD commutator)
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Multi-fluid 5-Moment Plasma System Models
o
pu

o o

Densitv

Momentum

Energy

Charge
and
Current
Density 
Maxwell's
Equations

t ±- V (PaUa) = E(naPb1-7L, nbPa0.7b)
b~a

a(palla) -I- - (Patia. ua Pal Ha) = (lana (E ua x B)at

[Pa(lla tiOnbliab PbUbnal"cf-tb Pallanbliad

aEa,
at ± ( (ea ± Pa ) ± Ha • Ua -4- ha)   gar/a Q.:tre

> (T'a rb)k flab — Palua - — Ilb)nbr4tit, — nar,(1-1,Eb nbPabE a
b~a

q = E qknk J = E qknkUk

1 aB
—VxD-i-ktoJ= 0 V • =e2 at EO

ap -F V X E — 0 V • 13 — 0at

Miller, Cyr, JS, Kramer, Phillips, Conde, Pawlowski, IMEX and exact sequence discretization of the multi-fluid plasma model. submitted to JCP

Phillips, JS, Cyr, Miller, Enabling Scalable Multiuid Plasma Simulations through Block Preconditioning 2019, LNCSE

Other work on
formulations, solution
algorithms:

See e.g.
Abgral et. al.;
Barth; Kumar et. al.;
Laguna et. al.;
Rossmanith et. al.;
Shumlak et. al.;



Scalable Physics-based Preconditioners for Physics-compatible Discretizations 
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Group the hydrodynamic variables together (similar discretization)
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Physics-based/ABF Approach Enables Optimal AMG Sub-block Solvers
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0 E 2 1
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16 Coupled Nonlinear PDEs
T 

E-1 B 1->
+

P
o

pu
. E

o

CFD type system
E node-based coupled
F ML: H(grad) AMG

(SIMPLEC: Schur-compl.)

Electric field system
Edge-based curl-curl type
ML: H(curl) AMG with grad-div stab.
(lumped mass)

Face-based simple
mass matrix Inversion.
V-cycle Gauss-Siedel



Augmentation of Schur Complement
,

D  E ̂ ) c2lAt I + AtV x V x

• Null space of curl is all gradients of scalars.

• Augmenting with —AtVV• yields a vector Laplacian. Then gradients are
not annihilated

• Similar strategy to augmented Lagrangian techniques (CFD: Benzi &

Olshanskii; Maxwell: Wu, Huang, & Li)

• Can be regarded as adding a scaled gradient of Gauss's law

V • (EE) = p to Ampere's law, i.e. adding zero

• In discrete setting, augmented operator is

DE = c20t QE + AtKtQB1K + AtGQ 1Gt

• Removes gradients from null-space. Traditional multigrid can be used on
T, even when CFL, is large

• Of course other optimal AMG routines for curl-curl systems in e.g.
ML/Muelu and Hyper can be used.
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Weak Scaling for 3D Electro Magnetic Pulse
with Block Maxwell Eq. Preconditioners on Trinity

Drekar Tpetra/Teko/MueLu E-B Maxwell weak scaling

20.0

15.0

10.0

5.0

0.0

CPU Time / Solve (not including AMG setup)

GMRES Iterations

128K cores 8.4B row
matrices (edge E field)

Q1:

Maxwell subsystem: electric
field Edge-based curl-curl
type system.

Good scaling on block solves
(at least for solve; setup needs
improvement)

Demonstrated to CFL, > 104

32 256 2048 16384

# M PI Processes

mIDGM RES iterations/solve -- Solve time/Newt

Drekar

GS smoother with H(grad) AMG

131072

Max CFLC - 200



Demonstration / Verification of Implicit Solution for Longitudinal Electron

Plasma (LEP) Oscillation with Under-resolved TEM Waves 

Time = 0.0000e+00

1.7

q,

109
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10,
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LEP

RCP

LCP

• Drekar LEP

• Drekar RCP-L

• Drekar RCP-U

• Drekar LCP

10-1

k [ radian/m]

10° lol

103

8 -4
c 10
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N 10 -5
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g 10-6
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LEP: Longitudinal Electron Plasma Wave
RCP: Right Hand Circularly Polarized Wave
LCP: Left Hand Circularly Polarized Wave
(Cold plasma)

107
101 102

Elements per wavelength

Error at 14.875 periods

io3

Verification effort with Niederhaus, Radtke,
Bettencourt, Cartwright, Kramer, Robinson and
ATDM EMPIRE Team



