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3 ‘ New Journal ®

 Peridynamics is growing rapidly
O PD needed its own journal. Co-Editor-in-Chief: S. Silling; E. Madenci.
J Now accepting submissions.

Journal of Peridynamics and Nonlocal Modeling
Co-Editor-in-Chief: S. Silling; E. Madenci
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4 ‘ What is Peridynamics!?

[ Peridynamics is a nonlocal extension of classical solid mechanics

 Peridynamic equation of motion (integral, nonlocal)

pii(x, t) = [ f(u(x') - u(x), x'-x)dV" + b(x, 1)

O Replace PDEs with integral equations
O Utilize same equation everywhere; nothing “special” about cracks
L No assumption of differentiable fields (admits fracture)
L No obstacle to integrating nonsmooth functions
Q f(-, -) is “force” function; contains constitutive model
O f =0 for points x,x’ more than 6 apart (like cutoff radius in MD!)
O Peridynamics is “continuum form of molecular dynamics”
O Impact
O Nonlocality
O Larger solution space (fracture)
d Account for material behavior at small & large length scales
(multiscale material model)

 Ancestors
O Kroner, Eringen, Edelen, Kunin, Rogula, etc.

Point x interacts
directly with all
points x’ within H

- D

"It can be said that all

physical phenomena are

nonlocal. Locality is a
fiction invented by

\idealists Y )

U

A. Cemal Eringen

a0 ]



s | Peridynamics: The Basics ®

 Horizon and family
O Point x interacts directly with all points with distance 6 (horizon)
O Material within distance d of x is denoted H, (family of x)

U Bonds and bond forces
O Vector between x and any point in its family is called a bond: € = x’ — x
O Each bond has pairwise force density vector applied at both points: f(x’, x, t)

O This vector is determined jointly by collective deformation of H, and
collective deformation of H,,

 Bond forces are antisymmetric: f(x’, x, t) = - f(x, x’, t)
O Bond degrade and fail, admitting damage, failure, and fracture

O Deformation state !<§> = y(x') - y(x)

O Deformation state operator Y maps each bond § into its deformed image Deformation y

& XN

Undeformed family of x Deformed family of x I



¢« | Peridynamics: The Basics

[ Bonds and states
O f(x’, x) has contributions from material models at both x and x’

f(x',x) = T[x,t](x'—x) - T[x',t](x —x")
O T[x] is the force state — it maps bonds onto bond force densities
(1 Mechanical Properties of Peridynamics
1 Conserves energy (in absence of fracture, plastic deformation, etc.)
O Conserves linear & angular momentum (always)
L Obeys the laws of thermodynamics (restrictions on constitutive models)

O Peridynamics vs. standard equations
O Peridynamic operators and relationships are nonlocal analogues of standard theory

Relation Peridynamic theory Standard theory
Kinematics Y (x'-x) = y(x') - y(x) Flx) = Z—i(x)
Hnear momentum pii(x) = [ (TIX](x' - x) = T[x']{x = X)) dV, +b(x) pY(X,t) = V- o(x) + b(x)
alance A
Constitutive z =
o el T=T(Y) i =Go{F}
Angular momentum Y(x'-x)xT(x'—x)dV, =0 _ T
balance ﬁ[ < T4 > 0=0
Elasticity T =W, (Frechet derivative) o = W; (tensor gradient)
First law of : : ) ‘
thermodynamics B =Lwi &k t=a-Frh+r




7 ‘ Nonlocal Boundary Conditions

O For local models (for example, PDE-based
models), we apply boundary conditions on
boundary of domain (hence the name)

1 A Peridynamic “boundary” becomes a
volumetric region, sometimes called a

»

“nonlocal boundary”, “collar”, etc.

1 Boundary conditions for these models are
called “nonlocal boundary conditions”,
“volume constraints”, etc.

* M. Fender, F. Lechenault, and K. Daniels, Universal Shapes Formed by Two Interacting Cracks, Phys. Rev. Lett. 105, 125505 (2010) .

