This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 7337C

Quameleon: A Lifter and Intermediate Language for
Binary Analysis

Philip Johnson-Freyd
pajohn@sandia.gov

Digital Foundations & Mathematics,
Sandia National Laboratories

Tristan Duckworth

Cyber Systems Research, Sandia
National Laboratories

Samuel D. Pollard
spolla@sandia.gov

Digital Foundations & Mathematics,
Sandia National Laboratories

Michael J. Carson

Cyber Systems Research, Sandia
National Laboratories

Christopher B. Harrison

Cyber Systems Research, Sandia
National Laboratories

Jon Aytac

Digital Foundations & Mathematics,
Sandia National Laboratories

Geoffrey Compton Hulette

Digital Foundations & Mathematics,
Sandia National Laboratories

Abstract

We present Quameleon, an analysis framework for low-
level programs. Quameleon is takes as input a program
in binary or assembly language format and translates, or
“lifts” this program into an intermediate representation called
the Quameleon Intermediate Language (QIL) which is then
amenable for analysis. The primary features of QIL are: all
operations are parametric over the bit sizes on which they
operate and a value can take on any type. These allow us to
keep the core language of QIL small and allow us to treat
memory and register values as logical formulae, for example,
in order to support symbolic execution. We discuss the de-
sign of QIL and Quameleon and how they support analysis.

CCS Concepts -« Software and its engineering — For-
mal software verification.

Keywords ISA, specification, disassembly, binary analysis,
verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SpISA °19, September 13, 2019, Portland, OR

© 2019 Association for Computing Machinery.

ACM Reference Format:

Philip Johnson-Freyd, Samuel D. Pollard, Jon Aytac, Tristan Duck-
worth, Michael]J. Carson, Geoffrey Compton Hulette, and Christo-
pher B. Harrison. 2019. Quameleon: A Lifter and Intermediate Lan-
guage for Binary Analysis. In ITP 2019: Proceedings of the Tenth
Conference on Interactive Theorem Proving. September 8—13, Port-
land, OR. ACM, New York, NY, USA, 4 pages.

Introduction

Quameleon is a binary analysis framework: its input is a
program in binary or assembly language and its output is
some high-level analysis. We accomplish this by transform-
ing (or lifting) binaries into an intermediate language (IL),
with which we can perform various optimizations while also
providing a single interface for analysis backends. In this pa-
per we primarily describe QIL, the Quameleon Intermediate
Language (pronounced “quill”).

We write the semantics of a target machine language in an
embedded Haskell DSL, then generate analyzable QIL from
target programs. QIL features a simple type system targeted
to the domain with types for sized bit vectors, code pointers,
and memory locations; polymorphism and genericity are
limited to the meta (Haskell) level. QIL’s most significant
limitation is it assumes a Harvard architecture; code and
data are separate and self modification is forbidden. We plan
to address this limitation in future work.

In this work we focus more on the frontends (lifting) and the
design of QIL rather than the backends (analysis). Current
backends include a bridge to angr [6] and a concrete executor.
Quameleon supports multiple ISAs but in this paper we pick
examples entirely from the, beautifully simple, Motorola
M6800 ISA.

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SpISA ’19, September 13, 2019, Portland, OR

ISA | Concrete Execution Engine |
Specification
DSL Custom Symbolic Execution
‘ Engines
Quameleon
M6800 Intermediate | Weakest Precondition
Language

Other ISAs | LLVM/KLEE

(Symbolic Execution, etc.)

Optimizations for
Analysis |

|
|
Angr toolchain ‘
|

Abstract Interpretation

Figure 1. Quameleon pipeline. The bolded blue boxes are
the currently supported backends.

Disassembly and Lifting

The first part of our binary analysis work is to lift a binary
into an intermediate representation. Essentially, this means
exposing the semantic structure of the binary at a higher
level of abstraction.

Our use case is similar to tools like Ghidra [5] and IDA [2];
this means that from scratch, the process for analyzing the
binary consists of three main steps.