Initial Weak Scaling for Longitudinal Electron / Ion Plasma Oscillation and
Under-resolved TEM Wave Results (Full Maxwell — two-fluid)

At = 1.1 x 10-11 0.023 Twp, 0.1 Tw > 3 x 102 're

p B

4/
Structure-preserving discretization

o

pu
o

N P

Linear its /

Newton

Solve time / linear

solve

Atimp

Atexp

100 1 4.18 0.2 300

200 2 4.21 0.22 600

400 4 4.27 0.23 1.2E+3

800 8 4.4 0.26 2.4E+3

1600 16 4.51 0.35 4.8E+3

3200 32 4.89 0.42 9.6E+3

6400 64 6.21 0.61 1.9e+4

= = 1836.57

o

1,u,m

me

Initial weak scaling of ABF preconditioner Proof of Principle
• Domain [0,0.01]x[0,0.0004]x[0,0.0004]; Periodic BCs in all directions
• N elements in x-direction; SimpleC on fluid Schur-complement

• Fixed time step size for SDIRK (2,2): (not resolving TEM wave) DD-ILU for Euler Eqns.
DD-LU curl-curl



3D Gaussian Density/Pressure Perturbation as initial condition 
lsentropic ion-acoustic wave

<-11H->pu
o

Structure-preserving discretization

Scaling of ion/electron multiflud plasma block

preconditioner for 3D Soliton: lon-Acoustic wave

Avg. Iterations per time-step

10 16K cores: Trinity

Avg. CPU time per time-step

5

lso-surface of ion density colored
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Resistive Alfven wave problem
• Solution is derived from resistive/viscous

MHD which ignores Hall effects:

• Hall parameter H = (1.e = 1
vet nee

• Reducing Hall effects in magnetized
multi-fluid model is tricky - requires
large collision frequency

• Problem used for verifying resistive, Lorentz
force, and viscous operators:

• Impulse shear due to a moving wall
drives a Hartmann layer

• Hartmann layer shear excites Alfven
wave traveling along magnetic field

• Alfven wave front diffuses due to
momentum and magnetic diffusivity

• Profile depends on the effective

Lundquist number S = L VA
A

Ux =

R. Moreau, Magnetohydrodynamics, 1990

vAyT (1 + exp )) erfc(74)

+ 4 (1 + exp T)) erfc(r0

vAY
Bx = T (1 - exp )) erfc(n+)

vAy
--\//4)-

4 
(1 — exp (— H) erfc(70

A

y ± VAt
71 =
— 2 Virt



Asymptotic Solution of Multifluid EM Plasma in MHD Limit: Visco-resistive Alfven wave

Implicit L-stable and IMEX SSP/L-stable time integration and block preconditioners
enable solution of multifluid EM plasma model in the asymptotic resistive MHD limit.

10 '

10-7

10-8
10'

• 5 = 20

• S = 40

• S = 60

2" Order Convergence

Accuracy in MHD limit (IMEX SSP3 (3,3,2))

Plasma Scales for S = 60
Electrons lons

wp t 07 - 109 106 - 107
we At 106 - 107 103 - 104
voAt 1010 - 1011 107 - 108

vsAt/Ax 10-2 10-4
uAt/Ax 1 0-4 1 0-4

btAt/pAx2 1 0-1 - 1 01 1 0-2 - 1 00

cAt/Ax 12

IMEX terms: implicit/explicit

Overstepping fast time scales is both stable and
accurate. The inclusion of a resistive operator adds
dissipation to the electron dynamics on top of the L-
stable time integrator.



A Few Preliminary Tokamak Relevant Examples for
Resistive MHD and a Multifluid Plasma Model



Tokamak Magnetic Confinement Fusion (MCF): Understanding and 
controlling instabilities/disruptions in plasma confinement is critical. 

Goal for Fusion Device: 
• Attempt is to achieve temperature of -100M deg K (6x Sun temp.) ,
• Energy confinement times 0(1 - 10) min is desired.

• Plasma disruptions can cause break of confinement, huge thermal energy loss, and
discharge very large electrical currents (-20MA) to surface and damage the device.

• ITER can sustain only a limited number of significant disruptions, 0(1 - 5).

DOE Office of Science ASCR/OFES Reports: Fusion Simulation Project Workshop Report, 2007,
Integrated System Modeling Workshop 2015

Sandia
National
Laboratories



Tokamak Disruption Simulation  (TDS) Center SciDAC-4 Partnership (OFES/ASCR)
Institutions: ANL, LANL, LLNL, PPPL, SNL, Columbia, UMD, UT, VT

(Overall PI, OFES PI and LANL-PI, X. Tang; ASCR-PI, SNL-PI J. Shadid):

Goal for Fusion Device: 
• Attempt is to achieve temperature of -100M deg K (6x Sun temp.) ,
• Energy confinement times 0(1 - 10) seconds is desired.