€]
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» | Motivation for Neumann Boundary Conditions @)

[ Neumann (or second-type) boundary condition specifies value of derivative of solution at boundary
1 Example: Poisson Equation

d2u Physical Problem:
-k— (x)=f(x) x€(0,1) Temperature distribution in bar
dx u = temperature
u=0 x=0 q = heat flux
du d d 041 F

_ = - u
a0 X Mot q=-k |

dx dx

 Physical interpretation of Neumann Boundary: Heat flux across boundary
(J Mathematical interpretation of Neumann Boundary: Slope of temperature field at boundary I

U Locally (i.e., for differential equations) these concepts are the same. For nonlocal models, they are not. ‘



o | Motivation for Neumann Boundary Conditions @)

[ Neumann (or second-type) boundary condition specifies value of derivative of solution at boundary
1 Example: Poisson Equation

d?u Physical Problem:
-k— (x)=f(x) x€(0,1) Displacement of bar
dx u = displacement
u=0 x=0 o = stress, € = strain
du
—=0 x=1 o=Ec¢
dx do of
dx 6‘ - 0 0.1 0.2 0.3 0.4 0).(5 0.6 0.7 0.8 0.9 1
dx
[ Physical interpretation of Neumann Boundary: Stress at boundary
(J Mathematical interpretation of Neumann Boundary: Slope of displacement field at boundary I

U Locally (i.e., for differential equations) these concepts are the same. For nonlocal models, they are not. ‘



1 | Motivation for Neumann Boundary Conditions

1 Neumann-type boundary conditions for nonlocal models must describe flux into / out of domain
[ Slope of the solution field at boundary in nonlocal model has no physical meaning

1 So what is nonlocal flux? In 1D, let’s consider stress as a physical guide.
1 Weckner & Abeyarante*: “By adapting Cauchy’s notion of stress in a crystal ...”

" rdh S

PD EOM _[ (u(y) - u(x)) x(y,x)dy +b(x,t)=0 D |

S z-0 z z+9

PD Stress* o(2) = j'j‘(u(z +r)—-u(z-s)) k(z+r,z—s) drds

U Physical interpretation®: total force that all material to right of z exerts on all material to left of z

J Note that nonlocal stress necessarily takes form of double integral

*O. Weckner and R. Abeyaratne, The effect of long-range forces on the dynamics of a bar, Journal of the Mechanics and Physics of Solids, 53, pp. 705-728, 2005.

S

T



2 | Motivation for Neumann Boundary Conditions @)
J Result of Weckner and Abeyaratne was generalized to 3D in 2008 by Silling & Lehoucq*.

1 Given PD EOM
jf(y,x)dvy +b(x,t)=0

R
1 Peridynamic force flux vector at x in the direction of unit vector n is given by*

o 0 ‘
T(X,Nn) = % j I _" (y+2)*f(x + ym,x —zm)m-n dzdydQ,, |/
<200

1 Physical interpretation*: “According to Timoshenko (1983), the total stress on an infinitesimal
element of a plane taken within a deformed elastic body is defined as the resultant of all the
actions of the molecules situated on one side of the plane upon the molecules on the other, the ]
directions of which (actions) intersect the element under consideration. Replacing molecule with |
peridynamic particle results in a definition that is consistent with our interpretation.”

J Motivation was to postprocess numerical solution to compute stresses, not to apply a traction b.c.

*R.B. Lehoucq and S.A. Silling, Force flux and the peridynamic stress tensor, Journal of the Mechanics and Physics of Solids, 56, pp. 1566—-1577, 2008.



3 | Motivation for Neumann Boundary Conditions

1 If I know solution in nonlocal boundary, | can compute the flux at (local) domain boundary!

4 )
\

r

O This is good to know, but problematic in at least several ways:
U Requires we know u outside domain -- Like need a nonlocal Dirichlet boundary condition in
order to compute Neumann boundary condition!

1 If we know what we want flux to be, it’s not clear how to determine what solution outside the
domain should be

O This isn’t how things work locally -- | just want to apply a Neumann boundary condition and
solve the problem without jumping through hoops going from Dirichlet b.c. to Neumann b.c.