1. Creating a machine-readable specification of the ISA.
This is accomplished by creating a Haskell data type and
associating a semantics with it.

2. Specifying how to disassemble individual instructions in
binary format into this data type.

3. Understanding the binary formats used for the ISA and
how to separate data from instructions.

One complication is a binary may be self-modifying. This
means there is no a priori way of disassembling a binary in all
cases. We ignore this complication and instead Quameleon
greedily disassembles each instruction it knows.

Lifting an Instruction

Lifters to QIL are fairly straightforward thanks to Haskell’s
type system, the parametricity of QIL, and the simple de-
sign of (most) assembly instructions. Usually, specification
of the behavior of many instructions can be accomplished
in just a few lines of Haskell. As an example, consider the
implementation of the logical and operation below.

AND r 1 -> do
ra <- getRegVal r
op <- loc8TovVal 1
rv <- andBit ra op
z <- isZero rv
writeReg r rv
writeCC Zero z -- CC = Condition Code
branch next

- location of 8 bits in RAM

This consists of accessing the register ra, a memory location
op, performing a logical and, writing the result, setting status

Johnson-Freyd, Pollard, Aytac, Duckworth, Carson, Hulette, Harrison

flags (some were elided for brevity), and finally branching
to the next instruction. We note the andBit operation is
generic in the size of the input; this allows significant code
reuse and static checking that operands are well-formed.

QIL: Quameleon Intermediate Language

QIL is an intermediate language designed to capture the
semantics of binary programs for a wide variety of architec-
tures while having an easily formalized semantics.

We designed QIL from scratch so we could provide useful
programming language features to ensure strong static type
guarantees, provide ease of analysis, and facilitate code trans-
formations. One interesting feature of QIL is its bit vector
abstraction which provides statically typed bit vector fields
and widths for any bit width. This allows greater code reuse
in contrast with other ILs which have separate instructions
for different bit widths.

We provide three encodings of QIL:

1. a nominal encoding useful for optimization;

2. finally tagless encoding good for code generation; and

3. de Bruijn index encoding to more easily translate repre-
sentations.

We also support JSON output for our angr bridge and a pretty-
printed, human-readable syntax as shown in Listing 2.

At present QIL does not support non-sequential semantics
and self modifying programs. We discuss these limitations
in the future work section.

Overview of Syntactic Elements

QIL has several fundamental type families which can be
referenced by a variable

o Values: these represent bit vectors. In QIL’s type system
Values are parameterized by a natural number of bits.

o Locations: these represent assignable locations where to
which values can be read and written. In QIL’s type sys-
tem Locations are parameterized by a natural number
which denotes the size of Values storable there.

e Labels: these represent program locations and can be
jumped to.

o RamSelectors: these represent families of Locations in-
dexed by Values.

e JoinPoints: these represent a local continuation which
can be jumped to. Unlike a Label, which denotes a global
location, a JoinPoints type is parameterized by a list of
argument types.

From these, we form instructions, blocks, and programs. A
QIL program consists of four pieces of information:

Quameleon: A Lifter and Intermediate Language for Binary Analysis

1. a globally defined code-pointer size (a natural number)

2. a sequence of allocation instructions defining registers
and memories

3. a sequence of blocks, each binding a label

4. optionally, a label called the “entry point.”

Blocks bind labels one of two ways. Registered blocks can be
used for static jumps (with an associated label) or dynamic
jumps (with an associated address). Unregistered blocks only
have a label.

Generally, in a lifter a registered block is (at least initially)
generated for each instruction. Optimization may then gen-
erate additional blocks or combine blocks via inlining.

In either kind of block, the body of the block consists of a
sequence of instructions which may bind variables. Each
variable is bound exactly once in the style of static single
assignment (SSA). Unlike many SSA ILs, there are no “labels”
or “¢ nodes” inside a QIL block. Instead, block-local control
is achieved by way of structured control flow consisting of:

e boolean (if) and multiway (case) conditional statements
e let-bound join points (which take parameters such as
functions in high level languages).