• Plasma disruptions can cause break of confinement, huge energy loss, and discharge very large
electrical currents (-20MA) into structure.

• ITER can sustain only a limited number of significant disruptions/instabilities, 0(1 - 5).

TDS Computational Simulation Goal 
Develop and evaluate advanced hierarchy of plasma physics models and solution
methods to understand disruption physics and explore mitigation strategies.

t = 1.2129

0.6

0.4

0.2

— 0.0
N

-0.2

-0.4

-0.6

1.2135 1.2141 1.2147 1.2153 1.2159 1.2165Iii...2.111
FTPITIr t r 11711nr

0.5 0.7 0.9
R (m)

ITER Physics Expert Group
on Disruptions,
Nucl. Fusion 39, 2251 (1999).
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Preliminary Soloveev Nonlinear Disturbance Saturation.

Time = 0.000 _RHO_UVEC

6.611e-01

4.958e-01

3.306e-01

1.653e-01

0.000e+00 
6.829e-04
0.000e+00

Time = 4.624 _RHO_UVEC

6.611e-01

4.958e-01

3.306e-01

1.653e-01

0.000e+00

5 346e-01

0.000e+00
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Preliminary Soloveev Equilibrium/Linear Disturbance Growth.
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Disruption is a prompt termination of a plasma 
confinement in a tokamak and can be a showstopper
for ITER. Mitigate to control thermal and current
quench evolution. wi.tis

11P-411 

" ;

ITER Project: https://www.iter.org/

DOE Advanced Scientific Computing Research (ASCR) / Office of Fusion Energy (OFES)
SciDAC Partnership: Tokamak Disruption Simulation (TDS) Project

Preliminary Models of Gas 
Injection for Disruption Mitigation 

Dynamics of Neutral Gas Jet 
Injection at an angle wrt B Field 
• Hydrodynamics of jet
• Collisional effects
• lonization/recombination

• E field interactions for
charged species

• Interactions with B field
for charged species

Gas Injection Assumed Distribution 
at time t= 0 for Neutral Gas Core 
Inside Separatrix 
• Hydrodynamics of neutral core

expansion
• Collisional effects
• lonization/recombination

• E field interactions for
charged species

• In 2D,3D interactions with
B field for charged
species



A Very Preliminary ID Gas Injection Related Problem

1D High Z Neutral Gas (Ne0) Core Expansion into a 100ev Deuterium (D+,e-) Plasma

Solving Conservation of Mass, Momentum, Total Mech. Energy
(i.e. Euler sub-system with collisions / ionization / recombination and EM forces) for

(D°, Dl+, NO 7 NCI+ 7 Ne2+, Ne3+, NO+ , e— )

and electromagnetics for (E,B).

5 moment plasma model x 8 species = 40 equations (solved in 3D but only a 1D solution)
Maxwell Equations E,B field = 6 equations (solved in 3D but only a 1D solution)

Problem outline: 
• Initial -fully ionized Deuterium plasma at n = 1020, T = 100ev (-1M degrees K)

• Neutral Neon (Ne°) core introduced at n = 1022 , T = 10-1ev (-1000 degrees K)

• Parallel B - field is ignorable (due to geometry in 1D so B does not modify transport)

• Mesh 4096x1x1 elements
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Conclusions 

• Robustness, efficiency and scalability of fully-implicit /IMEX parallel NK - AMG solvers is very good.

• Physics-based block decomposition and approximate Schur complement preconditioners must have
effective approximation of dominant off-diagonal coupling and time-scales in MHD/multifluid plasmas
represented.

• General mathematical libraries and components (e.g. Trilinos — Tempus, NOX, Aztec, ML/Meulu,Teko,
Panzer, Phalanx, Intrepid, Kokkos) are very valuable for enabling:

• Flexible development of implicit formulations of multiphysics systems (e.g. MHD, multifluid
plasmas)

• Exploration of advanced physics/mathematical models and PDE spatial discretizations

• Development of complex physics-based / approximate Schur complement block preconditioners

• Adoption of well defined, and functionally separated, solution method kernels to promote
robustness and help in assessment when time-step failure, convergence problems occur.
• IMEX time-integration, Nonlinear solvers, Linear solvers, Scalable block and AMG preconditioning

• Software abstractions also allow portability on advanced architectures


