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Present Li-ion batteries comprises mostly of
graphite as anode while lithium transition metal
oxides or phosphates as cathode, are separated by
ionically conductive membrane and lithium
electrolyte (LiPF6 in organic carbonates) [1].
Graphite has a theoretical capacity of 372 mAh g-1
and can cycle efficiently up to current rates at 1C
(1-hour charge and discharge)

We need 2 to 5 times more energy density than
the present Li-ion batteries 150-200 Wh kg-1

Causes
+Temperature
+Voltage (Low/high)
+Current density
+Electrode composition
•Stoichiometry
+Mechanical stress
+Engineering

>Volume expansion
>Electrode cracking

>Stmetural disorderin >Loss of active material >Corrosion of Cu/A1
S. Goriparti eT al, iPower Sources, 257 (2014) 421; Birkl et al., iPower Sources, 341 (2017) 373

Sn as Anode for Lithium Ion Batteries
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Challenges

+ Huge volume expansion while lithiation and
de-lithiation
• Strain- induced pulverization
• Electrode /electrolyte interface reactions (SEI)

➢ High Theoretical Capacity , 994 mAh g-1 • Loses of contact from the current collector
➢ 5Sn + 22Li+ + 22e Sn5Li22 • Aggregation of active particles while cycling
➢ High electrical conductivity • Capacity fading with cycling

J. Wang et al, J. Electrochem. Soc, 161 (2014) F3019

Electrochemical S/TEM Platform
The Center for Integrated Nanotechnologies (CINT) at Sandia National laboratories has successfully designed
a microfabricated liquid cell [3] that can operate with quantitative femtoampere-level current control over 10
ultramicroelectrodes while imaging within a TEM [4]. The electrodes are patterned onto a 50 nm SiNx
membrane window, with a constant fluid gap around 150-200 nm and sealed. Battery materials are well suited
for investigations in this platform for structural changes at electrode surfaces, deposition/stripping,
intercalation mechanisms and solid-electrolyte interphase (SEI) formation with 1 nm spatial resolution.
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Figure. SEM images of (a) Titanium and TiO2 coated Sn electrodes fabricated in CINT
custom designed Electrochemical STEM Liquid Cell platform (b) TiO2 coated Sn electrodes

nanostructures on Copper foil for coin cell studies

Figure . Energy Dispersive Spectroscopy mapping of TiO2 coated Sn nanostructures. (a)
HAADF image TiO2 coated Sn nanostructures patterned in TEM platform, (b) the zoomed
area of from "a " and their corresponding elemental mappings, (c) Sn, (d) Ti and (e) O
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Figure. a) Volume changes of TiO2 coated Sn particles during electrochemical process
and b) the plot between number pores and total pore volume vs electrochemical reaction
process time in minutes

Electrochemical STEM of Sn Electrochemical STEM of Ti02*Sn
W.E : Sn or Ti02gSn (50 or 53 nm) Electrolyte:1M LiPF6 (EC:DMC)
C.E/R.E: Ti 50 nm Current density: lmA cm-2
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Figure . STEM bright field images of (a) electrochemical lithiation
Sn nanostructures. (b) corresponding galvanostaic lithiation and

delithiation profile
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of Figure. STEM bright field images of (a) electrochemical lithiation of TiO2 coated Sn;
(b) corresponding galvanostaic lithiation and delithiation profile. (c) electrochemical

delithiation of TiO2 coated Sn.

The top right of each STEM image represents the time (in minutes) of image has taken during electrochemical process.
Each images were acquired with 3 minutes intervals.

Coin cell Studies of Sn and Ti02*Sn
W.E : Sn or Ti02gSn Electrolyte:1M LiPF6 (ECT:iD02:Cn )
C.E/R.E: Li foil Current density: 5.7uA cm-2
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Figure. Electrochemical studies of Sn and TiO2 coated Sn nanostructures using coin-
cells. The galvanostatic cycling performance of (a) Sn and (b) TiO2 coated Sn

nanostructures at a current density of 5.7 uA/cm2; Cyclic voltommograms of Sn and
TiO2 coated Sn nanostructures at a scan rate of 0.1 mV/s (a) first cycle (b) second

cycle, (c) third cycle and(d) fourth cycle

 1 Summary 
➢ In situ electrochemical reversible lithiation and de-

lithiation of Sn reactions has been observed via custom TEM
designed electrochemical platform, and S/TEM along
with surface protection of Sn with TiO2 thin layer
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➢ Currently working on employment of lithium based
cathodes into STEM liquid cell platform towards a
full cell liquid electrolyte Li-ion battery within the
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