Overview of Semantics

A QIL program takes as its denotation a labeled transition
system where the labels on transitions are sequences of well-
typed, reads and writes to some set of locations.

As is standard, we think of the abstract state of the program’s
denotation as coming from two parts: program locations (that
is, the QIL labels bound by blocks) and the other state, the
latter of which is described by the variables (RAM, registers,
etc.) defined in the allocation section of the QIL program.

By computing the denotation of each block body, we can
easily compute the denotation of the entire program. Specif-
ically, we start with, as states, the Cartesian product of the
set of labels and the denotation of the domain of memory
(both RAM and registers), and then for every element of the
denotation of a block we add the appropriate transitions,
adding intermediate steps as necessary.

Note that, crucially, while QIL blocks can be non-
deterministic, they must terminate. No fancy denotational
techniques are needed to account for non-termination, as it
exists only at the top-level of the semantics (the transition
system).

A Worked Example Program

In order to demonstrate the QIL language, consider the frag-
ment of M6800 assembly language in Listing 1 which takes
the bitwise and of 0xF and the byte at location 0x40.

[B N I N O N

I I R I N N I e e T e e
NG R O N R O 000N WN R OO

SpISA ’19, September 13, 2019, Portland, OR

Listing 1. A fragment of M6800 assembly.

LDA A #15 ; A <- 0OxF
AND A $40 ; A <- A & [0x40]

Listing 2. A worked QIL example.

code_ptr_size: S16
alloc_part: {
&1 := alloc[S8] // Register A
// ... Other registers
&6 := alloc[S1] // Carry Flag
// ... Other status flags
MEM(1) := buildMemory[S16 S81]
}
code_part: {
@1 := block{ }
@2 := registered_block "AND A (DIR8 64)" 2 {
%1 := readLoc[S8] &1 // read Register A
&12 := MEM(1)[S16].BV[S81(40)
%2 := readLoc[S8] &12
%3 := AndBit[S8] %1 %2
writeLoc[S8] &1 %3 // set Register A
branch @1
3
@3 := registered_block "LDA A (IMM8 15)" @ {
writeLoc[S8] &1 BV[S8I(f) // set Register A
branch @2
3}
@4 := block{
branch @3
3}
}

entry_point: @4

The pretty-printed QIL is given in Listing 2. Note that this
program is unoptimized: after sufficient optimization this
program would reduce to a precomputed write since the
program has no inputs.

Line 1 indicates this program uses 16-bit values for dynamic
jumps. Lines 2-8 set up the memory used by this machine.
For instance, Line 3 creates an 8-bit assignable memory loca-
tion (i.e. a register) and associates it with the name &1. In the
QIL syntax all location variables start with an ampersand
and the comment Register A is just metadata.

Our M6800 lifter ends up generating blocks in the opposite
order from the instructions. As such, the initial instruction,
set as the entry point, has the label @4. Next, the program
branches to the label @3. Line 20 states the location &1 gets
the value 15 (0xF), and its size is 8 bits. The other poten-
tially confusing line is 13, which reads 8 bits from the 16-bit
memory location 64 (hex 0x40).

Optimizations

Quameleon provides several optimization passes with the
goal of decreasing code size and increasing analyzability.
One example is constant folding, which consists of replacing
a variable with its value when that value can be statically

SpISA ’19, September 13, 2019, Portland, OR

known. Other optimizations we have implemented include
unreachable code elimination and inlining.

Analysis Backends

We have currently implemented two analysis backends.

1. A bridge between Quameleon and angr. This allows load-
ing QIL programs so that QIL appears as simply another
binary format. We include metadata such as the register
names inside this JSON to provide similar convenience
to existing ISAs.