@)

T '
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 Observation: This is an active area of research! |

U Bad News: This means we don’t fully understand it yet....
(1 Good News: You shouldn’t feel bad if you don’t fully understand it yet!
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« | Review of Local Neumann @

U Let’s review how Neumann boundary conditions are applied for differential equations
O Example: Finite Difference solution to Poisson’s equation in 1D

Stencil for Laplace operator: ‘
d’u 2 _ _ :
k=) xe(0,1) || Y () MK P2 o4z o n ]| |
dx dxz i hz ’ 7°°°) |
du
d_x =0 x=0,1 Stencil for Neumann b.c.:
du u(x..,)—u(x. .
- (xi) - ( |+1) ( |-1) + O(hZ ), l=0,N
dx 2h |
U Requires extending mesh by two “fictitious” nodes outside of Q
[ + 2 L - ® 4 . 2 @ 4 @ * P :
u(x,) ulxy) ulx;)) ulx,)) ... u(xy.,) ulxy.) u(xy) u(xy,)
U In nonlocal setting, do something very similar and discretize nonlocal Neumann boundary ‘

condition and incorporate it into linear system of equations!
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3 ‘ Nonlocal Neumann Boundary Condition: Theory @)
1 We will utilize the following operators from nonlocal calculus*-** a(x,y):R"xR" —» R" |
H.(X, y) = a(xl y) ) a(xl y) ‘

1 Nonlocal point divergence

d)[v] j (v(x y)- a(x,y)—v(y, x)- a(y, x))dy forx e Q

O Nonlocal two-point gradient i ‘
g[u](x, y) = (u(y) - u(x)) a(y,x) for(x,y)e R"xR"

0 Nonlocal normal operator 5 )
W[v](x) = — I (v(x, v)- a(x,y)—vly, x)- a(y, x))dy forxerl |

1 Nonlocal Laplacian

[,[u](x) = (D[g[u]](x) =2 I (u(y) - u(x))p.(y, x)dy forxeQ

Qur

*Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Mathematical Models and and Methods in
Applied Sciences, 23 (2013), pp. 493-540.
** B. Hinds and P. Radu., Dirichlet's principle and wellposedness of steady state solutions for a nonlocal peridynamics model, Appl. Math. and Comput., 219 (2012), pp. 1411-1419.



19 ‘ Nonlocal Neumann Boundary Condition: Theory

Define energy of function u(x) as

E[u]=% [ [ lguf av, dv, - [u(x) fix) dv, + [u(x) g(x)av,

Qur Qur 0
U Theorem: H, gradient flow of energy over Hilbert space H,, defined by

r 3\

H, = Juel,(Qur) I ‘u(y) - u(x)|2 H(y - x) dV, dV, < oo

(QUINx(QUI)

A4

\

with (uv),= [ (uly)-u(x))(viy)-v(x))uly-x) dv, dv,

(QUINx(QUT)
yields nonlocal boundary value problem

~£[ul(0) =~ [ [uly)-ub)] sly—x)dV, = f(x), xe0

Qur

P

N[Gu](x) = 2 j [uly)—u(x)] uly—x)dV, =g(x), xeT

Qur



Nonlocal Neumann Boundary Condition: Theory

Proof:

d Let u(x) be a minimizer of the energy functional E[u] over the Hilbert space H,andletv € H, be a test
function. Using the classical direct method in calculus of variations, we will show that uis a solutlon to
the nonlocal BVP. Using differentiation in Hilbert spaces and (nonlocal) integration by parts, compute:

d
0= aE[u +tv]|

= [ [ gugvdv, av, - [vix)fix)dv, + [ v(x) g(x)av,

=— [ £lul(x) v(x) aV, — [ v(x) f(x) dV, + [ v(x) g(x) aV, |
=—[[£lul(x) - f(x)]vix) dv, - | { [ 2(uty)—u(x)) uly - x)aV, —g(x)}v(x) dv,

 Since H, is complete, u(x) must satisfy nonlocal BVP. ‘



21 ‘ Nonlocal Neumann Boundary Condition: Theory

(J How should we interpret Neumann boundary condition operator?

