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Subsurface Sensing with Chemical Waves

Central premise: Chemical kinetics systems
with multiple stationary states coupled to
transport can support chemical waves with
the ability to provide information on spatial
networks through which they propagate

Chemical waves are self-sustaining
disturbances in chemical or other variables
that propagate over distance with or
without attenuation (Ortoleva, 1992)
arising from nonlinear coupling of
chemical reaction and transport under far-
from equilibrium conditions (Nicolis and
Prigogine, 1977).

Use of chemical waves for subsurface
sensing are termed here “nonlinear
tracers” to discern from usual linear
tracers, such as isotopes, conservative
tracers such as Cl or Br, temperature, etc.

Chemical waves involved in ore deposits
such as uranium roll fronts.

Cross-Well Tracer

Push-Pull Tracer




Imh

41 Belousov-Zhabotinsky Reaction

« Canonical oscillatory reaction is the oft-
studied Belousov-Zhabotinsky (BZ)
reaction

« Organic substrate (malonic acid)
oxidized by bromate in acidic solution
with metal (Fe) catalyst

» Complex kinetic steps. A simple model is
the Oregonator (Field et al., 1972) in

ik

t=10s t=15s =20s

2523

t=30s t=35s t=40s t=45s

Belousov-Zhabotinsky
reaction in stirred beaker
and petri dish, showing
oscillations in blue and red
regions corresponding to Fe

which the autocatalytic step is made
clear (X is HBrO,, or bromous acid; Y is
Br-, and Z is Fe3* or other catalyst; A and
P are “pool” concentrations):

oxidation state (photo from
Michael C. Rogers and
Stephen Morris, University of
Toronto,
https://en.wikipedia.org/wi
ki/Belousov%E2%80%93Zhabo

tinsky_reaction

A+Y->X+P
X+Y ->2P .
A+X->2X +Z* .
2X >A+P ]
Z->fY o |

— P(aq)

I

*autocatalytic step

50000 75600 100000
time [sec]

125000 150000 175000

Numerical solution of Oregonator reaction scheme using PFLOTRAN
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Unconventional Computing Examples with BZ pLL

“Liquid chemical computing”:
chemical waves interacting with
a geometrical medium can be
used as chemical switches
(Rossler, 1974); logic gates
(Hjelmfelt and Ross, 1995;
Steinbock et al., 1996; Toth et
al., 2009); chemical neural
networks (Gorecki et al., 2015);
Turing machines (Hjelmfelt et
al., 1991); and chemical clocks
(Winfree, 1982).

Microfreight delivery by
chemical waves, coupling
chemical reaction with vectoral
motion in analogy with bio-
motility (Ichino et al., 2008)

Soft robotics and embedded
organic electronics (Adamatsky,
2016).

Tunable BZ-like dynamics show selective propagation top
to bottom thru street network according to
size/wavelength (from Adamatsky et al., 2018)




s | CFD Modeling: “Skeleton Model” of CHD-Br-Fe System ()

e Reaction network from
Szalai et al., 2002; 2003

Br-+ HBrO, + H* -> 2HOBr  (R2) « Uses 1,4-Cyclohexandione

Br- + BrO; + 2H* -> HBrO, + 2HOBr  (R3) (CHD) as organic substrate
(CO, generated remains in

2HBrO, -> BrO; + HOBr + H+ (R4) solution)

HBrO, + BrO3- + H* = 2Br0O,* + H,0 (R5)  Similar autocatalytic step
as original BZ

H,Q + 2BrO,* -> 2HBrO, + Q (R6a)

Fe?* + BrO,* + H* = Fe3* + HBrO, |(Réb) Bi-stability\  Oxidized

BrCHD -> f H,Q + Br + H* (R9) _ state

H,Q + BrO; + H* -> HBrO, + Q + H,0  (R13) @

2 Fe3* + BrCHD -> H,Q + Br + 2 Fe?* +..... (R16)

Osc-

f = stoichiometric factor in illatory
decomposition of BrCHD ¢

Simplified chemical system and behavior diagram from Szalai et al. 2003, J. Phys. Chem 107 I
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Microfluidics Experiments

Two soda-glass microfluidic cells
(Dolomite Centre, Ltd.) are used to
examine excitability of BZ media
coupled with advection/diffusion/
dispersion in porous media

Use CHD as organic substrate to avoid
bubbles in microfluidic cells

Influent fed from well mixed BZ media

~

Chemical waves in C 7
Br-Fe system in beaker

b)

c)

Schematics of micromodel columns in a
60 mm long by 10 mm tall domain.
Black and green circles represent the
full regular packing of columns. Green
represents columns to be removed for
fracture modeling.
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s I Microfluidics Results

e Volumetric flow uses
Optos Eldex HPLC pump

* Flow rate ranges from
300 to 0.1 microliters/s

* Flow rate is stepped
down and stepped up

» Variety of chemical
wave propagation
observed




9 I Microfluidics Results: Fracture-Matrix Interaction

Examples with
“fracture

Wave generation
and propagation
vary from previous
example

Chemical wave
tracers could be
used to
characterize porous
media

Sensitivity to
advection velocity
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Summary of Experimental Observations

Spatio-temporal chemical waves will advance from spatial perturbations, but
will not initiate in an initially spatially homogeneous concentration field

Wave trains of advancing zones of alternating redox state are initiated and
sustained, with period/wavelength sensitive to the properties of the porous
media