2. Concrete execution. This backend provides the ability to
interpret QIL programs; i.e. an emulator for supported
architectures. Our general purpose interpreter takes a set
of call-backs for resolving I/O effects, early termination,
or non-deterministic calls. As such, we provide a unified
backend for both pure and side effectful interpretation
strategies.

Related Work

Related work includes analysis tools such as BAP (Binary
Analysis Platform) [1], B2R2 [3], and angr [6].

In particular, angr has a large user community and a substan-
tial degree of completeness. Unfortunately, neither angr nor
BAP supported the ISAs we needed. We note the differing
design goals of other tools to motivate the overall design of
Quameleon.

e Our goal is to generalize both frontends and backends
for binaries which we know at some level the expected
behavior, but require high assurance of correctness; this
contrasts with angr’s design goals of being primarily for
reverse engingeering adversarial binaries using symbolic
execution and heuristics.

o Both angr and BAP use ILs based on mutable temporaries
by default. Instead, we wanted a static single assignment
(SSA)-based IL. LLVM [4] uses SSA, but is aimed for
optimization rather than binary analysis.

Future Work

The first desired feature would be to support self-modifying
binaries. Our idea to the end is to extend QIL with an (op-
tional) special block handling branching to values not known
until runtime, wherein QIL could look up the location in
memory, decode its contents to an instruction, then evaluate
that instruction.

We also wish to add additional backends as listed in Fig. 1
such as Hoare Logic-style predicate transformers and ab-
stract interpretation.

Johnson-Freyd, Pollard, Aytac, Duckworth, Carson, Hulette, Harrison

Lastly, QIL does not include floating point instructions unlike
many other ILs. We are exploring what it would take to
develop a formal theory of all floating point representations
to be used in QIL that would be generic enough for pre-IEEE-
754 floating point formats.

Conclusion

We presented Quameleon, a tool for sound binary analysis
designed from the beginning to be easily extended to dif-
ferent architectures and types of analysis. We accomplish
this by lifting our input ISAs into an intermediate language
QIL, an SSA-based intermediate language. QIL programs are
amenable to analysis because they make explicit all effects of
an assembly language program and the small core language
facilitates our effort to formalize QIL in a proof assistant
such as Coq.

Another result of extensibility being a primary design goal is
the ability to extend to old ISAs; languages with non-byte ad-
dressable memory, pre-IEEE-754 floating point arithmetic, or
requiring cycle-accurate emulation can all be added without
modification QIL’s core.

Acknowledgments

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

References

[1] BRUMLEY, D., JAGER, I, AVGERINOS, T., AND SCHWARTZ, E. J. Bap: A bi-
nary analysis platform. In Computer Aided Verification (CAV) (Snowbird,
UT, USA, July 2011), G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806
of LNCS, Springer Berlin Heidelberg, pp. 463-469.

[2] Hex-Rays. The ida disassembler and debugger, 2018. Available at
https://www.hex-rays.com.

[3] Jung, M, Kim, S., HaN, H., CHol, J., AND CHA, S. K. B2R2: Building

an efficient front-end for binary analysis. In Proceedings of the NDSS

Workshop on Binary Analysis Research (2019).

LATTNER, C., AND ADVE, V. LLVM: A compilation framework for lifelong

program analysis & transformation. In Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-directed and

Runtime Optimization (Palo Alto, CA, USA, Mar. 2004), CGO 04, IEEE

Computer Society, pp. 75-.

NATIONAL SECURITY AGENCY RESEARCH DIRECTORATE. Ghidra: A

software reverse engineering (sre) framework, 2019. Available at

https://www.ghidra-sre.org.

SHOSHITAISHVILI, Y., WANG, R., SALLs, C., STEPHENS, N., PoLINO, M.,

DUuUTCHER, A., GROSEN, J., FENG, S., HAUSER, C., KRUEGEL, C., AND VIGNA,

G. SoK: (State of) The Art of War: Offensive Techniques in Binary

Analysis. In IEEE Symposium on Security and Privacy (SP) (May 2016),

pp. 138-157.

[4

=

[5

—

G

—