N[Gu](x)=2 I [u(y) - u(x)] ply—x)dv,, xer

Qur
O Under assumptions, can show convergence to local limit

lim ! Qj r[u(y)- u(x)] zly —x)dV, = Vu-n

1 How does this operator compare with flux operator we saw earlier? Compare in 1D:

[ ] [uty)—uba] sty =V, = [ [ [uly) - ub0] sty -x) v,

raour r

+[ [ [uty) - u(x)] ety - x) v,



2 ‘ Nonlocal Neumann Boundary Condition: Theory

(J How should we interpret the Neumann boundary condition operator?

N[Gu](x)=2 I [u(y) - u(x)] ply—x)dv,, xer

Qur
1 Under assumptions, can show convergence to local limit at rate of O(62)

lim ! Qj r[u(y)- u(x)] zly —x)dV, = Vu-n

1 How does this operator compare with flux operator we saw earlier? Compare in 1D:

[ [ [uty)—u(a] sty —x)av, = [ [[uly)=

r aur

+[ [ [uty) - ut)] uly - x) v,

>

/

Flux operator
from Weckner
& Abeyaratne

(J We can now apply a nonlocal boundary condition to prescribe a flux without ever needing to know

u(x) in I, just as we do locally!



3 | Nonlocal Neumann Boundary Condition: Theory @) |

M In local models, we know characteristic
shape of solution associated with Neumann
boundary condition.

L Example: zero Neumann has zero slope
at boundary

[ What do solutions associated with nonlocal
Neumann boundary conditions look like?
U Given u(x) for xe(Q, we can solve
analytically for u(x) for xeI

O This is not required for numerical
solution; We do so here for curiosity |

—Vu(x)=f(x), xeQ
Vu(x)-n=0, x=T

Local
Poisson’s Equation

 Let
O u(x) = x? (1-x)%, xeQ =(0,1)
d5=0.1 —L[ul(x) = f(x), xeQ
d A[Gul(x) =0, xel" NGulx)=0, xef

[ Observations: |
4 u(x), xeI’, is smooth except for Nonlocal
discontinuity at boundary Poisson’s Equation




.+ | Nonlocal Neumann Boundary Condition: Computation

1 Goal: Numerical solution of Nonlocal Poisson’s equation:

—L[u](x)=f(x), xeQ
NIGul(x)=g(x), xeT

O Consider manufactured solution
O u(x) = x2 (1-x)%, xeQ =(0,1)
O Verify h-convergence
J Verify 6-convergence

U Issue #1: Asymptotic incompatibility for certain discretizations*
d Use piecewise linear discretization

U Issue #2: Solution may be discontinuous in Q2 = (0,1), and definitely has discontinuity at x = 0,1.
[ Use discontinuous Galerkin discretization

* X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52, 1641-1665, 2014.



s | Nonlocal Neumann Boundary Condition: Computation @)

1 Nonlocal Poisson’s equation with nonlocal Neumann boundary conditions (homogeneous)
 Piecewise linear DG

—L[u](x) = f(x), xeQ

N[Gu](x)=0, xeT
Log(error) vs. log(h), 6 = 0.03 Log(error) vs. log(s), h = 0.001

0 -2.5
-4 -3 -2 -1 0 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

-3

-3 y =1.9916x - 1.373

) y = 1.9958x - 1.1389 R2 = 1 3.5
= R = 1 4
2,
- -4
E; 5
-6
-4.5
-7
-8 5
log(h) log(d)



» | Nonlocal Neumann Boundary Condition: Computation
1 Nonlocal Poisson’s equation with nonlocal Neumann boundary conditions (homogeneous)
—L[u](x) = f(x), xeQ
N[Gul(x)=0, xerT

0.04

0.03 -

0.02 -

0.01

-0.01

-0.02 -

-0.03 -

-0.04

E)



7 | Conclusions

J Demonstrated nonlocal Neumann boundary condition derived from energy principle

O Advantages
1 No need to determine u(x) in nonlocal boundary

O Consistent with local Neumann boundary condition
O Implement and apply just like a local boundary condition

] Questions?

)