Wave trains are sensitive to flow conditions. In the absence of flow, waves
advance at rates faster than diffusion rates through the cells. In low flow
conditions, waves can remain spatially staghant or even migrate against the
advective gradient

At higher rates of flow, chemical wave trains can be swept along at rates
commensurate with the advective velocity, and the instability leading the
spatio-temporal oscillatory behavior is dampened

At sufficiently high advective flow rates, any spatial variability is wiped out,
but the pore solution can still exhibit chemical clock behavior in a manner
uninfluenced by the porous texture
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CHD-Br-Fe

System: Numerical Examples
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Model of Salazai et al.,
(2002) with complex
kinetics involving ~49 steps

Solution of a simpler 19-
step “skeleton model” in
batch mode shown at left,
a good approximation of
the Salazai et al. (2002)
experimental behavior

~20 minute induction time
required, after which the
system develops complex
oscillations




12 | Computational Fluid Dynamics Modeling

» Coupled Navier-Stokes equations
with species continuity equations
(keeping inertial terms) and
assuming incompressible flow

» Shallow channel approximation for
microfluidic cell thickness

* Nonlinearly coupled reaction
network with (pseudo) mass action
kinetics

* Triangular mesh:

=

inlet

—

E)

pu

dz

u

pa+p(u-V)u= V. [—pl + K]
aCl’
E+VJL+UVCL :Ri
pV-u=0 K=pu(Vu+Vu)")
Ji = —D;V¢;

..I.l.I.I-I.I.II.I-I.I.I.I.I.I.'I.I.'.I...I.I
I;.l .l .l .l .. -'I 'I -I .I .I .I 'Il .'I .' .'Il '.ll .I - .I -. .I .I .I .'. ..."..'.l.l-I-I.I.I.l-....-'.'
L ]

S0 8800000000 R SRR RRRRRRRRRRRORRRRERReRRRES
L L N L N N L N N N L N N N N N N L L N N N N e N N NN
L N N N N N N N R B N N N e B B N N o e N N NN
e s st ssssssessensssssssss

L I-’I.I...I.I.I...I-.I..-I-I.I.I.I.I.' -

—

Steady-state laminar flow velocity in modelled microfluidic cell (m/s)

outlet

“m/s




13

30

2

v

15

10+

<10+

-15+

20+

30

2

w

20

15+

10

10+

15+

20+

CFD Animations of Full CHD-Br-Fe: Advective gradient (h)
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Applications — Contaminant Detection

Reduce CHD-Br-Fe reaction network to Oregonator-like dynamics

Solve system in 1D moving reference frame

Perturb kinetics and examine phase space behavior

Quite sensitive to environmental variations in pH, Cl-, organic substrate
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s | Applications: Other Chemical Systems

NalO; -> Na* + 1057, k, =1.67e-5
105" -> |- + P1, k, =1.67e-4
105" + 21" -> 31"+ P2, k;=41.7

|- -> 0.5l,, ky=1.67e-2

|03-
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Concentration (mol/m?3)
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“Time (s)

[1057] (mol/m3)

008

nfl‘]’(mol/hqag)

Model system from:

M.M.C. Ferreira, W.C. Ferreira Jr., A.C.S.
Lino, and M.E.G. Porto, J. Chem.
Education, vol. 76, p. 861, 1999;

H.S. Fogler and M.N. Gurmen,
http://www.engin.umich.edu/~cre/web_m
od/oscil/module.htm
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Applications: Interaction with Fractures
and Leakage in Engineered Barriers
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Non-Linear vs

Non-linear tracer
informs on
fracture
connectivity and
aperture

Wave arrival and
amplitude
describes
interaction of
flow pathways

Conservative
tracer shows
typical
breakthrough on
same network
scenario

lodate (mol/m3)

Inert Tracer
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18 | Applications: Liquid Logic Gates in Fractured Media
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19 1 Further Musings on Applications

A variety of autocatalytic chemical systems are known (e.g. Noyes, 1990;
Orba’n et al., 2015) that could help design analogous systems that could
serve as nonlinear chemical tracers in the subsurface:

« Bray-Liebhafsky reaction involving disproportioning of H,0, by iodate

» Briggs-Rauscher reaction with iodate, hydrogen peroxide, and carboxylic acids
» Oscillatory dehydration of formic acid involving carbon monoxide

» Destruction of ozone by CFCs

We suggest that appropriately engineered chemical waves could serve
other purposes in subsurface sensing:

« Information or power delivery to or from embedded electronic sensors
« Swelling clays as chemo-mechanical pumps
» Interacting with microbial populations to track migrating contaminant plumes.

* [nasmuch as the kinetics of chemical waves can be fine-tuned, chemical waves can
alternatively overcome temporal and spatial limitations of other subsurface sensing
mechanisms, increasing resolutions below that of seismic imaging, or overcoming
attenuation of electronic sensors.
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Conclusions

We suggest that simple autocatalytic
reaction networks could serve as
“chemical wave” or “nonlinear”
tracers for subsurface sensing

A combination of microfluidic
experimentation and CFD modeling of
nonlinear tracing demonstrates
sensitivity to flow path geometries
and advective gradients, displaying
excitability and a variety of wave
behavior

Nonlinear tracers could prove useful
for leakage and contaminant
detection at sub-seismic resolutions,
expanding the role of chemical
tracing in subsurface sensing
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